
Frontiers in Nutrition 01 frontiersin.org

The interaction between 
polyphenol intake and genes 
(MC4R, Cav-1, and Cry1) related 
to body homeostasis and 
cardiometabolic risk factors in 
overweight and obese women: a 
cross-sectional study
Zahra Roumi 1, Atieh Mirzababaei 1,2, Faezeh Abaj 3, 
Soheila Davaneghi 4, Yasaman Aali 1,2,  and Khadijeh Mirzaei 1*
1 Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran, 
2 Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University 
of Medical Sciences (TUMS), Tehran, Iran, 3 Department of Nutrition, Dietetics and Food, School of 
Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia, 4 MSC, School of 
Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

Background: Cardiovascular disease (CVD), which is an important global 
health challenge, is expanding. One of the main factors in the occurrence 
of CVD is a high genetic risk. The interaction between genetic risk in CVD 
and nutrition is debatable. Polyphenols are one of the important dietary 
components that may have a protective role in people who have a high genetic 
risk score (GRS) for cardiometabolic risk factors. This study, conducted 
in overweight and obese women, examines the interaction between 
polyphenol intake and specific genes (MC4r, Cav-1, and Cry1) related to 
maintaining body balance and their interaction with cardiometabolic risk 
factors.

Methods: This cross-sectional study included 391 women who were overweight 
or obese, aged 18 to 48  years, with a body mass index (BMI) between 25 and 
40  kg/m2. Body composition was measured using the InBody 770 scanner. Total 
dietary polyphenol intake (TDPI) was assessed with a validated 147-item food 
frequency questionnaire (FFQ), and polyphenol intakes were determined using 
the Phenol-Explorer database. Serum samples underwent biochemical tests. 
The Genetic Risk Score (GRS) was calculated based on the risk alleles of three 
genes: MC4r, Cav-1, and Cry1.

Results: The mean ± standard deviation (SD) age and BMI of women were 
36.67 (9.1) years and 30.98 (3.9) kg/m2, respectively. The high GRS and high 
TDPI group had a significant negative interaction with fasting blood glucose 
(FBS) (p  = 0.01). Individuals who had a high GRS and a high phenolic acid 
intake were found to have a significant negative interaction with Triglyceride 
(p  = 0.04). Similarly, individuals with high GRS and a high intake of flavonoids 
had a significant negative interaction with TG (p  < 0.01) and a significant 
positive interaction with High-density lipoprotein (HDL) (p  = 0.01) in the 
adjusted model.
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Conclusion: According to our findings, those with a high GRS may have a 
protective effect on cardiometabolic risk factors by consuming high amounts 
of polyphenols. Further studies will be necessary in the future to validate this 
association.
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Introduction

Cardiovascular disease (CVD), which is the leading cause of death 
and a global health challenge, is becoming more prevalent (1–3). It is 
projected that by 2030, the number of deaths from this disease will 
reach 23.6 million (4). The rate of CVD in women is reported to 
be 1 in every 3 women, with 45% of women over the age of 20 affected 
(5, 6). Cardiometabolic risk factors like obesity, high blood pressure, 
dyslipidemia, and inflammation play a role in the development of 
CVD (7, 8).

Genetic background plays an important role in CVD (9). CVD is 
greatly influenced by the genetic predisposition of individuals (10). 
Research has shown that having a genetic risk for developing 
cardiometabolic risk factors increases the likelihood of certain health 
problems, emphasizing the importance of genetic factors in 
understanding cardiometabolic diseases (11). A genetic risk score 
(GRS) is an estimate of an individual’s genetic predisposition to a 
specific outcome, such as disease susceptibility. The combination of 
multiple genetic markers enables the prediction of disease risk based 
on an individual’s genetic profile (12). Genes play a crucial role in 
maintaining body homeostasis by regulating various metabolic 
processes. The research suggests that gene expression is closely 
connected to metabolite homeostasis, influencing adaptations in 
response to environmental changes and influencing energy efficiency 
and product formation (13).

Genetic mutations, like the Melanocortin 4 receptor (MC4R) 
gene mutation, can lead to obesity (14). This gene is situated in 
the hypothalamus (15, 16) and its mutation may indirectly 
contribute to a higher risk of mortality from CVD (17). The 
MC4R gene (rs17782313) not only influences obesity but is also 
associated with other risk factors for CVD, including hypertension 
(HTN) (18). Inactivation of the MC4R gene has been shown to 
reduce blood pressure independently of obesity in previous 
studies (19).

CAV-1, also known as Caveolin-1, is a protein that has been 
related to different biological processes and diseases. Research has 
found that CAV-1 levels are increased in individuals with metabolic 
syndrome (20). Studies reported that CAV-1 might have a role in the 
impairment of endothelial function, which is a fundamental anomaly 
in the development of hypertension, atherosclerosis, and coronary 
artery disease (21).

Moreover, the presence of CAV-1 in the cells lining the blood 
vessels can be  affected by various factors including green tea 
polyphenols. The presence of CAV-1 in individuals with metabolic 
syndrome, a disease linked to insulin resistance (IR), high blood 
glucose levels, hypertension, abnormal lipid levels, obesity, and 
increased WC, has been observed (20, 22).

The Cryptochrome 1 (Cry1) gene is a molecular clock gene that 
plays a role in generating circadian rhythms (23). Evidence suggests a 
potential association between CRY1 (rs10861688) polymorphism, 
obesity and related cardiovascular risk factors (24). Research has 
shown that CRY1 is associated with components of metabolic 
syndrome, such as hypertension and triglyceride (25) levels, as well as 
obesity and insulin resistance (IR) (26, 27). Furthermore, recent 
research has suggested that variations and genetic differences in the 
human genome, including different forms of the Cry1 gene, could 
have an effect on energy expenditure and body weight (28).

Nutrition is a factor that influences GRS on the incidence of 
cardiometabolic diseases (29). Polyphenols, chemical compounds 
present in plants such as fruits, vegetables, and tea, have been shown 
in studies to be effective in decreasing the risk factors associated with 
CVD (30, 31). Previous studies have discussed various types of 
polyphenols, including flavonoids, stilbenes, phenolic acids, and 
lignans (32). Numerous research studies have examined the potential 
benefits of polyphenols in preventing obesity, and there is evidence to 
suggest that plant polyphenols have the potential to be effective in this 
area (33). In a cohort study, researchers discovered that elevated levels 
of flavanones and lignans were correlated with adult body 
composition, including BMI and waist circumference (WC) (34). 
Furthermore, a separate study conducted on women showed that 
polyphenols were linked to decreased fasting blood sugar (FBS) and 
blood pressure levels. Moreover, there was a significant correlation 
between elevated levels of high-density lipoprotein (HDL) cholesterol 
(35, 36).

