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Confronting the global obesity
epidemic: investigating the role
and underlying mechanisms of
vitamin D in metabolic syndrome
management
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The escalating prevalence of MetS, driven by global obesity trends, underscores

the urgent need for innovative therapeutic strategies. To gain a deeper

understanding of the therapeutic potential of vitamin D in addressing MetS, we

embarked on a targeted literature review that thoroughly examines the scientific

underpinnings and pivotal discoveries derived from pertinent studies, aiming to

unravel the intricate mechanisms through which vitamin D exerts its e�ects on

MetS and its components. This article explores themultifunctional role of vitamin

D in the management of MetS, focusing on its regulatory e�ects on insulin

sensitivity, lipid metabolism, inflammation, and immune response. Through

an extensive review of current research, we unveil the complex mechanisms

by which vitamin D influences MetS components, highlighting its potential

as a therapeutic agent. Our analysis reveals that vitamin D’s e�cacy extends

beyond bone health to include significant impacts on cellular and molecular

pathways critical to MetS. We advocate for further research to optimize vitamin

D supplementation as a component of precision medicine for MetS, considering

the safety concerns related to dosage and long-term use.

KEYWORDS

metabolic syndrome, vitamin D, insulin sensitivity, lipid metabolism, inflammation,

immune response, therapeutic strategies

1 Introduction

In the wake of an accelerating modern lifestyle and shifting dietary patterns, obesity
has ascended as a paramount challenge within the global public health sphere (1–3).
Serving as a pivotal risk factor for MetS, obesity intricately intertwines with an array
of metabolic aberrations, notably abnormal glucose metabolism, hypertension, and lipid
dysregulation (4). This syndrome, distinguished by its prevalent occurrence and significant
health ramifications, has become a critical focus in medical research endeavors. The
prevalence of MetS exhibits considerable geographical variance, with rates spanning from
24.3% to 44.2% across specific regions in Asia, Europe, Mexico, and the United States (5).
Notably, the prevalence in the United States has escalated from 36.2% to 47.3%, signaling a
decline in cardiovascular health intricately linked to obesity, glucose imbalances, and blood
pressure complications (6).
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Amidst the exploration of metabolic syndrome, the significance
of vitamin D has emerged with increasing prominence. This
lipophilic vitamin, traditionally recognized for its pivotal roles
in bone health and calcium-phosphorus homeostasis, has
been unveiled by contemporary research to harbor extensive
functionalities in immune modulation, cellular proliferation and
differentiation, alongside energy metabolism (7–9). Specifically,
within the milieu of obesity and metabolic syndrome, a
deficiency in vitamin D is acknowledged as a consequential
risk element (10–12).

Despite the widespread attention on vitamin D, its efficacy
as a therapeutic agent remains inconsistent. Studies have shown
that vitamin D supplementation may not necessarily reduce the
risk of fractures or chronic diseases, and there is still debate
about its optimal intake and supplementation methods. Therefore,
comprehensive consideration of various factors is required to
provide precise treatment recommendations for patients.

Given the rising prevalence of metabolic syndrome and its
association with obesity, it is imperative to investigate potential
therapeutic avenues. One such avenue that has garnered increasing
attention is the role of vitamin D. This investigation aims to
comprehensively explore the role of vitamin D in the therapeutic
management of MetS, elucidating its multifaceted impact on
MetS components, potential mechanistic pathways, and practical
challenges in clinical implementation, with the ultimate goal of
establishing a robust theoretical foundation for precision medicine
and tailored therapeutic strategies targeting MetS.

2 Metabolic syndrome

Metabolic syndrome, characterized by multiple metabolic
aberrations, has been witnessing a persistent global increase in
prevalence, significantly impacting public health (5, 13–15). This
intricate condition is driven by a synergy of adverse lifestyle choices,
environmental factors, and genetic predispositions, with a notably
higher incidence in developed nations (16–18). Concurrent with
economic progress, the prevalence in developing countries is also
on the rise. For instance, in China, with the rapid economic growth
and urbanization over the past decades, there has been a significant
increase in the prevalence of metabolic syndrome, particularly
in urban areas where lifestyle changes such as sedentary work,
westernized diet, and reduced physical activity have become more
prevalent (19–21). The syndrome is intimately linked with the
global rise in obesity, hypertension, diabetes, and other metabolic
disorders, signaling an ongoing escalation in future disease risk
(22, 23). Therefore, a thorough investigation into its risk factors
and complications is imperative for devising effective prevention
and control strategies.

3 Vitamin D

Vitamin D is a fat-soluble vitamin essential for human health
(24–26). It serves as a precursor for several metabolites, including
25-hydroxyvitamin D3 [25-(OH)D3] and 1,25-dihydroxyvitamin
D3 [1,25-(OH)2D3] (27). The human body cannot synthesize
vitamin D on its own and must obtain it through sunlight exposure

or dietary intake. Under the influence of ultraviolet radiation on the
skin, 7-dehydrocholesterol is converted into a vitamin D precursor,
which is then hydroxylated in the liver to form 25-hydroxyvitamin
D [25-(OH)D]; this form of vitamin D is transported to the
kidneys, where it is converted by the 1α-hydroxylase enzyme into
the more active form, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]
(28). 1,25(OH)2D3 exerts its biological effects by binding to the
Vitamin D Receptor (VDR) (29, 30). Understanding this metabolic
process leads us to further explore the crucial roles that vitamin D
plays in the body. Not only is it pivotal in maintaining calcium-
phosphorus metabolism balance and promoting bone health, but
it also regulates immune functions, highlighting its multifaceted
importance in human health (31–33).

