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Objectives: The purpose of the present study was to explore the influencing 
factors of hyperuricemia (HUA) in different populations in Shandong Province 
based on clinical biochemical indicators. A prediction model for HUA was 
constructed to aid in the early prevention and screening of HUA.

Methods: In total, 705 cases were collected from five hospitals, and the risk 
factors were analyzed by Pearson correlation analysis, binary logistic regression, 
and receiver operating characteristic (ROC) curve in the gender and age groups. 
All data were divided into a training set and test set (7:3). The training set included 
age, gender, total protein (TP), low-density lipoprotein cholesterol (LDL-C), and 
15 other indicators. The random forest (RF) and support vector machine (SVM) 
methods were used to build the HUA model, and model performances were 
evaluated through 10-fold cross-validation to select the optimal method. Finally, 
features were extracted, and the ROC curve of the test set was generated.

Results: TP, LDL-C, and glucose (GLU) were risk factors for HUA, and the area 
under the curve (AUC) value of the SVM validation set was 0.875.

Conclusion: The SVM model based on clinical biochemical indicators has good 
predictive ability for HUA, thus providing a reference for the diagnosis of HUA 
and the development of an HUA prediction model.
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1 Introduction

Hyperuricemia (HUA) is a metabolic disorder due to abnormal purine metabolism that 
results in elevated serum uric acid (SUA) levels (1). Approximately two-thirds of SUA in the 
human body is produced endogenously, while the remaining one-third is obtained from the 
diet (2). SUA levels are the result of the balance among uric acid (UA) biosynthesis in the liver, 
UA reabsorption in the proximal tubules of the kidney, and UA secretion from renal tubules 
and intestines. Approximately 70% of SUA in the human body is excreted through the kidneys, 
and the remaining 30% is excreted through the intestines and biliary tracts (3). As a public 
health problem, HUA is closely associated with the development of gout and is an independent 
risk factor for type 2 diabetes mellitus (T2DM), dyslipidemia, liver dysfunction, kidney 
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disease, and metabolic syndrome, seriously jeopardizing human 
health (4).

SUA level is closely related to hyperglycemia and 
hyperlipidemia, and it can cause damage to liver and kidney 
function (5). The HUA observed in patients with kidney disease is 
thought to be caused by inadequate excretion of UA due to renal 
failure (6). A cross-sectional study of HUA in Chinese adults has 
indicated that central obesity, hyperlipidemia, hypertension, and 
low glomerular filtration rate are risk factors for HUA. In addition, 
Hou et al. (7) reported that triglycerides (TGs), total cholesterol 
(TC), and gender are closely associated with the occurrence of 
HUA. A previous study demonstrated that the risk of 
hypertriglyceridemia in HUA patients was approximately twice as 
high as in healthy individuals. Increased TGs led to increased 
production of free fatty acids and accelerated breakdown of ATP, 
resulting in increased UA (8).

As people’s living standards improve, the prevalence of HUA is 
rising rapidly in China. The lifestyles of Chinese individuals have 
dramatically changed, with increased intake of meat, dairy products, 
and other high-purine foods (9). In addition, a cross-sectional survey 
has reported that the overall prevalence of HUA in the Chinese adult 
population was 11.1% in 2015–16, with an alarming increase of 14.0% 
in 2018–19. Moreover, HUA tends to have a younger onset in both 
males and females (10). Furthermore, high SUA levels may result in 
significant financial losses to patients, including direct (e.g., medical 
consultation fees) and indirect (e.g., lost productivity) costs. The cost 
of screening gout patients increases with increasing SUA levels, and 
two-thirds of patients newly diagnosed with gout have not received 
uric acid-lowering therapy. Currently, musculoskeletal ultrasound 
(US) and dual-energy computed tomography (DECT) have been used 
as diagnostics for gout in a non-invasive manner. Compared with US, 
DECT has increased accuracy in the diagnosis of gouty arthritis (11, 
12). However, we prefer to control the source of UA elevation, target 
HUA high-risk individuals in advance, and adjust their diets and 
lifestyles. Through scientific prevention and management, we may 
reduce the risk of HUA and gout and alleviate the pain caused by 
the disease.