The GRS allows us to explore how various genes related to 
cardiometabolic diseases interact with dietary intake to influence 
cardiometabolic risk factors. In this study, we aim to examine how a 
high consumption of polyphenols affects cardiometabolic risk factors 
in individuals with a high GRS, to determine if consuming high levels 
of polyphenols is beneficial in improving these risk factors.

Method

Study population

In this cross-sectional study, 391 overweight or obese women, 
aged between 18 and 48 years and with a body mass index (BMI) 
between 25 and 40 kg/m2 participated. These women were selected 
from people who visited 20 different health centers in Tehran using 
random sampling. Individuals with a prior medical history of 
cardiovascular or thyroid disease, malignancies, liver or kidney 
diseases, types of diabetes, acute or chronic diseases, pregnancy, 
lactation, or menopause, adherence to a specific diet or weight loss 
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supplements, consumption of glucose and lipid lowering drugs and 
blood pressure medications within the past year, and smoking were 
not included in the study. Before the study, all participants were 
required to sign a written informed consent form. The study protocol 
received ethics approval from the Human Ethics Committee of Tehran 
University of Medical Sciences, with the ethics number IR.TUMS.
MEDICINE.REC.1402.636. The procedures were conducted in 
compliance with applicable guidelines and regulations.

Evaluation of dietary intake

The participants’ nutritional status, including energy intake, 
macronutrients, and micronutrients, was assessed using the food 
frequency questionnaire (FFQ) consisting of 147 items. Previous 
studies have confirmed the validity of this questionnaire for the 
Iranian population (37). A trained nutritionist conducted interviews 
with women to complete this questionnaire. The data were then 
analyzed using version 7 of the NUTRITIONIST 4 software, after 
being converted to grams using household measure servings (38).

Evaluation of dietary polyphenol intake 
(DPI)

The Phenol-Explorer database (www.phenol explorer.eu/contents) 
was used to gather data on the overall polyphenol content in various 
foods (39). The total polyphenol content was determined either 
through the Folin Ciocalteu assay or by calculating the sum of four 
main subgroups, which include flavonoids, phenolic acids, stilbenes, 
lignans, and other polyphenols.

Measurement of anthropometric indicators

Participants’ height was measured using a Seca stadiometer with 
an accuracy of 0.1 cm, and their weight was measured with a Seca 
digital scale (Hamburg, Germany) with an accuracy of 0.1 kg. To 
measure these two indicators, the participants must be without shoes 
and in the lightest clothes. BMI was calculated from the ratio of weight 
(kg) to the square of height (m2). In addition, to measure abdominal 
obesity, WC in the smallest circumference and hip circumference 
(HC) in the largest circumference were measured with an accuracy of 
0.1 cm (40). Waist-to-hip ratio (WHR) was also calculated.

Assessment of body composition

The InBody 770 Scanner, a multi-frequency bioelectrical 
impedance analyzer, was used to measure body composition 
parameters such as the amount and proportion of visceral fat level 
(VFL) and obesity degree (3). The measurements were taken in the 
morning while participants were in a fasted state and wearing light 
clothing. Participants were instructed to refrain from exercising, 
carrying electrical devices, and to urinate before the analysis to ensure 
accuracy. Following the manufacturer’s instructions, participants 
stood on the scale barefoot and held the machine’s handles for 20 s, 
after which the results were printed (41).

Biochemical assessments

To assess the levels of biochemical factors (such as glucose and 
lipids) in the participants, blood samples were collected after a 
period of fasting and the serum was separated using a centrifuge. 
The serum was then divided into smaller portions and stored at 
−80°C until it could be  analyzed. All blood parameters were 
measured in the Bionanotechnology Laboratory of the Endocrine 
and Metabolism Research Institute of Tehran University of Medical 
Sciences and analyzed using an exclusive assay based on the 
instructions provided by the manufacturer. All calculations were 
performed using a package from Randox Laboratories (Hitachi 
902). The GPO-PAP method was employed to determine the levels 
of TG, while enzymatic and clearance endpoint assays were utilized 
to measure the total cholesterol (TC) and HDL cholesterol, 
respectively, in this research (42). Alanine aminotransferase (4) and 
aspartate aminotransferase (AST) were measured via 
standard protocols.

Measurement of genetic risk score (GRS)

The DNA was obtained from whole blood samples through salting 
out techniques (43). The quality and quantity of the extracted DNA 
were evaluated using 1% agarose gel and the Nanodrop  8000 
Spectrophotometer, respectively. TaqMan Open Array was used to 
genotype single nucleotide polymorphisms (SNPs), including CAV-1 
(rs3807992), Cry1 (rs2287161), and MC4R (rs17782313) (44). These 
SNPs have been associated with obesity-related traits in previous 
studies (45–47). The GRS was computed by summing up the scores of 
the three SNPs, which were coded as 0, 1, or 2 based on their 
association with higher BMI. The unweighted GRS ranges from 0 to 
6, with higher scores indicating a greater genetic predisposition to 
high BMI (48).

Measurement of blood pressure

Systolic blood pressure (SBP) and diastolic blood pressure 
(DBP) were measured using standard sphygmomanometer and 
cuff through auscultation. After each subject had sat for at least 
5 min, two consecutive blood pressure measurements were taken. 
Systolic blood pressure (SBP) and diastolic blood pressure (DBP) 
were measured with a standard mercury sphygmomanometer 
using the first and fifth Korotkoff sounds, to within 2 mmHg. If the 
difference between the two systolic or diastolic blood pressures 
was more than 5 mmHg, an additional measurement 
was performed.

Assessment of other variables

Trained nutritionists filled out a demographic questionnaire that 
consisted of information regarding job, education, marital, and 
economic status. The present study measured PA as a confounding 
variable using the International Physical Activity Questionnaire 
(IPAQ). The data obtained from this questionnaire was measured on 
a scale of metabolic hours per week (MET. h week−1) (49).
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Statistical analysis

In the present study, cardiometabolic risk factors were 
determined based on biochemical, anthropometric and body 
composition criteria. The statistical analyses were performed using 
the IBM SPSS Statistics 23 software, with a significance level of less 
than 0.05. The normality of the distribution of the quantitative data 
of the study was performed by the Kolmogorov–Smirnov test. In 
this study, qualitative variables (Marriage, Education, Job and 
Economic Status) were described as numbers/percentages and 
quantitative variables (demographic variables, anthropometric 
measurements, body composition, blood parameters and blood 
pressure) were described as mean ± standard deviation (SD). The 
characteristics of the study participants among the tertile of GRS 
were compared with ANOVA and the characteristics of the study 
participants among the total dietary polyphenols index (TDPI) 
were compared with the independent t-test. To eliminate any 
confounding outcomes, ANCOVA was utilized. Both the crude and 
adjusted models employed a generalized linear model (GLM) to 
evaluate the interactions between metabolic factors and GRS, 
phenolic acid, lignans, flavonoids, and polyphenol. The outcomes 
were adjusted for age, energy intake, and PA.