4 Vitamin D and metabolic syndrome

Vitamin D plays a pivotal role in the prevention and
management of MetS, a cluster of metabolic abnormalities that
significantly impact public health. Its multifaceted functions
extend beyond bone health, encompassing insulin sensitivity, lipid
metabolism, inflammation reduction, and immune regulation, all
of which are crucial in MetS prevention. Studies have elucidated
a close correlation between vitamin D levels and the risk of
metabolic syndrome (34–36). Insufficiency of vitamin D may
elevate the incidence of metabolic syndrome, a pathological
state encompassing obesity, hypertension, hyperglycemia, and
dyslipidemia (37, 38). Vitamin D, through its regulation of
calcium-phosphorus metabolism and maintenance of immune
function, exhibits a spectrum of biological activities crucial
for health (31–33). A deficiency in vitamin D can exacerbate
insulin resistance, promote lipogenesis and inflammatory
responses, thereby augmenting the risk of metabolic syndrome
(39). Moreover, vitamin D influences cell signaling through the
regulation of calcium ion balance, closely associating with the
development of metabolic syndrome (40). Epidemiological
studies support the relationship between low levels of
vitamin D and an increased risk of metabolic syndrome,
indicating that vitamin D supplementation could mitigate its
prevalence (41–43).

Vitamin D plays a significant role in key areas of metabolic
syndrome, including insulin sensitivity, lipid metabolism,
inflammation reduction, immune response, blood pressure
regulation, cardiovascular health, and bone health (Figure 1)
(31, 34, 39, 43–46). In terms of insulin sensitivity, vitamin
D enhances the binding capacity of insulin to its receptor
and improves insulin efficacy by maintaining intracellular
calcium ion balance. Regarding lipid metabolism, vitamin D
modulates gene expression within adipocytes to reduce lipogenesis,
promote lipolysis, and affect lipid transport in the blood, thereby
lowering the risk of atherosclerosis. In reducing inflammatory
responses, vitamin D inhibits the expression of inflammatory
markers through certain signaling pathways, exhibiting anti-
inflammatory effects, with its deficiency linked to the onset of
various inflammatory diseases. In regulating immune responses,
vitamin D, in conjunction with its receptor VDR, regulates the
expression of a series of genes and proteins related to immune
responses, thereby finely controlling immune reactions, inhibiting
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FIGURE 1

The critical roles of Vitamin D in metabolic syndrome, encompassing its significant impact on insulin sensitivity, lipid metabolism, inflammatory

reduction, immune response, blood pressure regulation, cardiovascular health, and bone health.

TABLE 1 Molecular pathways of vitamin D’s e�ects on metabolic syndrome-related mechanisms.

Mechanism
type

Specific pathway/process Related genes/proteins References

Insulin sensitivity Regulation of insulin receptor expression and intracellular
calcium ion balance

INSR, GLUT4, Ca2+ (49–51)

Lipid metabolism Modulation of gene expression related to lipogenesis and lipolysis FASN, UCP, C/EBPα, PPAR-γ (52–54)

Inflammation and
immune regulation

Inhibition of pro-inflammatory cytokine gene expression,
regulation of immune cell differentiation

TNF-α, IL-6, IL-1β, NF-κB (55–57)

Blood pressure
regulation

Regulation of nitric oxide release from endothelial cells, influence
on renin-angiotensin system

NO, RAS (58–60)

Cardiovascular
health

Promotion of endothelial nitric oxide synthase expression,
reduction of oxidative stress

eNOS, NO, SOD (61–63)

Bone health Enhancement of bone matrix protein synthesis, inhibition of
osteoclast activity

Osteocalcin, RANKL, OPG (64–66)

excessive activation and inflammation, and maintaining the
balance, homeostasis, and health of the immune system, providing
effective immune protection for the body. In blood pressure
regulation, vitamin D affects the renin-angiotensin system and
vascular smooth muscle function, contributing to the maintenance
of normal blood pressure. The cumulative effect of these actions
helps improve symptoms of metabolic syndrome and reduce
the risk of related complications. In regulating cardiovascular
health, vitamin D enhances intracellular substance synthesis,
promotes vasodilation and anti-inflammation, and reduces the
risk of atherosclerosis through cell signaling and gene regulation,
ensuring the integrity of vascular structure and function.
Additionally, vitamin D is crucial for bone health, enhancing the

synthesis of bone matrix proteins and inhibiting bone resorption,
while regulating gene transcription to promote calcium absorption
and bone mineralization, and also inhibiting inflammation,
reducing the risk of osteoporosis and fractures in patients with
metabolic syndrome.

Although epidemiological studies suggest a link between low
vitamin D levels and an elevated risk of metabolic syndrome,
limitations such as the observational nature of these studies,
population heterogeneity, and the complexity of metabolic
syndrome itself hinder the establishment of causal relationships
(47, 48). Rigorous clinical trials are needed to further investigate
the potential benefits of vitamin D supplementation in mitigating
metabolic syndrome symptoms.
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FIGURE 2

Vitamin D influences the di�erentiation, development of adipose cells, as well as the synthesis and breakdown of fatty acids through various

mechanisms, including the regulation of gene expression, intervention in signaling pathways, and modulation of enzyme activity.

5 Mechanisms of vitamin D action

5.1 E�ects of vitamin D on metabolic
pathways

Table 1 has summarized the molecular pathways of vitamin D’s
effects on metabolic syndrome-related mechanisms.