Studies have showed that HUA was more prevalent in males than 
in females. In 2018–2019, the prevalence of HUA in China was 24.4% 
in males and 3.6% in females (10). A univariate analysis showed that 
the risk of HUA in males was 1.86 times higher than that of females 
(7). The lower prevalence of HUA in females may be caused by the 
ability of estrogen in females to regulate the level of the UA transporter 
in the kidneys through gene expression, thus reducing UA production 
and promoting its excretion. After menopause, estrogen levels in 
females decline so markedly that both genders tend to display no 
obvious differences (13, 14).

Machine learning has advantages of high accuracy and speed. It is 
of great significance to establish disease prediction models to assist in 
the diagnoses of diseases and reduce medical costs. In recent years, as 

the disease burden of HUA has increased, HUA prediction models have 
been gradually developed. Shi et al. (13) used the classification and 
regression tree (CART) algorithm to construct a model using four 
characteristics, namely, gender, age, body mass index (BMI), and 
hypertension; the model had a sensitivity of 0.87, specificity of 0.59, and 
an area under the curve (AUC) value of 0.80. Cao et al. (15) used Cox 
proportional hazards regression models incorporating age, body mass 
index (BMI), systolic blood pressure, serum UA and TGs for prediction. 
The C statistics was 0.782 for males and 0.783 for females. However, due 
to the small number of features included in the model, the fitting effect 
of the model was not perfect. Therefore, this study used biochemical 
indicators that was simple to obtain and covered a wide range to 
develop a more accurate and easily generalisable predictive model 
for HUA.

Clinically, HUA has an insidious onset, and most patients tend 
to be asymptomatic and have no clear biochemical markers, except 
for SUA. Because the factors involved in the pathogenesis of HUA 
are not well understood, the variables used in different studies have 
widely varied, resulting in inconsistent conclusions. Therefore, it is 
important to screen the risk factors affecting HUA and establish a 
prediction model for early identification, control, and intervention 
of HUA patients to reduce disease burden. The present study 
analyzed the correlation of HUA based on a cross-sectional study of 
data collected from five hospitals in Shandong Province to 
investigate the risk factors of HUA at different ages and genders to 
predict HUA through machine learning, providing an important 
reference for the development of regional health education and the 
formulation of accurate and scientific prevention and 
control strategies.

2 Materials and methods

2.1 Study participants

Data for this cross-sectional study were collected from five 
hospitals in four cities in Shandong Province, encompassing both 
inland and coastal cities. A total of 356 healthy volunteers (HC group) 
and 349 patients with HUA (HUA group) were included in the present 
study. According to the Practice Guidelines for the Diagnosis and 
Management of Hyperuricemia, the HUA group was defined as SUA 
≥360 μmol/L for women and SUA ≥420 μmol/L for men (1, 16). 
Pregnant or lactating women and patients with cardiovascular 
diseases, renal diseases, metabolic diseases, tumors, psychiatric 
diseases, or other diseases were all excluded. Verbal informed consent 
was obtained from all subjects. All experimental protocols were 
approved by the Ethics Committee of Binzhou Medical University 
(No. 2022-352).

2.2 Data collection

For laboratory testing, fasting blood was collected from volunteers 
and sent to hospital laboratories for uniform blood biochemistry 
testing. The following indicators were measured: UA, alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), total 
protein (TP), albumin (ALB), total protein/albumin (A/G), total 
bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), 

Abbreviations: HUA, Hyperuricemia; UA, Uric acid; SUA, Serum uric acid; ALT, 

Alanine aminotransferase; AST, Aspartate aminotransferase; TP, Total protein; ALB, 

Albumin; A/G, Total protein/albumin; TBIL, Total bilirubin; DBIL, Direct bilirubin; 

IBIL, Indirect bilirubin; GGT, γ-glutamyl transferase; Urea, Urea nitrogen; Crea, 

Creatinine; TGs, Triglycerides; LDL-C, Low-density lipoprotein cholesterol; HDL-C, 

High-density lipoprotein cholesterol; GLU, Glucose.
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γ-glutamyl transferase (GGT), creatinine (Crea), urea nitrogen (Urea), 
TGs, high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), and glucose (GLU).