Results

Study population characteristic

Our study was conducted on 391 overweight or obese women. 
The mean (± SD) age, weight, BMI and WC of participants were 36.67 
(9.1) years, 80.28 (11.05) kg, 30.98 (3.9) kg/m2 and 99.16 (9.42) cm, 
respectively. Most of the participants were married (70.8%) and had 
no academic education (51%). They were also in a Moderate economic 
situation (45.5%).

Characteristics of the study participants 
among tertile of GRS

The baseline characteristics of the study participants were presented 
in Table 1, categorized based on tertiles of their GRS. According to the 
table, in crude model there were a significant difference in mean values 
among the GRS tertiles for weight (p = 0.03), height (p = 0.03), WC 
(p = 0.03), and WHR (p = 0.03). There was also a marginally significant 
difference for TG (p = 0.06) among the GRS tertiles. After adjusting for 
confounding factors such as age, PA, and energy intake, the VFL 
(p = 0.03), SBP (p = 0.01), FBS (p = 0.02), and LDL (p = 0.01) became 
significantly different among the GRS tertiles. Additionally, there was a 
significant difference in height (p = 0.005), WC (p = 0.04), and WHR 
(p = 0.02), and a marginally significant difference for weight (p = 0.06) 
and TC (p = 0.08) among the GRS tertiles.

Characteristics of the study participants 
among intake of TDPI

In Table 2, the characteristics of the participants are compared 
based on receiving low and high TDPI. The results showed that in the 

crude model, there is a significant difference between the two groups 
(low and high TDPI) in terms of job (p = 0.02), However in the 
adjusted model (age, PA, and energy intake), in addition to job 
(p = 0.01), the participants also had significant differences in terms of 
FBS (p < 0.001), TC (p = 0.01), and LDL (p < 0.001). Also a marginal 
difference for WC (p = 0.08) and WHR (p = 0.09) between the low 
intake and high intake groups of TDPI.

The interaction between GRS, TDPI, 
stilbenes, phenolic acid, lignans, flavonoids 
and polyphenol on cardiometabolic risk 
factors

The findings on the interaction between GRS, TDPI, and stilbenes 
on cardiometabolic risk factors are presented in Table 3. The crude 
and adjusted models showed a significant negative interaction 
between high GRS and high intake TDPI with FBS (crude: 
95%CI = −20.39, −3.28, p < 0.001; adjusted: 95%CI = −19.95, −1.8, 
p = 0.01).

The findings also showed that the significant negative interaction 
between moderate GRS and high intake TDPI with BMI 
(95%CI = −5.05, −1.03, p < 0.001), WC (95%CI = −12.53, −2.33, 
p < 0.001), VFL (95%CI = −3.88, −0.33, p = 0.02), FBS (95%CI = −20.39, 
−3.28, p < 0.001) and LDL (95% CI = −28.75, 0.028, p = 0.05) in the 
crude model. After adjusting for age, IPAC and total energy intake in 
model 1, the interaction between moderate GRS and high intake TDPI 
with BMI (95% CI = −4.55, −0.46, p = 0.01), WC (95% CI = −12.51, 
−2.38, p < 0.001), VFL (95% CI = −3.85, −0.26, p = 0.02) and FBS (95% 
CI = −13.38, −1.63, p = 0.01) remained negative. The interaction 
between TDPI and GRS on BMI, WC, VFL and FBS is shown in 
Figure 1.

Furthermore, there was no significant interaction found between 
moderate/high GRS and stilbenes with cardiometabolic risk factors in 
both the crude and adjusted models.

The interaction between GRS, phenolic acid and lignans on 
cardiometabolic risk factors were presented in Table  4. In the 
crude model, a significant positive interaction was observed 
between high GRS and high intake phenolic acid on HDL 
(95%CI = 0.16, 19.23, p = 0.04) But in adjusted model, this 
interaction was not reported. However, a significant negative 
interaction was observed between high GRS and high intake 
phenolic acid on TG (95%CI = −115.66, −2.42, p = 0.04). 
Interaction between Phenolic acid and GRS on TG is shown in 
Figure 2.

Furthermore, there was no significant interaction found between 
moderate/high GRS and lignans with cardiometabolic risk factors in 
both the crude and adjusted models.

The interaction between GRS, flavonoids and polyphenol on 
cardiometabolic risk factors were presented in Table 5. The crude and 
adjusted models showed a significant negative interaction between 
high GRS and high intake flavonoids with TG (crude: 
95%CI = −137.58, −31.2, p < 0.001; adjusted: 95%CI = −135.52, 
−22.69, p < 0.001). Also, a significant positive interaction was observed 
between high GRS and high intake flavonoids with HDL 
(95%CI = 2.47, 22.65, p = 0.01) in the adjusted model.

The findings also showed that the significant negative interaction 
between moderate GRS and high intake flavonoids with BMI 
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(95%CI = −5.44, −1.49, p < 0.001), WC (95%CI = −12.48, −2.39, 
p < 0.001), VFL (95%CI = −3.96, −0.46, p = 0.01) and OD 
(95%CI = −24.62, −1.47, p = 0.02) in the crude model. After adjusting 
for age, IPAC, and total energy intake in model 1, the interaction 
between moderate GRS and high intake flavonoids with BMI 
(95%CI = −4.59, −0.52, p = 0.01), WC (95%CI = −10.79, −0.56, 

p = 0.03) and OD (95%CI = −22.67, 0.27, p = 0.05) remained negative. 
Interaction between Flavonoids and GRS on BMI, WC, OD, TG and 
HDL is shown in Figure 3.

Furthermore, there was no significant interaction found between 
moderate/high GRS and polyphenol with cardiometabolic risk factors 
in both the crude and adjusted models.

TABLE 1 Characteristics of the study participants among tertile of genetic risk score (GRS).

Variables GRS

Low risk <3 
(n =  164)

Moderate risk 
(3&4) (n =  97)

High risk ≥5 
(n =  130)

p-value p-value*

Demographic variables

Age (years) 36.02 ± 8.78 36.53 ± 8.15 36.08 ± 8.61 0.91 0.89

PA (MET-minutes/week) 1052.27 ± 1116.01 1353.96 ± 2742.28 1389.51 ± 2576.15 0.61 0.58