5.1.1 Regulation of insulin resistance and glucose
metabolism by vitamin D

Vitamin D plays a crucial role in regulating insulin resistance
and its associated processes (67, 68). This regulatory function is
manifested at multiple levels; it can control gene transcription
and cell signaling through various mechanisms, thereby alleviating
insulin resistance, especially in adipose tissue (69). Vitamin D can
increase the expression of insulin receptors, which is essential for
maintaining insulin signaling (70). A deficiency in vitamin D can
lead to a decrease in the number of insulin receptors, thereby
inducing insulin resistance (71). Additionally, vitamin D deficiency
may also cause an increase in intracellular Ca2+ concentration,
reducing the activity of glucose transporter 4 (GLUT4), which is
another key mechanism of insulin resistance (49). Inflammation in
adipose tissue is also a critical factor in insulin resistance, primarily
driven by adipose macrophages (72). Cytokines released by these
macrophages, such as IL-6 and TNF-α, play significant roles in the
development and progression of insulin resistance (50, 51). These
cytokines can activate specific signaling pathways, such as Jun

N-terminal kinase 1 (JNK1) and IKK-β/NF-κB, whose activation
further leads to a reduction in insulin signaling (73). Importantly,
vitamin D has anti-inflammatory effects, capable of reducing the
inflammatory process by decreasing the release of chemokines and
cytokines that drive inflammation and lowering the chemotaxis
of monocytes (74). Vitamin D enhances insulin sensitivity by
increasing insulin receptor expression and improving intracellular
calcium ion balance. This leads tomore efficient glucose uptake and
utilization, thereby reducing the risk of developing type 2 diabetes,
a key component of MetS.

Although vitamin D plays a significant role in regulating
insulin resistance and related processes, there are contradictory
findings regarding its direct effects on pancreatic β-cells and
glucose metabolism (75, 76). Some studies indicate that vitamin
D can directly influence β-cell function, enhance insulin secretion,
and improve glucose metabolism, while other studies have not
observed significant effects or have found inconsistent results.
These discrepancies may stem from differences in experimental
design and other variables. Therefore, future research needs to
further explore the direct mechanisms of vitamin D’s action on
pancreatic β-cells, as well as how these mechanisms manifest in
different populations.

5.1.2 Regulation of fat metabolism by vitamin D
The mechanisms by which vitamin D acts in adipose tissue

through the VDR receptor gene are complex (Figure 2). These
findings collectively reveal vitamin D’s multifaceted role in adipose
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tissue metabolism, including the regulation of lipolysis, fatty
acid oxidation, and adipocyte differentiation (52, 77, 78). In
vitro studies suggest that vitamin D can influence the fate of
preadipocytes by regulating the expression of FASN (53), indicating
its potential role in adipogenesis. Additionally, the vitamin D-
VDR complex significantly impacts the differentiation process
of adipocytes (79). Animal studies have shown that mice with
a knockout of the VDR receptor gene (VDR-/-) exhibit an
increased rate of energy metabolism, accompanied by an increase
in the expression of the uncoupling protein (UCP) family in the
mitochondrial respiratory chain and enhanced capacity for fatty
acid β-oxidation, leading to a significant reduction in adipose
tissue (80). Conversely, findings in VDR transgenic mice have
been conflicting. While some studies show that overexpression
of VDR in adipose tissue inhibits lipolysis and fatty acid β-
oxidation, thereby inducing obesity (81), other studies may present
contrasting results. This highlights the need for further research
to clarify the exact role of VDR in adiposity. In vitro experiments
further confirm that vitamin D can downregulate the expression
of FASN, thereby inhibiting the transformation of pre-adipocytes
(3T3-L1) into mature adipocytes (54). This finding reveals that
vitamin D, by regulating the expression of key transcription factors,
determines the direction of cell differentiation, playing a crucial
role in forming different types of adipose tissue, such as white
adipose tissue (WAT), brown adipose tissue (BAT), and beige
adipose tissue (77). In adipose tissue, vitamin D can inhibit the
expression of key transcription factors such as C/EBPα and PPAR-
γ, thereby inhibiting fat construction (82). Additionally, vitamin
D can influence lipid formation by activating C/EBPβ and ETO,
inhibiting the transcription of C/EBPβ (31), and affecting adipocyte
differentiation through theWNT/β-catenin signaling pathway (83).
Moreover, research by Katayama and others found that VDR is
also overexpressed in the sympathetic ganglia, adrenal medulla, and
certain neurons in the central nervous system (84). These tissues are
potential sites that could affect energy homeostasis, suggesting that
vitamin D may influence energy homeostasis not only through its
effects on adipose tissue but also through actions within the central
nervous system affecting energy metabolism. By modulating gene
expression within adipocytes, vitamin D promotes lipolysis and
reduces lipogenesis, ultimately lowering plasma triglyceride and
cholesterol levels. This reduces the risk of atherosclerosis and other
cardiovascular complications associated with MetS.