2.3 Random forest method

The random forest (RF) method is an ensemble learning algorithm 
derived from the development of decision trees, which uses 
randomization to create a large number of decision trees. It is the most 
recent algorithm that can manage missing and unbalanced data, and 
it is suitable for analyzing complex data (17). As a combinatorial 
classifier, the RF method uses the bootstrap resampling method to 
extract multiple sample sets from the training samples. The RF 
method uses the extracted sample sets to construct a decision tree 
model, and it gathers several decision trees together to obtain the final 
result through majority voting or averaging. Because the RF method 
has high stability, high prediction accuracy, and is not prone to 
overfitting, it is widely used in disease prediction. Naveed (18) used 
the RF algorithm to classify benign and malignant breast lesions with 
an accuracy of 98%, improving system efficiency, reducing human 
error, and ultimately developing a method that allows early detection 
of breast cancer.

2.4 Support vector machine

A support vector machine (SVM) is a generalized linear classifier 
that classifies binary data according to supervised learning. The basic 
model of a SVM is a classifier that defines the maximum interval in 
the feature space, which is suitable for small sample data, and SVMs 
can solve high-dimensional problems. In general, larger spacings 
indicate greater differences between two sample types, allowing easier 
distinction between the sample types. Han et al. (19) combined a SVM 
with proteomics methods to identify biomarkers that predict 
chemoresistance in small cell lung cancer (SCLC), providing a useful 
method for the treatment of SCLC. In addition, Dong et  al. (20) 
developed a highly accurate risk prediction model for depression in 
patients with systemic lupus erythematosus (SLE) using a SVM.

2.5 Statistical analysis

In the first stage, all samples were grouped by gender and age, and 
the risk factors of HUA in each group were analyzed. All data were 
analyzed using IBM SPSS Statistics 26 and GraphPad Prism 8. 
Chi-square tests were used to compare categorical variables. For 
quantitative variables, Mann–Whitney U test was used to compare 
baseline characteristics between groups. The qualitative data were 
tested by the χ2 test. Pearson correlation analysis was used to compare 
the degree of association between SUA and each biochemical index, 
and a correlation coefficient of |r| > 0.1 indicated the presence of 
correlation. Risk factors for HUA were subsequently analyzed using 
multifactorial binary logistic regression. Finally, the AUC of the 
receiver operating characteristic curve (ROC) was used to evaluate the 
predictive value and practical significance of the biochemical indexes. 
All statistical analyses were two-sided, and p < 0.05 was considered 
statistically significant.

In the second stage, 15 biochemical indexes were tested by Mann–
Whitney U test. Additionally, gender and age (young, ≤39 years; middle 
age, 40–59 years; and older adults, ≥60 years) were training features, 
and the presence or absence of disease was the target vector. The RF 
and SVM models were constructed using the e1071 (version 1.7-13, 
https://CRAN.R-project.org/package=e1071) and RandomForest 
(version 4.7-1, https://CRAN.R-project.org/doc/Rnews/) R packages. 
In addition, 70% of the samples was used as the training set to build the 
model, and the remaining 30% of the samples was used as the teat set 
for testing and evaluating the model. The presence or absence of HUA 
was the target vector, and the model was ten-fold cross-verified. The 
original data set was randomly divided into ten parts as follows: nine 
parts were used as the training set; and one part was used as the test set. 
The risk value of HUA onset was calculated for each individual in the 
validation set and combined with the actual diagnostic results of each 
individual in the validation set. Finally, the optimal model was selected 
for feature extraction and AUC evaluation.