Anthropometric measurements

Weight (kg) 79.31 ± 9.79 76.9903 ± 10.29312 82.47 ± 9.33 0.03 0.06

Height (cm) 162.46 ± 5.41 160.26 ± 5.93 161.41 ± 4.45 0.03 0.005

BMI (kg/m2) 29.98 ± 3.31 30.09 ± 3.5 31.44 ± 3.32 0.16 0.22

WC (cm) 97.39 ± 8.62 96.4 ± 8.56 101.42 ± 9.03 0.03 0.04

WHR 0.92 ± 0.05 0.92 ± 0.04 0.95 ± 0.05 0.03 0.02

Body composition

VFL (cm2) 14.9 ± 3.15 15 ± 3.07 16.16 ± 2.98 0.19 0.03

OD (%) 139.37 ± 15.47 139.91 ± 16.32 146.25 ± 15.54 0.16 0.22

Blood pressure

SBP (mmHg) 111.24 ± 12.06 111.26 ± 15.38 113.08 ± 14.57 0.83 0.01

DBP (mmHg) 77.14 ± 10.08 77.44 ± 9.51 77.58 ± 11.04 0.97 0.16

Blood parameters

FBS (mg/dL) 87.32 ± 9.2 86.46 ± 10.32 88.7 ± 9.82 0.57 0.02

TC (mg/dL) 186.41 ± 33.3 182.95 ± 37.7 179.83 ± 35.46 0.68 0.08

TG (mg/dL) 120.83 ± 57.88 108.35 ± 53.01 136.91 ± 75.67 0.06 0.11

HDL (mg/dL) 47.35 ± 9.69 47.59 ± 11.62 46.87 ± 11.6 0.95 0.98

LDL (mg/dL) 96.96 ± 21.67 95.12 ± 25.51 90.45 ± 25.82 0.51 0.01

AST (IU/L) 17.51 ± 6.9 17.97 ± 8.08 17.91 ± 8.56 0.92 0.79

ALT (IU/L) 18.16 ± 14.02 18.77 ± 13.31 20.25 ± 13.68 0.8 0.53

Qualitative variable N (%)

Marriage status
Single 29 (49.2) 25 (42.4) 5 (8.5)

0.16 0.18
Married 69 (35.9) 96 (50) 27 (14.1)

Education levels
Non academic 49 (76.8) 62 (88.4) 22 (34.9)

0.3 0.32
Academic 49 (42.2) 57 (49.1) 10 (8.6)

Job
Unemployed 52 (34.7) 77 (51.3) 21 (14)

0.16 0.18
Employed 45 (46.9) 40 (41.7) 11 (11.5)

Economic status

Poor 19 (34.5) 27 (49.1) 9 (16.4)

0.77 0.77Moderate 46 (39.3) 56 (47.9) 15 (12.8)

Good 28 (43.8) 30 (46.9) 6 (9.4)

BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; Chol, Cholesterol; TG, Triglyceride; HDL, High density lipoprotein; LDL, Low density 
lipoprotein; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
Quantitative variable: Mean ± SD (Standard deviation), Qualitative variable: N (%) Number (Percentage).
p-values < 0.05 are in bold.
p-value calculated by analysis of variance (ANOVA).
*p-value was found by ANCOVA, and adjusted for age, IPAC and total energy intake.
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Discussion

The purpose of this cross-sectional study was to investigate the 
relationship between polyphenol consumption and genes (MC4r, 
Cav-1, and Cry1) and cardiometabolic risk factors in overweight and 
obese Iranian women.

The findings of our study revealed a significant negative interaction 
between high GRS and high intake TDPI with FBS in both crude and 
adjusted models. Also, a significant negative interaction was observed 
between high GRS and high intake of phenolic acid on TG in the 

adjusted model. Moreover, a significant negative interaction was 
observed between high GRS and high intake flavonoids with TG, and a 
significant positive interaction was observed between high GRS and 
high intake flavonoids with HDL in the adjusted model. Furthermore, a 
significant negative interaction between moderate GRS and high intake 
TDPI on BMI, WC, VLF and FBS levels. According to our results, high 
intake of TDPI is associated with significant interaction with decreased 
levels of BMI, WC, VLF, and FBS in participants at moderate risk of 
GRS. In addition, in this study reported a significant negative interaction 
between moderate GRS and flavonoid on BMI, WC and OD levels.

TABLE 2 Characteristics of the study participants among intake of total dietary polyphenols index (TDPI).

Quantitative variables TDPI

Low intake (n =  196) High intake (n =  195) p-value p-value *
Demographic variables

Age (years) 35.44 ± 8.58 36.77 ± 8.42 0.23 0.31

PA(MET-minutes/week) 1086.64 ± 2159.97 1292.74 ± 2061.70 0.44 0.21

Anthropometric measurements

BMI (kg/m2) 30.6 ± 4.06 30.29 ± 3.4 0.53 0.43

Weight (kg) 80.51 ± 11.04 79.73 ± 10.56 0.48 0.21

Height (cm) 160.82 ± 6.31 161.25 ± 5.31 0.47 0.35

WC (cm) 98.17 ± 9.06 97.32 ± 9.24 0.48 0.08

WHR 0.93 ± 0.046 0.92 ± 0.05 0.45 0.09

Body composition

VFL (cm2) 15.32 ± 3.3 15.06 ± 3.3 0.55 0.45

OD (%) 142.21 ± 18.98 140.88 ± 15.84 0.56 0.43

Blood parameters

FBS (mg/dL) 88.19 ± 11.18 86.77 ± 8.4 0.27 <0.001

TC (mg/dL) 186.86 ± 40.29 182.19 ± 32.73 0.33 0.01

TG (mg/dL) 116.29 ± 56.32 118.61 ± 60.03 0.76 0.31

HDL (mg/dL) 46.63 ± 11.28 47.39 ± 10.35 0.59 0.73

LDL (mg/dL) 94.68 ± 24.53 95.55 ± 23.98 0.78 <0.001

AST (IU/L) 17.97 ± 6.37 17.68 ± 8.11 0.76 0.81

ALT (IU/L) 18.68 ± 10.33 19.38 ± 14.93 0.68 0.48

Qualitative variable

Marriage status
Single 58 (52.7) 52 (47.3)

0.29 0.36
Married 138 (49.1) 143 (50.9)

Education
Nonacademic 97 (49.5) 107 (55.4)

0.26 0.14
Academic 99 (50.5) 86 (44.6)

Job
Unemployed 105 (46.3) 122 (53.7)

0.02 0.01
Employed 90 (57) 68 (43)

Economic status

Poor 42 (47.7) 46 (52.3)

0.18 0.17Moderate 86 (47.3) 96 (52.7)

Good 62 (57.9) 45 (42.1)

BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; Chol, Cholesterol; TG, Triglyceride; HDL, High density lipoprotein; LDL, Low-density 
lipoprotein; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
TDPI Low intake < 2060.65 (mg/day), TDPI High intake ≥ 2060.65(mg/day).
p-values < 0.05 are in bold.
Quantitative variable: Mean ± SD (Standard deviation).
Qualitative variable N (%): N (%) Number (Percentage).
p-value calculated by analysis of independent sample t-test.
p-value *Adjusted for age, IPAC, and total energy intake calculated by analysis of covariance (ANCOVA).
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TABLE 3 The interaction between GRS, TDPI and stilbenes on cardiometabolic risk factors.