5.1.3 Anti-inflammatory action of vitamin D
Upon binding to the Vitamin D Receptor (VDR), active

vitamin D undergoes a series of biochemical reactions, including
phosphorylation, to form a heterodimer with the Retinoid X
Receptor (RXR) and bind to VDREs to form a complex (85). This
complex can influence gene transcription, thereby exerting anti-
inflammatory and immunoregulatory biological functions (86).
In terms of immunoregulation, vitamin D can affect the activity
of immune cells such as antigen-presenting cells, monocytes-
macrophages, and T and B lymphocytes (87, 88). However, it’s
important to note that the outcomes of vitamin D supplementation
on inflammation and immune response can vary depending on
the dosage, duration of supplementation, and the population
studied (89). For instance, while appropriate levels of vitamin

D can effectively modulate the immune system, excessive intake
may lead to hypercalcemia and other adverse effects, which
could potentially exacerbate inflammatory conditions (90). Active
vitamin D can specifically activate peripheral CD4+ T cells,
inhibiting the proliferation of Th1 cells and their production of pro-
inflammatory cytokines, and stimulating Th2 cells to secrete IL-4,
IL-5, and IL-10, making the immune tolerance response dominated
by Th2 cells prevail over the immune rejection response dominated
by Th1 cells (55). Additionally, vitamin D can downregulate the
expression of Class II Major Histocompatibility Complex (MHC
II), inhibit the maturation of dendritic cells, making it difficult for T
cells to be activated and present antigens, thereby inducing immune
tolerance (91). Simultaneously, vitamin D can inhibit the activation
of B cells, induce the production of regulatory T cells (Treg), and
inhibit the activity of Th17 cells. These mechanisms collectively
enable vitamin D to play a significant role in anti-inflammation and
immunoregulation (92). Moreover, it can inhibit the expression of
inflammatory markers through the NF-κB classical inflammation
signaling pathway or the p38 MAPK signaling pathway, exerting
its anti-inflammatory effects (56). This may explain why vitamin
D deficiency is associated with the incidence of inflammatory
diseases such as obesity, metabolic syndrome, and type 2 diabetes.
Conversely, excessive vitamin D intake, especially in the form
of megadoses, has been reported to cause hypercalcemia, which
can lead to calcification of soft tissues and potentially exacerbate
inflammatory processes (90). Maintaining optimal vitamin D levels
within the recommended dietary allowances is crucial to ensure
its beneficial effects on inflammation and immune modulation.
Vitamin D exerts potent anti-inflammatory effects by inhibiting
the production of inflammatory cytokines, by macrophages and
other immune cells. This attenuation of inflammation is pivotal
in preventing the development of insulin resistance and other
inflammatory-mediated metabolic disorders.

5.1.4 Regulation of immune cells and immune
responses by vitamin D

Vitamin D plays a pivotal role in immunoregulation, a
function closely related to its specific metabolic pathways. Some
25-hydroxyvitamin D3 can also be metabolized into 24,25-
dihydroxyvitamin D3 under the action of 24-hydroxylase (93),
ensuring vitamin D’s effective regulatory role in the immune
system. Specifically, vitamin D can finely modulate the Th1/Th2
balance, inhibit the overproliferation of Th1 cells, and limit the
secretion of Th1-type cytokines, including IFN-γ, IL-2, and TNF-
α, thus preventing excessive activation of autoimmune responses
(57). Additionally, vitamin D can block the activation and secretion
of the key autocrine growth factor IL-2 in T lymphocytes, further
reducing the risk of autoimmune responses (94). Moreover, recent
studies have shown that the immune response to vitamin D can
vary among different populations due to genetic, environmental,
and lifestyle factors. For instance, certain ethnic groups may
have different vitamin D receptor polymorphisms, affecting their
response to vitamin D and subsequently, their immune reactions
(95). Therefore, it is crucial to consider population-specific
differences when evaluating the immunomodulatory effects of
vitamin D. Vitamin D also induces the polarization of CD4+ T
lymphocytes toward a Th2 response, promoting the secretion of
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Th2-type cytokines (such as IL-4, IL-5, IL-9, IL-10, and IL-13),
inhibiting excessive inflammatory responses, and maintaining the
balance of the immune system (96). Mariz et al. confirmed
that in female groups with higher levels of vitamin D, a lower
mean concentration of TNF-α in the serum was observed,
providing strong evidence of the significant role of vitamin D
in immunoregulation (97). Furthermore, vitamin D deficiency
has been linked to an increased risk of autoimmune diseases,
particularly those related to MetS. Studies suggest that optimizing
vitamin D levels may help reduce the severity and progression of
these conditions (98). These findings not only reveal the close link
between vitamin D metabolism and immunoregulation but also
suggest potential applications of vitamin D in the treatment of
immune-related diseases, providing a theoretical basis for such use.

5.1.5 Vitamin D and its role in health issues
associated with metabolic syndrome
5.1.5.1 Blood pressure regulation

Vitamin D plays a pivotal role in blood pressure regulation,
particularly in the context of metabolic syndrome. Its active
form, 1,25-dihydroxyvitamin D3, regulates the expression of
genes involved in blood pressure control, including those
encoding renin and angiotensinogen (7, 99). By inhibiting renin
synthesis, vitamin D reduces the production of Angiotensin II, a
vasoconstrictor that increases peripheral vascular resistance. This
leads to decreased vasoconstriction and lower peripheral vascular
resistance, effectively regulating blood pressure (58). Additionally,
vitamin D promotes nitric oxide release from endothelial cells,
a potent vasodilator, maintaining homeostasis and normal blood
flow (59). Its antioxidant and anti-inflammatory properties reduce
oxidative stress and inflammatory responses that damage blood
vessels, further contributing to blood pressure reduction (60).
Vitamin D not only regulates blood pressure through mechanisms
such as inhibiting renin synthesis, promoting nitric oxide release,
and reducing oxidative stress and inflammation, but its overall
therapeutic effects on these processes also contribute to the
prevention and management of metabolic syndrome (100).