3 Results

3.1 Clinical characteristics of the 
participants

The present study included 334 females, with an average age of 47 
(37, 56) years and an UA level of 334.20 (242.73, 432.88) μmol/L. There 
were 371 male participants, with an average age of 48 (35, 56) years 
and an UA level of 428.10 (326.10, 513.70) μmol/L. The UA level in 
males was significantly higher than females (p < 0.05). The samples 
were divided into three groups based on age, namely, young 
(≤39 years), middle age (40–59 years), and older adults (≥60 years). 
The age distribution of the population is shown in Table 1.

3.2 Comparison of biochemical indicators 
of HUA by gender

For males, the UA, ALT, AST, GGT, Urea, Crea, TG, LDL-C, and 
GLU levels were significantly higher in the HUA group compared to 
the HC group, while the TP level was significantly lower in the HUA 
group compared to the HC group (Table 2). For females, the UA, ALT, 
AST, TBIL, DBIL, IBIL, GGT, Urea, Crea, TG, LDL-C, and GLU levels 
were significantly higher in the HUA group than those in the HC 
group, while the ALB and A/G levels were significantly lower in the 
HUA group compared to the HC group (p < 0.05) (Table 3).

TABLE 1 Characteristics of the population with HUA.

Variable HC HUA χ2 p

Gender 2.928 0.087

Male 176 19 5

Female 180 154

Age 23.276 <0.001

Youth 112 119

Middle age 215 162

Old age 29 68
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FIGURE 1

Pearson correlation analysis of HUA in males (A) and females (B).

Pearson correlation analysis showed that the ALT, AST, GGT, 
Urea, Crea, TG, LDL-C, and GLU levels were positively correlated 
with SUA in males, whereas the TP level was negatively correlated 
with SUA in males (p < 0.05). Among the serum biochemical 
indicators, TP, GGT and Crea had an |r| > 0.3, indicating a good 
correlation with UA (Figure  1A). Moreover, Pearson correlation 
analysis demonstrated that the ALT, AST, TBIL, DBIL, IBIL, GGT, 

Urea, Crea, TG, LDL-C, and GLU levels were significantly positively 
associated with SUA in females, whereas SUA was negatively 
associated with the levels of ALB and A/G in females. Among the 

TABLE 2 Comparison of biochemical indicators in males between the 
HUA and HC groups.

Variable
HUA group 

(n=195)
HC group 

(n=176)
Z P

UA (umol/L) 510.1(456.6, 551.8) 319(280.23, 369.45) −27.371 <0.001

ALT (U/L) 25.4(19.8, 35) 20(15, 26) −3.937 <0.001

AST (U/L) 23(19, 32.2) 19(16, 22.58) −3.973 <0.001

TP (g/L) 71.1(61.4, 74.9) 71.3(68.13, 74.48) 6.645 <0.001

GGT (U/L) 37(24, 57) 22(18, 31.8) −4.989 <0.001

Urea (mmol/L) 5.22(4.46, 6.19) 4.99(4.41, 5.81) −2.913 0.004

Crea (umol/L) 79.6(72.8, 87.4) 71.7(65.38, 77.53) −6.547 <0.001

TG (mmol/L) 1.41(1.11, 2.19) 1.29(0.92, 1.69) −3.232 0.001

LDL-C (mmol/L) 2.63(2.01, 3.32) 2.33(1.72, 2.77) −3.985 <0.001

GLU (mmol/L) 5.23(4.77, 5.71) 4.99(4.66, 5.50) −2.444 0.015

TABLE 3 Comparison of biochemical indicators in females between the 
HUA and HC groups.