Variables GRS TDPI Stilbenes

Low 
intake < 
2060.65 

(mg/
day)

High intake Low 
intake 
< 0.49 
(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −3.04

−5.05 

to 

−1.03

<0.001 −2.50

−4.55 

to 

−0.46

0.01 – 0.48
−1.49 

to 2.47
0.62 0.12

−1.89 

to 2.14
0.9

High risk – −1.81
−4.96 

to 1.34
0.26 −1.79

−5.01 

to 1.42
0.27 – −1.16

−4.13 

to 1.8
0.44 −0.43

−3.47 

to 2.59
0.77

WC (cm)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −7.43

−12.53 

to 

−2.33

<0.001 −7.45

−12.51 

to 

−2.38

<0.001 – 3.27
−1.73 

to 8.29
0.2 2.68

−2.36 

to 7.73
0.29

High risk – −5.29
−13.12 

to 2.53
0.18 −5.59

−13.32 

to 2.14
0.15 – −2.35

−9.8 to 

5.09
0.53 −1.21

−8.72 

to 6.29
0.75

WHR

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.01

−0.048 

to 

0.008

0.17 −0.02

−0.052 

to 

0.004

0.09 – 0.02
0.001–

0.056
0.06 0.02

−0.005 

to 0.05
0.1

High risk – −0.02

−0.056 

to 

0.031

0.56 <0.001

−0.051 

to 

0.035

0.71 – −0.01
−0.051 

to 0.03
0.61 <0.001

−0.05 

to 0.32
0.68

Body composition

VFL (cm2)

low risk Reference Reference Reference Reference

Moderate 

risk
– −2.11

−3.88 

to 

−0.33

0.02 −2.06

−3.85 

to 

−0.26

0.02 – 0.89
−1.66 

to 1.83
0.92 −0.23

−2.02 

to 1.55
0.79

High risk – −1.02
−3.76 

to 1.71
0.46 −0.82

−3.58 

to 1.93
0.55 – −0.96

−3.56 

to 1.64
0.47 −0.31

−2.98 

to 2.34
0.81

OD (%)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −6.70

−18.47 

to 5.06
0.26 −6.77

−18.37 

to 4.82
0.25 – 2.17

−9.32 

to 

13.67

0.71 −2.32
−13.78 

to 9.13
0.69

High risk – −8.52
−26.69 

to 9.65
0.35 −9.56

−27.36 

to 8.23
0.29 – −7.73

−24.85 

to 9.39
0.37 −4.72

−21.77 

to 

12.32

0.58

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −9.16

−14.74 

to 

−3.58

<0.001 −7.51

−13.38 

to 

−1.63

0.01 – 3.06
−2.41 

to 8.53
0.27 3.48

−2.29 

to 9.17
0.24

High risk – −11.83

−20.39 

to 

−3.28

<0.001 −10.88
−19.95 

to −1.8
0.01 – 2.58

−5.68 

to 

10.85

0.54 4.09

−4.66 

to 

12.84

0.36

(Continued)
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TABLE 3 (Continued)

Variables GRS TDPI Stilbenes

Low 
intake < 
2060.65 

(mg/
day)

High intake Low 
intake 
< 0.49 
(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −25.02

−46.51 

to 

−3.54

0.22 −18.77
−40.94 

to 3.39

0.09 – 1.51 −19.24 

to 

22.28

0.88 −3.86 −25.18 

to 

17.44

0.72

High risk – −21.92 −54.89 

to 

11.04

0.19 −18.74 −52.97 

to 

15.49

0.28 – 3.88 −27.47 

to 

35.24

0.8 17.08 −15.44 

to 

49.62

0.3

TG (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −7.63 −44.58 

to 

29.23

0.68 0.45 −38.6 

to 

39.52

0.98 – 18.50 −16.65 

to 

53.67

0.3 14.71 −22.49 

to 

51.91

0.43

High risk – −23.11 −81.29 

to 

35.06

0.43 −21.68 −83.49 

to 

40.12

0.49 – 4.36 −49.41 

to 

58.13

0.87 14.59 −42.95 

to 

72.15

0.61

HDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −1.42 −8.12 

to 5.26

0.67 1.23 −5.8 to 

8.26

0.73 – 0.30 −5.97 

to 6.58

0.92 0.51 −6.12 

to 7.14

0.88

High risk – 2.73 −7.53 

to 13

0.6 1.09 −9.76 

to 

11.95

0.84 – 2.71 −6.7 to 

12.26

0.56 4.77 −5.35 

to 

14.89

0.35

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– −14.36 −28.75 

to 

0.028

0.05 −6.08 −21.04 

to 8.87

0.42 – 6.25 −7.41 

to 

19.91

0.37 7.05 −7.12 

to 

21.24

0.33

High risk – −20.03 −42.11 

to 

2.049

0.07 −21.10 −44.2 

to 1.99

0.07 – 6.39 −14.24 

to 

27.03

0.54 12.57 −9.08 

to 

34.22

0.25

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −0.50 −5.05 

to 

4.038

0.82 0.83 −3.91 

to 5.59

0.72 – 0.52 −3.8 to 

4.86

0.81 1.94 −2.58 

to 6.47

0.4

High risk – −4.80 −11.78 

to 2.16

0.17 −3.90 −11.25 

to 3.43

0.29 – −3.69 −10.51 

to 2.57

0.23 −3.76 −10.68 

to 3.14

0.28

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −3.25 −11.27 

to 4.76

0.42 −1.39 −9.92 

to 7.14

0.74 – 0.64 −7.01 

to 8.29

0.86 3.00 −5.14 

to 

11.14

0.47

High risk – −5.93 −18.23 

to 6.37

0.34 −4.02 −17.2 

to 9.15

0.54 – −2.71 −14.27 

to 8.85

0.64 −0.96 −13.39 

to 

11.46

0.87

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low density lipoprotein; HDL, 
High density lipoprotein; OD Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
TDPI High intake ≥ 2060.65 (mg/day), Stilbenes High intake ≥ 0.49(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk alleles, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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FIGURE 1

Interaction between TDPI and GRS on (A) BMI, (B) WC, (C) VFL, (D) FBS. The interaction between low and high intake of TDPI and GRS. Data shown are 
mean  ±  standard error of the mean. BMI, Body mass index; WC, Waist circumference; VFL, Visceral fat level; FBS, Fasting Blood Sugar; GRS, genetic risk 
score; TDPI, total dietary polyphenol intake. Adjust  =  adjusted for potential confounding factors including (age, IPAC and total energy intake). The 
asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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TABLE 4 The interaction between GRS, phenolic acid and Lignans on cardiometabolic risk factors.