5.1.5.2 Cardiovascular health

In the context of metabolic syndrome, vitamin D exerts
multifaceted effects on cardiovascular health. It maintains
serum calcium levels by regulating calcium balance and bone
metabolism, involving interactions with parathyroid hormone and
renin (61, 101). Vitamin D directly protects the cardiovascular
system by inhibiting inflammatory responses and oxidative
stress, improving insulin resistance and glucose metabolism
(86, 102). It also regulates endothelial function, lipid metabolism,
and reduces arterial calcification (62, 103, 104), critical for
maintaining cardiovascular health. By activating intracellular
signaling pathways, vitamin D fine-tunes the expression of
genes related to cell proliferation, migration, and apoptosis,
preventing atherosclerosis development (63, 105). Finally, vitamin
D interacts with other nutrients, jointly maintaining normal
cardiovascular function (106). In the context of metabolic
syndrome, vitamin D exerts multifaceted therapeutic effects on
cardiovascular health, including maintaining calcium balance,
protecting against inflammatory responses and oxidative stress,

regulating endothelial function, reducing arterial calcification, and
preventing atherosclerosis development, all of which contribute to
the prevention and management of metabolic syndrome.

5.1.5.3 Bone health

Vitamin D is a key regulatory factor for bone health, especially
in the context of metabolic syndrome. Its active form forms a
complex with the VDR, regulating bone mineralization (64, 65).
This regulation is crucial for maintaining bone health in MetS,
where bone metabolism may be altered (107, 108). Vitamin D
ensures an adequate supply of calcium and phosphate for normal
mineralization by regulating their intestinal absorption (66). It
also regulates osteoprotegerin, a key factor in bone formation,
mineralization, and resorption (109, 110). By stimulating the
expression of bone cell-specific genes, vitamin D promotes
the synthesis of sclerostin, further contributing to bone health
maintenance (111). Additionally, vitaminDmodulates the immune
system, inhibiting inflammatory cytokine production, reducing
bone inflammation, and lowering the risk of osteoporosis and
fractures (112–114). Vitamin D exerts therapeutic effects on bone
health in the context of metabolic syndrome, regulating bone
mineralization, ensuring adequate calcium and phosphate supply,
modulating osteoprotegerin levels, promoting sclerostin synthesis,
and modulating the immune system to reduce inflammation and
lower the risk of osteoporosis and fractures, all contributing to the
prevention and management of metabolic syndrome.

Furthermore, future studies should delve deeper into the
interactions between vitamin D supplementation and other
metabolic syndrome (MetS) treatments. Understanding these
interactions is crucial for optimizing therapeutic approaches,
enhancing treatment efficacy, and ensuring patient safety. By
considering the synergistic or antagonistic effects of vitamin D with
other medications, we can provide more personalized and precise
treatment strategies for patients.

5.2 Cellular and molecular mechanisms of
vitamin D

5.2.1 Vitamin D’s multifaceted roles in pancreatic
β-cell function and glucose regulation: a deep
dive into the mechanisms

Vitamin D holds a pivotal position in pancreatic β-cell function
and glucose regulation (115). Its direct interaction with β-cells
at the cellular level enhances insulin gene expression, thereby
promoting insulin synthesis and release (116). These processes are
crucial for maintaining blood glucose homeostasis (117).

5.2.1.1 Vitamin D and the VDR

When vitamin D binds to the VDR, it triggers a cascade of
signaling pathways (118, 119). These pathways not only regulate
insulin production but also precisely adjust the expression of genes
associated with apoptosis. This fine-tuning supports β-cell survival
and ensures their optimal function (120, 121).

5.2.1.2 Molecular mechanisms of vitamin D action

Digging deeper, the formation of the vitamin D-VDR complex
enables the recognition of Vitamin D Response Elements (VDREs)
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located within the cell nucleus. This recognition mechanism
regulates the transcription of genes closely linked to glucose
metabolism and β-cell apoptosis (86). Beyond this, vitamin D
also contributes to maintaining cellular homeostasis in β-cells.
It achieves this by adjusting calcium ion concentrations, thus
preventing calcium overload-induced apoptosis. Additionally, it
bolsters the cells’ antioxidant defenses against oxidative stress (122,
123).

5.2.1.3 Practical and clinical implications: harnessing

vitamin D for improved type 2 diabetes management

Vitamin D plays a pivotal role in pancreatic β-cell function
and glucose regulation. It not only promotes insulin synthesis
and release, thereby maintaining glucose homeostasis, but also
safeguards β-cells against damage by regulating intracellular
calcium ion balance and enhancing antioxidant defenses,
prolonging their survival and function. This understanding offers
novel therapeutic avenues for managing type 2 diabetes, wherein
personalized vitamin D supplementation strategies, as adjunctive
therapy, may contribute to reducing the need for exogenous insulin
and improving glycemic control in patients (124).

5.2.1.4 Challenges, limitations, and future directions

Despite the immense potential of vitamin D in modulating
immune function and pancreatic β-cell health, determining
the optimal dosage and supplementation approach remains
challenging (125). Variations in individual responses to vitamin
D necessitate consideration of personal differences in therapeutic
strategies to achieve personalized supplementation. Additionally,
the safety and potential side effects of long-term vitamin D
supplementation warrant further evaluation (126).

Current research predominantly relies on observational studies
and animal experiments, lacking large-scale, long-term clinical
trials to validate the precise efficacy of vitamin D in diabetes
management. Moreover, the incomplete understanding of vitamin
D’s interactions with other medications and nutrients may impact
its application effectiveness in clinical practice.