Variable
HUA group 

(n=154)
HC group 
(n=180)

Z P

UA (umol/L) 440.25(400.78, 479.3) 249.6(197.05, 302.13) −25.71 <0.001

ALT (U/L) 20.9(16, 31.03) 16(12, 22) −5.314 <0.001

AST (U/L) 20.25(15, 27.15) 17.65(14, 22) −3.097 0.002

ALB (g/L) 43.9(38.78, 46.2) 44.6(42.83, 46.58) 4.930 <0.001

A/G 1.4(1.3, 1.6) 1.6(1.5, 1.7) 3.654 <0.001

TBIL (umol/L) 11.52(8.28, 16.35) 10.6(8.33, 13.3) −2.208 0.029

DBIL (umol/L) 2.77(1.67, 3.9) 11.52(8.28, 16.35) −2.047 0.042

IBIL (umol/L) 8.56(6.18, 12.35) 8.05(6.1, 10.08) −2.203 0.029

GGT (U/L) 22(15.93, 32.63) 14.05(12, 18.95) −3.474 0.001

Urea (mmol/L) 4.85(4.2, 6.79) 4.42(3.8, 5.20) −4.506 <0.001

Crea (umol/L) 64.05(56, 76.5) 56.1(51.28, 62) −2.873 0.005

TG (mmol/L) 1.37(1.06, 1.85) 1.33(0.86, 1.66) −2.789 0.006

LDL-C (mmol/L) 2.41(1.77, 3.36) 2.23(1.49, 2.80) −3.553 <0.001

GLU (mmol/L) 5.32(4.90, 5.93) 4.87(4.57, 5.13) −5.483 <0.001
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serum biochemical indicators, ALT, ALB, GGT, and Urea had an 
|r| > 0.3, indicating a good correlation with UA (Figure 1B).

3.2.1 Logistic regression analysis of HUA 
biochemical indicators according to gender

The biochemical indicators of HUA were further analyzed by 
multivariate binary logistic regression, considering the presence or 
absence of a disease as the dependent variable (HUA = 1, HC = 0) and 
the other indicators as independent variables. The levels of Crea [odds 
ratio (OR) = 1.091, 95% confidence interval (CI): 1.062–1.121, 
p < 0.001], TG (OR = 1.374, 95% CI: 1.071–1.763, p = 0.012), LDL-C 
(OR = 1.839, 95% CI: 1.362–2.482, p < 0.001), and GGT (OR = 1.014, 
95% CI: 1.001–1.026, p = 0.028) were independent risk factors for 
HUA in the male population. For every 1 mmol/L increase in LDL-C, 
the risk significantly increases by 84% (Supplementary Table S1).

In addition, the levels of Crea (OR = 1.084, 95% CI: 1.055–1.115, 
p < 0.001), LDL-C (OR = 1.461, 95% CI: 1.109–1.925, p = 0.007), and 
GLU (OR = 3.225, 95% CI: 2.047–5.081, p < 0.001) were risk factors for 
HUA in the female population. For every 1 mmol/L increase in GLU, 
the risk significantly increases by 223%, and for every 1 mmol/L 
increase in LDL-C, the risk increases by 46% (Supplementary Table S2).

3.2.2 Analysis of the predictive value of HUA 
biochemical markers according to gender

To assess the value of a single biochemical indicator on HUA, 
ROC curves were plotted, and AUC values were calculated. For males, 
analysis of the predictive value of a single differential indicator showed 
that the AUC values of GGT and Crea were 0.7226 and 0.7208, 
respectively, indicating high predictive value (AUC >0.7). However, 
the predictive power of individual biochemical indicators was limited. 
Therefore, the present study established a prediction model based on 
logistic regression analysis to further improve the performance, 
sensitivity, and specificity of the prediction model. The logistic factor 
(AUC = 0.8515, sensitivity = 0.749, and specificity = 0.783) obtained by 
logistic regression provided a better prediction compared to the single 
individual indicator (Supplementary Table S3 and Figure 2A). For 
females, analysis of the predictive value of a single differential 
indicator demonstrated that the AUC values of GLU and Crea were 
0.7088 and 0.7041, respectively, indicating high predictive value (AUC 

>0.7). The logistic factor (AUC = 0.8507, sensitivity = 0.773, 
specificity = 0.783) obtained by logistic regression provided a better 
prediction by including the combined risk factors for HUA 
(Supplementary Table S4 and Figure 2B).