Variables GRS Phenolic acid Lignans

Low 
intake

< 
55.95 
(mg/
day)

High intake Low 
intake

< 
0.0065 

(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.83

−2.83 

to 1.16
0.41 −0.60

−2.62 

to 1.41
0.55 – −0.30

−2.29 

to 1.69
0.76 0.48

−1.54 

to 2.52
0.63

High 

Risk
– −0.59

−3.56 

to 2.37
0.69 −1.26

−4.29 

to 1.77
0.41 – −1.08

−4.04 

to 1.88
0.47 −0.60

−3.65 

to 2.44
0.69

WC (cm)

Low Risk Reference Reference Reference Reference

Moderate 

Risk
– 0.33

−4.74 

to 5.4
0.89 −0.06

−5.15 

to 5.01
0.97 – −0.69

−5.76 

to 4.38
0.78 1.05

−4.03 

to 6.15
0.68

High 

Risk
– 2.09

−5.38 

to 9.56
0.58 <0.001

−7.55 

to 7.53
0.99 – −3.52

−11 to 

3.95
0.35 −2.20

−9.8 

to 5.39
0.56

WHR

Low Risk Reference Reference Reference Reference

Moderate 

Risk
– 0.01

−0.01 

to 0.04
0.35 0.01

−0.01 

to 0.03
0.43 – <0.001

−0.03 

to 0.02
0.67 −2.24

−0.02 

to 0.02
0.99

High 

Risk
– 0.03

−0.009 

to 

0.072

0.12 0.02
−0.01 

to 0.06
0.21 – −0.01

−0.05 

to 0.02
0.52 <0.001

−0.04 

to 0.03
0.86

Body composition

VFL (cm2)

Low risk Reference Reference Reference Reference

Moderate 

risk
– −0.66

−2.42 

to 1.09
0.45 −0.66

−2.44 

to 1.12
0.46 – 0.57

−1.17 

to 2.33
0.51 0.92

−0.86 

to 2.72
0.31

High risk – 0.07
−2.51 

to 2.67
0.95 −0.24

−2.89 

to 2.41
0.85 – −0.83

−3.42 

to 1.76
0.39 0.03

−2.64 

to 2.7
0.98

OD (%)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 2.99

−8.57 

to 

14.56

0.61 0.25
−11.18 

to 11.69
0.96 – 3.79

−7.58 

to 

15.54

0.5 5.08

−6.4 

to 

16.57

0.38

High 

Risk
– 0.27

−16.82 

to 

17.37

0.97 −4.73
−21.75 

to 12.28
0.58 – −7.17

−24.29 

to 9.94
0.41 −5.25

−22.42 

to 11.9
0.54

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 0.45

−5.03 

to 5.94
0.87 0.30

−5.45 

to 6.05
0.91 – 1.19

−4.34 

to 6.72
0.67 1.03

−4.78 

to 6.84
0.72

High risk – −2.71
−10.97 

to 5.55
0.52 −3.39

−12.21 

to 5.41
0.45 – 0.37

−7.96 

to 8.7
0.93 0.41

−8.7 

to 9.54
0.92

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate 

risk
– 0.65

−20.11 

to 

21.42

0.95 −3.75
−24.96 

to 17.45

0.72 – 16.88 −3.92 

to 

37.68

0.11 12.40 −8.99 

to 

33.81

0.25

T3 – −11.81 −43.07 

to 

19.44

0.45 −21.04 −53.54 

to 11.45

0.2 – 4.59 −26.73 

to 

35.93

0.77 14.60 −18.97 

to 

48.18

0.39

(Continued)
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However, there was no significant interaction found between 
moderate/high GRS and high intake stilbenes, polyphenols, and 
lignans with cardiometabolic risk factors in both the crude and 
adjusted models. In a study, there was no significant association total 
polyphenol and stilbenes with FBS, TG, HDL in participants. Also, 
there was no association between lignans with cholesterol, TG, HDL, 
DBP (50). The another study after adjusted for age, BMI, physical 
activity, and total energy intake, there was no association between 
Cry1 genotypes with cholesterol, TG, HDL, LDL, SBP, DBP (51). 

There was no association between Cav-1 rs3807992 genotypes with 
FBS, insulin, TC, TG (52).

Polyphenols are effective in cardiovascular health due to their 
antioxidant, blood sugar control, anti-inflammatory, and lipid profile 
control effects (25, 53, 54). In a study, it was discovered that a better 
diet quality, which might include polyphenol-rich foods, was 
significantly linked to a reduction in cardiometabolic risk factors (55). 
Furthermore, a cohort study spanning 10 years and involving more 
than 450,000 participants across 10 European countries revealed that 

TABLE 4 (Continued)

Variables GRS Phenolic acid Lignans

Low 
intake

< 
55.95 
(mg/
day)

High intake Low 
intake

< 
0.0065 

(mg/
day)

High intake

Crude Adjust Crude Adjust

β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p β 95% 
CI

p

TG (mg/dL) Low Risk Reference Reference Reference Reference

Moderate 

risk

– 31.83 −2.74 

to 

66.41

0.07 28.60 −7.62 

to 64.82

0.12 – 1.96 −33.53 

to 

37.45

0.91 −9.24 −46.61 

to 

28.13

0.62

High risk – −39.54 −92.26 

– 

13.17

0.14 −59.04 −115.66 

to 

−2.42

0.04 – 16.72 −37.22 

to 

70.67

0.54 28.58 −30.54 

to 87.7

0.34

HDL (mg/

dL)

Low risk Reference Reference Reference Reference

Moderate 

risk

– 3.10 −3.23 

to 9.44

0.33 2.87 −3.77 

to 9.52

0.39 – −0.13 −6.56 

to 6.3

0.96 2.13 −4.6 

to 8.87

0.53

High risk – 9.70 0.16–

19.23

0.04 7.89 −2.3 to 

18.08

0.12 – 1.85 −7.83 

to 

11.54

0.7 7.02 −3.55 

to 

17.59

0.19

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate 

risk

– 6.33 −7.48 

to 

20.14

0.36 9.11 −5.01 

to 23.25

0.2 – 9.69 −4.22 

to 

23.61

0.17 11.26 −3.14 

to 

25.66

0.12

High risk – −7.33 −28.12 

to 

13.45

0.48 −13.89 −35.54 

to 7.76

0.2 – 0.19 −20.76 

to 

21.16

0.98 3.34 −19.24 

to 25.9

0.77

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −2.93 −7.25 

to 1.37

0.18 −2.68 −7.19 

to 1.83

0.24 – −2.01 −6.39 

to 2.36

0.36 −0.54 −5.13 

to 4.04

0.81

High risk – −2.31 −8.8 

to 4.17

0.48 −1.86 −8.78 

to 5.05

0.59 – −1.35 −7.95 

to 5.23

0.68 2.03 −5.16 

to 9.23

0.58

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate 

risk

– −6.83 −14.38 

to 0.71

0.07 −5.45 −13.49 

to 2.59

0.18 – −7.23 −14.9 

to 0.43

0.06 −4.59 −12.79 

to 3.59

0.27

High 

Risk

– −0.28 −11.64 

to 

11.07

0.96 −0.12 −12.45 

to 12.2

0.98 – −3.70 −15.26 

to 7.84

0.52 1.02 −11.83 

to 

13.87

0.87

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low-density 
lipoprotein; HDL, High-density lipoprotein; OD, Obesity degree; VFL, Visceral fat level; TC, total cholesterol.
Phenolic acid High intake ≥ 55.95(mg/day), Lignans High intake ≥ 0.0065(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk alleles, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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higher diet quality index (DQI) scores were linked to a reduced risk 
of CVD mortality and its associated risk factors, such as dyslipidemia 
and hyperglycemia (56).