Future research should prioritize high-quality randomized
controlled trials to clarify the effectiveness and safety of vitamin
D in diabetes management. Additionally, exploring the synergistic
effects of vitamin D with other therapeutic approaches and
developing optimized supplementation protocols tailored to
different populations will be crucial for advancing its application
in diabetes treatment. Furthermore, intensifying studies on the
underlying mechanisms of vitamin D’s actions can unveil more of
its functions in diabetic pathogenesis.

5.2.2 Vitamin D’s role in adipocyte di�erentiation
and metabolism: mechanisms and current
understanding

Vitamin D plays a crucial role in the differentiation and
metabolism of adipocytes, processes that are fundamental to
adipose tissue formation and function (80).

5.2.2.1 Adipocyte di�erentiation and vitamin D

During adipocyte differentiation, pre-adipocytes transform
into mature adipocytes in response to specific environmental

signals. Vitamin D, through its activation of the VDR, modulates
this transition by precisely adjusting the expression of genes
intricately involved in adipocyte differentiation (77). This
regulatory action notably decelerates the differentiation process,
ultimately leading to a reduction in the overall number of fat cells
(53, 79).

5.2.2.2 Vitamin D and adipocyte metabolism

Beyond its role in differentiation, vitamin D also regulates
the metabolic functions of adipocytes (127). It achieves this by
balancing the synthesis and breakdown of fatty acids within these
cells. By modulating the activity of enzymes that are involved in
fatty acid metabolism, vitamin D effectively decreases fatty acid
synthesis and increases its oxidation, thereby reducing intracellular
fat storage (128, 129).

5.2.2.3 Molecular mechanisms

At the molecular level, the binding of vitamin D to VDR
enables it to specifically recognize and interact with VDREs in
the cell nucleus. This interaction regulates the transcription of
genes directly implicated in fat formation (130). Through this
mechanism, vitamin D selectively inhibits or activates specific
genes, offering precise control over the rate and extent of
adipogenesis (131). Research by Mutt et al. has shown that vitamin
D can downregulate the expression of key genes, such as fatty acid
synthase (FASN), which is essential for fatty acid synthesis (132).
By suppressing these genes, vitamin D further diminishes fatty
acid production, thus inhibiting adipogenesis. Moreover, vitamin
D modulates the fat formation process by influencing intracellular
signaling pathways, which are crucial for information transfer
within cells (133). Harahap et al. suggest that vitamin D can
activate or inhibit specific kinases and transcription factors, further
regulating adipogenesis (134).

5.2.2.4 Practical and clinical implications: optimizing

vitamin D supplementation for weight and lipid control

Given the specific mechanisms by which vitamin D regulates
adipocyte differentiation and metabolism, it holds significant
practical implications for weight and lipid control in clinical
settings. By precisely modulating the dosage of vitamin D
supplementation, it can effectively decelerate the differentiation
process of adipocytes, leading to a reduction in the total number
of fat cells and contributing to weight management (135).
Additionally, vitamin D’s ability to balance fatty acid synthesis and
oxidation, thereby decreasing intracellular fat storage, facilitates
improved lipid profiles, specifically reducing triglycerides and
low-density lipoprotein (LDL) cholesterol levels while potentially
increasing high-density lipoprotein (HDL) cholesterol (136).
As such, for patients with obesity and metabolic syndrome,
individualized vitamin D supplementation protocols may serve as
an adjunct approach to weight control, enhancing the effectiveness
of lipid management and mitigating the risk of cardiovascular
diseases. Future research and clinical practice should delve deeper
into determining optimal vitamin D doses for diverse populations,
aiming tomaximize its benefits in terms of weight and lipid control.

5.2.2.5 Challenges, limitations, and future directions

In the exploration of vitamin D’s therapeutic potential
in metabolic syndrome management, several challenges
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and limitations have emerged. Despite the widely recognized
significance of vitamin D in adipocyte growth and metabolism,
there remains a lack of consensus on the optimal daily dose
of vitamin D supplementation (137). This is primarily due to
the inconsistent findings from different studies, which can be
attributed to variations in experimental conditions and test
populations. Moreover, the potential interaction between vitamin
D and other nutrients adds to the complexity of devising effective
supplementation strategies (138).

Additionally, individual differences in response to vitamin D
underscore the need for personalized supplementation approaches.
Given these uncertainties, further research is imperative to
determine the optimal individualized dose and method of vitamin
D supplementation for patients with metabolic syndrome.

Looking ahead, future research directions should aim to
clarify the mechanisms underlying vitamin D’s multifaceted effects,
explore its interactions with other hormones and nutrients, and
assess the long-term safety and efficacy of supplementation. By
addressing these challenges and limitations, we can develop more
targeted and effective therapeutic strategies for the management of
metabolic syndrome.

5.2.3 Vitamin D’s role in immune regulation and
inflammation: mechanisms and current
understanding

Vitamin D profoundly influences the development and
functional expression of immune cells (139, 140). It meticulously
adjusts the gene expression profiles of key inflammatory regulators,
such as macrophages, T cells, and B cells, by activating the
VDR within these cells. This, in turn, regulates the inflammatory
mediators they release.

5.2.3.1 Vitamin D and immune cell gene expression

Upon binding to VDR, vitamin D forms a complex that can
precisely identify and bind to VDREs in the cell nucleus (141).
This binding regulates the transcription of genes closely related
to inflammation, providing a molecular basis for the immune
response modulation (142, 143). Specifically, vitamin D can inhibit
the production of inflammatory cytokines, such as TNF-α, IL-
1β, and IL-6, by macrophages, effectively mitigating the body’s
inflammatory response (144).