3.3 Comparison of HUA biochemical 
indicators by age

Cui L et al. reported that SUA levels and the prevalence of HUA 
are not linearly related to age but rather are related in a “U” or “J” 
manner, which may be due to the lifestyle of various age groups (21). 
Therefore, the participants were divided into three groups according 
to age to identify risk factors and potential biomarkers based on age.

In young participants, the UA, ALT, AST, GGT, Urea, Crea, TG, 
LDL-C, and GLU levels in the HUA group were significantly higher 
than those in the HC group, while the TP and A/G levels were 
significantly lower in the HUA group compared to the HC group 
(p < 0.05) (Table 4). Pearson correlation analysis indicated that the 
ALT, AST, GGT, Urea, Crea, TG, LDL-C, and GLU levels were 

FIGURE 2

ROC analysis of potential biomarkers in males (A) and females (B).

TABLE 4 Comparison of the HUA and HC groups in young participants.

Variable
HUA group 

(n=119)
HC group 

(n=112)
Z P

UA (umol/L) 474(435.2, 547.2) 296.8(243.5, 329.78) −19.552 <0.001

ALT (U/L) 24.1(17.3, 34) 16(12, 22.8) −3.437 0.001

AST (U/L) 21(17, 36) 18(14.05, 21.75) −3.287 0.001

TP (g/L) 73.5(67.3, 77) 73.05(70.1, 75.88) 3.819 <0.001

A/G 1.62(1.4, 1.8) 1.7(1.56, 1.90) 2.043 0.042

GGT (U/L) 29(18, 49.6) 17.4(13, 24.75) −4.315 <0.001

Urea (mmol/L) 4.68(4, 5.63) 4.43(3.6, 5.12) −2.175 0.031

Crea (umol/L) 73.5(63.2, 82.4) 62.6(55.1, 73.3) −1.993 0.049

TG (mmol/L) 1.33(1.05, 2.01) 1.24(0.91, 1.54) −3.485 0.001

LDL-C (mmol/L) 2.44(1.87, 3.35) 2.09(1.34, 2.51) −4.562 <0.001

GLU (mmol/L) 5.02(4.71, 5.37) 4.845(4.45, 5.05) −3.207 0.002
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FIGURE 3

Pearson correlation analysis of HUA in the young (A), middle age (B), and older adults (C) groups.

positively related to SUA, whereas TP and A/G were negatively related 
to SUA (p < 0.05) (Figure 3A).

In middle-aged participants, the UA, ALT, AST, TBIL, IBIL, 
GGT, Urea, Crea, TG, LDL-C, and GLU levels in the HUA group 
were significantly higher compared to the HC group, while the TP 
level was significantly lower in the HUA group compared to the HC 
group (p < 0.05). Pearson correlation analysis showed that the ALT, 
AST, TBIL, IBIL, GGT, Urea, Crea, TG, LDL-C, and GLU levels 
were positively associated with SUA, whereas the TP levels were 
negatively associated with SUA (p < 0.05). Among the biochemical 
indicators, ALT, AST, TP, GGT, Urea, and Crea had an |r| > 0.3, 
indicating a good correlation with UA (Table 5 and Figure 3B).

In older adults participants, the UA, ALT, AST, GGT, Urea, Crea, 
and GLU levels in the HUA group were significantly higher than those 
in the HC group, whereas the levels of ALB and A/G were significantly 
lower in the HUA group compared to the HC group (p < 0.05). Pearson 
correlation analysis showed that the ALT, GGT, Urea, Crea, TG, and 

GLU levels were positively correlated with SUA, while the levels of 
ALB and A/G were negatively correlated with SUA (p < 0.05). Among 
the biochemical indicators, ALT, ALB, A/G, GGT, Urea, and GLU had 
an |r| > 0.3, indicating a good correlation with UA (Table  6 and 
Figure 3C).