GRS play a key role in comprehending various aspects of body 
homeostasis, especially with respect to conditions such as type 2 
diabetes (T2DM) and cardiometabolic risk factors (9, 57). It seems 
that the effects of MC4R, Cav-1 and Cry1 genes on body composition 
and metabolic parameters may depend on the quality of the diet (58). 
Polyphenols have antioxidant and anti-inflammatory properties that 
can improve the quality of food. Based on the evidence, these 
compounds have the ability to influence the interaction and 
interactions between diet, genes, and metabolic parameters (59, 60). 
Polyphenols and their various types play a role in this interaction by 
either activating or deactivating genes that are associated with obesity. 
The precise molecular and cellular mechanism behind this process is 
still not entirely comprehended (36). Previous research has shown 
that gene-diet interactions have an impact on metabolic factors, and 
our study’s findings are consistent with this. A cross-sectional study 
found a relationship between the dietary inflammatory index (DII) 
and the rs17782313 mutation, which influences body composition 
(61). Hianza et al. conducted a study on individuals with a genetic 
predisposition to obesity and discovered that adopting a healthy diet 
led to a decrease in risk factors associated with CVD (62).

A study conducted by Aali et al. has significantly validated the 
findings of our study. Both studies have found a negative correlation 
between the consumption of polyphenols and its various forms with 
indicators of body composition (such as WC, WHR, WHtR) and 
metabolic parameters such as glycemia (FBG, HOMA-IR) and lipids 
(CHOL, TG). Also, Aali’s study has reported a positive correlation 
with HDL cholesterol. However, our study did not find any significant 
correlation between the consumption of lignans and stilbenes with 
body composition and CVD risk factors, Aali’s study did report such 
a correlation, which is the only point of difference between the two 
studies (50).

Numerous studies have confirmed that GRS increases the risk of 
CVD (9), the exact way in which food compounds like polyphenols 

can mitigate this effect remains unclear. The statistical power of the 
analysis can be  affected by factors such as sample size, food 
components used, genetic variations, and gender, which can cause 
discrepancies in study findings. Evidence shows that polyphenols and 
its types reduce TG accumulation, increase lipolysis, decrease 
lipogenesis, and increase energy consumption, which may be  an 
acceptable reason to justify the negative interaction between the 
consumption of polyphenols and GRS on body composition and some 
of the risk factors of CVD (63). Polyphenols play a crucial role in 
regulating blood sugar levels and improving the body’s ability to 
respond to insulin by decreasing the production of specific hormones 
(64). Moreover, these compounds have the ability to control the 
process of lipolysis by activating hormone-sensitive lipase (65). 
Polyphenols enhance the body’s antioxidant system, reduce fat 
oxidation, and enhance the activity of antioxidant enzymes (66, 67). 
Therefore, it is anticipated that enhancing the consumption of a diet 
rich in polyphenols and their various forms will result in enhanced 
body composition and a reduction in certain risk factors associated 
with CVD (68). These results are confirmed by our study.

The present study is one of the first studies to examine the 
interaction of polyphenol intake with GRS on metabolic parameters, 
which is one of the strengths of this study. Some limitations of this 
research include the cross-sectional design of the study, the lack of 
investigation into causal interactions, the use of memory-based tools 
such as FFQ, and the inability to generalize the results to men’s gender.

Conclusion

Our findings indicate that individuals who consume high GRS 
and polyphenols have a significant negative effect on FBS and TG 
levels, as well as a significant positive effect on HDL. Therefore, a high 
intake of polyphenols in individuals with high GRS may have a 
protective effect on cardiometabolic risk. This finding indicates that 
the interaction of dietary components, such as polyphenols, with 
genetic risk factors over cardiometabolic risk factors is of great 
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FIGURE 2

Interaction between phenolic acid and GRS on TG. The interaction between low and high intake of phenolic acid and GRS on Triglycerides. Data 
shown are mean  ±  standard error of the mean. TG, Triglycerides; GRS, genetic risk score. Adjust  =  adjusted for potential confounding factors including 
(age, IPAC and total energy intake). The asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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TABLE 5 The interaction between GRS, flavonoids and polyphenol on cardiometabolic risk factors.

Variables GRS Flavonoids Polyphenol

Low 
intake
< 81.55 

(mg/
day)

High intake ≥81.55(mg/day) Low 
intake

< 62.59
(mg/day)

High intake ≥62.59(mg/day)

Crude Adjust Crude Adjust

β 95% CI p β 95% CI p β 95% CI p β 95% CI p

Anthropometric factors

BMI (kg/m2)

Low risk Reference Reference Reference Reference

Moderate risk – −3.46 −5.44 to −1.49 <0.001 −2.56 −4.59 to −0.52 0.01 – 0.26 −1.7 to 2.23 0.79 0.43 −1.56 to 2.44 0.66

High risk – −0.91 −3.84 to 2.02 0.54 −0.27 −3.28 to 2.73 0.85 – −0.66 −3.66 to 2.34 0.66 0.62 −2.45 to 3.69 0.69

WC (cm)

Low risk Reference Reference Reference Reference

Moderate risk – −7.43 −12.48 to −2.39 <0.001 −5.67 −10.79 to −0.56 0.03 – 0.82 −4.17 to 5.81 0.74 2.53 −2.48 to 7.54 0.32

High risk – −0.82 −8.22 to 6.58 0.82 0.65 −6.78 to 8.08 0.86 – −3.08 −10.67 to 4.5 0.42 1.60 −6.04 to 9.26 0.68

WHR

Low risk Reference Reference Reference Reference

Moderate risk – −0.01 −0.043 to 0.013 0.29 <0.001 −0.033 to 0.023 0.71 – 0.00 −0.02 to 0.03 0.85 0.01
−0.014 to 

0.041
0.34

High risk – 0.02 −0.016 to 0.066 0.23 0.03 −0.007 to 0.075 0.1 – <0.001 −0.051 to 0.032 0.65 0.01
−0.023 to 

0.061
0.37

Body composition

VFL (cm2)

Low risk Reference Reference Reference Reference

Moderate risk – −2.21 −3.96 to −0.46 0.01 −1.61 −3.4 to 0.17 0.07 – 0.10 −1.63 to 1.83 0.91 0.87 −0.87 to 2.63 0.32

High risk – 0.57 −2 to 3.15 0.66 1.44 −1.15 to 4.05 0.27 – −0.00 −2.65 to 2.64 0.99 1.67 −1.01 to 4.36 0.22