5.2.3.2 Regulation of inflammatory genes

The vitamin D-VDR complex selectively inhibits or activates
specific inflammatory genes, offering a deeper understanding of
how inflammation is controlled at the molecular level (145).
Studies have confirmed that vitamin D can inhibit the activation
of the key inflammatory transcription factor NF-κB, subsequently
downregulating the expression of various inflammatory genes and
reducing the production of inflammatory mediators (56).

5.2.3.3 Intracellular signaling pathways

Beyond direct gene regulation, vitamin D also influences
the inflammatory process by regulating intracellular signaling
pathways (146). These pathways, akin to information
superhighways within cells, are effectively modulated by vitamin
D, adjusting the synthesis and release of inflammatory mediators
(147). Specifically, vitamin D can activate signaling molecules such

as PKA and PKC, further regulating downstream inflammatory
responses (70, 148, 149).

5.2.3.4 Practical and clinical implications of the study:

vitamin D as an immunomodulator and

anti-inflammatory agent

In clinical practice, vitamin D supplementation demonstrates
remarkable immunomodulatory and anti-inflammatory potential
(150). By inhibiting the release of pro-inflammatory cytokines and
key transcription factors, vitamin D offers a promising therapeutic
approach for alleviating systemic inflammation under conditions
such as metabolic syndrome and autoimmune diseases (141). This
mechanism not only targets the underlying inflammatory pathways
but also addresses the broader spectrum of health complications
associated with chronic inflammation, thereby enhancing overall
patient outcomes and quality of life.

5.2.3.5 Challenges, limitations, and future directions

Despite the immense potential of vitamin D in immune
regulation and anti-inflammatory actions, its clinical application
faces several challenges. The optimal dosage and duration of
vitamin D supplementation remain unclear, necessitating further
research (151). Moreover, the incomplete understanding of its
interaction mechanisms with other nutrients and medications
hinders its use in treating multifactorial diseases. Additionally,
long-term excessive intake of vitamin D may pose potential health
risks, such as hypercalcemia and soft tissue calcification, limiting its
widespread clinical adoption.

Research on vitamin D’s immune regulatory and anti-
inflammatory effects still has limitations. Most studies focus on
animal models and in vitro cell cultures, lacking large-scale clinical
trials to validate its efficacy (152). The complex mechanisms of
vitamin D involve multiple signaling pathways and cell types,
making it difficult to determine its precise role. Furthermore,
individual variability in responses to vitamin D may be influenced
by genetic polymorphisms and other genetic factors.

Future research should focus on several key areas. Large-
scale clinical trials are needed to verify the role of vitamin D
in preventing and treating metabolic syndrome and related
inflammatory diseases. In-depth exploration of vitamin D’s
mechanisms, particularly in immune regulation and anti-
inflammation, is essential. Moreover, novel strategies for
personalizing vitamin D supplementation dosages and durations
must be developed to maximize its therapeutic potential while
mitigating potential health risks. Through these efforts, we
can anticipate vitamin D playing a more significant role in
immune modulation and anti-inflammation, offering new insights
and approaches for treating metabolic syndrome and related
inflammatory conditions.

5.2.4 Roles of vitamin D in regulating other
metabolic syndrome-related factors and research
status
5.2.4.1 Blood pressure regulation

Vitamin D plays a crucial role in blood pressure regulation by
influencing the function of endothelial cells and vascular smooth
muscle cells (153, 154). It promotes the release of nitric oxide
(NO), a vasodilator, from endothelial cells, contributing to the
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maintenance of normal blood pressure levels (155). Additionally,
vitamin D inhibits the proliferation and migration of vascular
smooth muscle cells, enhancing vascular stability and elasticity,
further reducing the risk of hypertension (156, 157). Research
indicates that vitamin D modulates blood pressure dynamics
by regulating the expression of genes associated with blood
pressure regulation, such as those involved in the renin-angiotensin
system (RAS) (158–160). Furthermore, vitamin D’s regulation of
intracellular calcium ion balance indirectly affects blood pressure
homeostasis (161).

5.2.4.2 Cardiovascular health

Vitamin D contributes significantly to cardiovascular health by
enhancing the expression of nitric oxide synthase in cardiovascular
cells, thereby promoting nitric oxide synthesis and release
(162, 163). This aids in maintaining normal vascular function
and elasticity, reducing the risk of cardiovascular diseases
(164). Additionally, vitamin D activates intracellular signaling
pathways in cardiovascular cells, fine-tuning the expression
of genes and proteins related to cell proliferation, migration,
and apoptosis (165). This inhibits abnormal proliferation and
migration of vascular smooth muscle cells, effectively preventing
the development of atherosclerosis. Vitamin D further mitigates
oxidative stress and inflammatory responses in the cardiovascular
system by regulating the expression of antioxidant and anti-
inflammatory genes, thereby maintaining the normal structure and
function of blood vessels (157, 166).

5.2.4.3 Bone health

Vitamin D directly affects osteoblasts and osteoclasts, crucial
cells for bone formation and remodeling (167). It enhances
the synthesis of bone matrix proteins, such as osteocalcin and
collagen, essential for bone framework construction (168, 169).
Simultaneously, vitamin D inhibits osteoclast activity, reducing
bone resorption and degradation, thus maintaining bone strength
and stability (170). By regulating the expression of genes related
to calcium absorption and transport, vitamin D ensures an
adequate calcium supply for bones, promoting normal bone
mineralization and growth (171, 172). Furthermore, vitamin D
indirectly safeguards bone health by modulating the immune
system, inhibiting inflammatory cytokine production, and reducing
bone inflammation, thereby lowering the risk of osteoporosis and
fractures (173, 174).