OD (%)

Low risk Reference Reference Reference Reference

Moderate risk – −13.04 −24.62 to −1.47 0.02 −11.20 −22.67 to 0.27 0.05 – −4.03 −15.45 to 7.38 0.48 0.85
−10.48 to 

12.18
0.88

High risk – −3.69 −20.75 to 13.36 0.67 −1.25 −17.99 to 15.47 0.88 – −8.65 −26.06 to 8.76 0.33 −0.90
−18.24 to 

16.43
0.91

Biochemical variables

FBS (mg/dL)

Low risk Reference Reference Reference Reference

Moderate risk – −0.85 −6.43 to 4.72 0.76 0.07 −5.82 to 5.97 0.98 – −0.09 −5.53 to 5.34 0.97 0.86 −4.82 to 6.56 0.76

High risk – −3.58 −11.92 to 4.75 0.4 −2.92 −11.71 to 5.86 0.51 – −0.76 −9.2 to 7.68 0.86 −0.12 −9.15 to 8.91 0.97

(Continued)
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TABLE 5 (Continued)

Variables GRS Flavonoids Polyphenol

Low 
intake
< 81.55 

(mg/
day)

High intake ≥81.55(mg/day) Low 
intake

< 62.59
(mg/day)

High intake ≥62.59(mg/day)

Crude Adjust Crude Adjust

β 95% CI p β 95% CI p β 95% CI p β 95% CI p

TC (mg/dL)

Low risk Reference Reference Reference Reference

Moderate risk – −13.03
−34.14 to 8.08 0.22 −7.61 −29.5 to 14.26 0.49 – −3.11 −23.63 to 17.39 0.76 2.69 −18.31 to 

23.71

0.8

High risk – −16.48 −48.02 to 15.06 0.3 −4.17 −36.79 to 28.43 0.8 – −10.82 −42.67 to 21.02 0.5 −11.42 −44.78 to 

21.93

0.5

TG (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – −5.96 −41.06 to 29.12 0.73 2.96 −34.27 to 40.21 0.87 – 4.04 −30.93 to 39.01 0.82 9.17 −27.45 to 

45.79

0.62

High risk – −84.30 −137.58 to 

−31.02

<0.001 −79.11 −135.52 to −22.69 <0.001 – 8.23 −47.21 to 63.68 0.77 15.75 −44.36 to 

75.86

0.6

HDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – 1.75 −4.72 to 8.22 0.59 3.94 −2.82 to 10.71 0.25 – −4.03 −10.35 to 2.28 0.21 −2.17 −8.8 to 4.44 0.51

High risk – 8.39 −1.28 to 18.06 0.08 12.56 2.47–22.65 0.01 – −7.74 −17.56 to 2.06 0.12 −7.31 −17.82 to 

3.19

0.17

LDL (mg/dL) Low risk Reference Reference Reference Reference

Moderate risk – −2.68 −16.77 to 11.39 0.7 3.94 −10.74 to 18.63 0.59 – 0.95 −10.35 to 2.28 0.21 3.46 −8.8 to 4.44 0.51

High Risk – −11.13 −32.18 to 9.91 0.3 −4.83 −26.72 to 17.06 0.66 – −16.77 −17.56 to 2.06 0.12 −22.00 −17.82 to 

3.19

0.17

AST (IU/L) Low risk Reference Reference Reference Reference

Moderate risk – −2.14 −6.57 to 2.28 0.34 −1.86 −6.51 to 2.79 0.43 – 0.70 −3.61 to 5.03 0.74 1.15 −3.36 to 5.67 0.61

High risk – −0.78 −5.83 to 7.4 0.81 2.35 −4.58 to 9.29 0.5 – −0.79 −7.5 to 5.9 0.81 1.25 −5.91 to 8.42 0.73

ALT (IU/L) Low risk Reference Reference Reference Reference

Moderate risk – −7.02 −14.74 to 0.69 0.07 −5.31 −13.58 to 2.96 0.2 – 0.83 −6.77 to 8.43 0.83 2.34 −5.72 to 

10.42

0.56

High risk – 3.75 −7.78 to 15.28 0.52 6.04 −6.28 to 18.37 0.33 – −5.77 −17.58 to 6.02 0.33 −2.46 −15.27 to 

10.34

0.7

B, Standard Error; GRS, Genetic risk score; BMI, Body mass index; WC, waist circumference; WHR, waist height ratio; FBS, fasting blood sugar; TG, Triglyceride; LDL, Low density lipoprotein; HDL, High density lipoprotein; OD, Obesity degree; VFL, Visceral fat level.
Flavonoids High intake ≥ 81.55(mg/day), Polyphenol High intake ≥ 62.59(mg/day).
p-values < 0.05 are in bold.
Adjust = adjusted for potential confounding factors including (age, IPAC and total energy intake).
Low Risk: 0,1,2 Risk allele, Moderate Risk: 3,4 Risk allele, High Risk: 5,6 Risk allele.
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FIGURE 3

Interaction between flavonoids and GRS on (A) BMI, (B) WC, (C) OD, (D) TG, (E) HDL. The interaction between low and high intake of Flavonoids and 
GRS on BMI, WC, OD, TG, HDL. Data shown are mean  ±  standard error of the mean. BMI, Body mass index; WC, Waist circumference; OD, Obesity 
degree; TG, Triglycerides; HDL, High density lipoprotein; GRS, genetic risk score. Adjust  =  adjusted for potential confounding factors including (age, 
IPAC and total energy intake). The asterisk (*) represents the p-value of the statistical test. The asterisk means that the p-value is less than 0.05.
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importance. Further research is necessary in the future to validate 
this association.
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Glossary

ALT Alanine aminotransferase

AST Aspartate aminotransferase

CVD Cardiovascular diseases

BMI Body mass index

WC Waist circumference

DPI Dietary polyphenols intake

FBS Fasting blood glucose

FPG Fasting plasma glucose

MC4R Melanocortin 4 receptor

Cry1 Cryptochrome 1 gene

CAV1 Caveolin-1

FFQ Food frequency questionnaire

DQI diet quality index

PA Physical activity

IPAQ International physical activity questionnaire-short form

HC Hp circumference

WHR Waist-to-hip ratio

VFL Visceral fat level

OD Obesity degree

GOD-PAP Glucose oxidase-phenol 4-aminoantipyrine peroxidase

GPOPAP Glycerol-3-phosphate oxidase–phenol 4-aminoantipyrine peroxidase

TG Triglyceride

HDL High-density lipoprotein

LDL Low-density lipoprotein

SBP Systolic blood pressure

DBP Diastolic blood pressure

GRS Genetic risk score

TC Total cholesterol

TDPI Total dietary polyphenols index

SLM Soft lean mass

FFM Fat-free mass

SMM Skeletal muscle mass

DII Dietary inflammatory index
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