5.2.4.4 Practical and clinical implications of the study

For blood pressure control, the crucial role of vitamin D in
promoting the release of nitric oxide from endothelial cells and
inhibiting the proliferation and migration of vascular smooth
muscle cells highlights its potential as an adjuvant therapy
in hypertension management (175). Regular supplementation
of vitamin D could help maintain normal blood pressure
levels and reduce the risk of hypertension, thereby improving
cardiovascular outcomes.

In terms of cardiovascular health, the study underscores the
importance of vitamin D in promoting nitric oxide synthesis and
release, enhancing vascular function and elasticity (176). This
suggests that vitamin D supplementation could aid in preventing
cardiovascular diseases by improving the overall health of blood
vessels. Moreover, vitamin D’s ability to regulate intracellular

signaling pathways related to cell proliferation, migration, and
apoptosis in cardiovascular cells can contribute to the prevention
of atherosclerosis.

Regarding bone health, the direct effects of vitamin D on
osteoblasts and osteoclasts, as well as its role in regulating calcium
metabolism, have important implications for the prevention and
treatment of bone-related disorders. By ensuring adequate calcium
supply for bones and inhibiting bone resorption, vitamin D
supplementation can strengthen bone structure and reduce the risk
of osteoporosis and fractures (177). This is particularly relevant for
populations at risk of bone loss, such as the elderly or individuals
with chronic diseases.

5.2.4.5 Challenges, limitations, and future directions

Vitamin D’s clinical use faces challenges. Individual variability
in response necessitates tailored dosing. Complex interactions
with other nutrients hinder precise supplementation. Factors like
lifestyle, environment, and genetics yield inconsistent results (1).

Research limitations include the predominance of
observational studies, sample heterogeneity, and limited data
on long-term safety and effectiveness, particularly in diverse
populations (178).

Randomized trials are needed to establish causality. Explore
vitamin D-nutrient interactions for personalized supplementation.
Investigate metabolic differences across populations to enhance
results’ generalizability. Monitor long-term safety and effectiveness
for safe clinical application.

5.3 Interactions of vitamin D with other
metabolic hormones

The mechanisms of interaction between vitamin D and other
metabolic hormones are complex and crucial for maintaining
normal physiological functions in the human body (179). Firstly,
in the interaction between vitamin D and insulin, the mechanism is
primarily manifested by the action of the active form of vitamin D,
1,25-dihydroxyvitamin D3, in the pancreas. It can promote β-cell
synthesis and secretion of insulin, thereby regulating blood sugar
levels (180). At the same time, vitamin D can inhibit pancreatic
α-cells, reducing the secretion of glucagon and stabilizing blood
sugar (181). Insulin also affects vitamin D levels by promoting
intestinal absorption of vitamin D, increasing the body’s vitamin
D concentration (182). Their synergistic action is evident as
vitamin D enhances the expression of insulin receptor genes,
improving cell sensitivity to insulin, which helps in improving
insulin resistance (183).

Secondly, the interaction mechanism between vitamin D and
parathyroid hormone (PTH) is primarily reflected in maintaining
calcium balance (184). When blood calcium levels drop, vitamin D
stimulates the activation of the calcium-sensing receptor (CaSR) in
the parathyroid gland, leading to an increase in PTH levels, which
then promotes the kidney to synthesize 1,25(OH)2D, enhancing
the kidney’s reabsorption of calcium (185). Simultaneously,
1,25(OH)2D and PTH act together on osteoblasts, regulating bone
metabolism processes. This mechanism ensures the body’s priority
in maintaining calcium balance but may also lead to bone health
issues (186).
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Furthermore, the interaction mechanism between vitamin
D and cortisol is represented by a direct antagonistic action.
Vitamin D promotes the absorption and utilization of calcium,
while cortisol inhibits these processes (187). This antagonistic
action helps maintain the body’s calcium homeostasis and related
physiological functions.

Lastly, in the interactions between vitamin D and sex
hormones like estrogen and testosterone, the mechanism is mainly
manifested in their impact on bone health (188). Vitamin D and
estrogen jointly regulate the function of osteoblasts and osteoclasts,
maintaining bone homeostasis (189). Vitamin D may influence
the synthesis and receptor expression of testosterone, regulating
the physiological processes of testosterone (190). These interaction
mechanisms collectively maintain bone health and the balance of
sex hormones (191).

6 Conclusion

Vitamin D plays a crucial role in the treatment of metabolic
syndrome. It is not only vital for bone health and calcium-
phosphate metabolism but also plays a role in immune regulation
and energy metabolism. Epidemiological and clinical studies
indicate that vitamin D deficiency is closely associated with
obesity, insulin resistance, dyslipidemia, and hypertension, which
are components of metabolic syndrome. Its mechanisms of
action involve the regulation of key metabolic pathways and
interactions with other hormones. Although there is controversy
over the dosage and efficacy of vitamin D supplementation,
its potential in the treatment of metabolic syndrome warrants
further exploration. Considering the safety concerns associated
with long-term excessive intake, future research needs to define
the appropriate dosage of vitamin D supplementation and its
long-term safety. In summary, research on vitamin D provides
new perspectives and strategies for the prevention and treatment
of metabolic syndrome.
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