3.3.1 Logistic regression analysis of HUA 
biochemical indicators according to age

The risk factors for HUA were further identified by 
multifactorial logistic regression. LDL-C (OR = 1.949, 95% CI: 
1.401–2.712, p < 0.001), GLU (OR = 1.941, 95% CI: 1.136–3.314, 
p = 0.015), TG (OR = 1.750, 95% CI: 1.071–2.859, p = 0.026), and 
Crea (OR = 1.044, 95% CI: 1.018–1.070, p = 0.001) were independent 
risk factors for HUA in young participants (Supplementary Table S5). 
For every 1 mmol/L increase in LDL-C, the risk significantly 
increases by 95%, and for every 1 mmol/L increase in TGs, the risk 
increases to 75%.
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In addition, GLU (OR = 1.583, 95% CI: 1.178–2.128, p = 0.002), 
LDL-C (OR = 1.445, 95% CI: 1.121–1.862, p = 0.004), and Crea 
(OR = 1.052, 95% CI: 1.033–1.073, p = 0.000) were risk factors for 
HUA in middle-aged participants (Supplementary Table S6). In older 
adults participants, GLU (OR = 1.781, 95% CI: 1.045–3.034, p = 0.034), 
ALT (OR = 1.074, 95% CI: 1.009–1.144, p = 0.026), and Crea 

(OR = 1.055, 95% CI: 1.018–1.093, p = 0.003) were risk factors for 
HUA (Supplementary Table S7).

3.3.2 Analysis of the predictive value of HUA 
biochemical markers according to age

To evaluate the diagnostic efficacy of clinical indicators on 
diseases, an ROC curve was plotted with the false positive rate 
(1-specificity) as the abscissa and the true positive rate (sensitivity) as 
the ordinate. For young participants, Crea and LDL-C had great 
predictive power (AUC >0.65), and the logistic factor (AUC = 0.7948, 
sensitivity = 0.664, specificity = 0.839) was significantly better than the 
individual biochemical indicators (Supplementary Table S8 and 
Figure 4A). In addition, the AUC values of Crea, GLU, and ALT were 
0.7021, 0.6620, and 0.6613, respectively, for middle-aged individuals, 
and the AUC values of Crea and ALT were 0.7211 and 0.6514, 
respectively, for older adults individuals. The logistic predictive values 
for middle-aged and older adults participants were 0.7917 and 0.8174, 
which were significantly better than the individual biochemical 
indicators (Supplementary Tables S9, S10 and Figures 4B,C).

3.4 Machine learning

Because two indicators (A/G and HDL-C) did not meet the 
requirements for the SVM model according to the Mann–Whitney U 
test, the remaining 13 biochemical indicators, gender, and age were 
used as the training characteristics (Table 7). The SVM model was 
tuned using the gamma index and cost index, and 126 parameters 
were set for ten-fold cross-validation (SVM/SVM_params.csv). The 
final cross-validation results showed that the 83rd parameter 
combination had the best effect in constructing the model, 
corresponding to a cost index of 16 and a gamma index of 0.065. The 
model was then used to predict the performance indicators of the test 
set (Figures 5A,B). Moreover, the RF method and out-of-bag (OOB) 
error were used to select the appropriate number of decision trees, and 
the test set was utilized for predictive evaluation (Figures 5C,D). For 
the SVM model, the sensitivity, specificity, precision, recall, F1, 
accuracy, and kappa value were 0.868, 0.769, 0.793, 0.868, 0.829, 0.819, 
and 0.638, respectively, all of which were better than the values 
obtained with the RF method. Accuracy values >0.8 and kappa values 
>0.6 indicate models with good accuracy and consistency. The SVM 
model was then used for feature extraction. The model had the best 
performance when selecting 14 features, except age. The test set was 
then evaluated and ROC curves were plotted, yielding an AUC value 

TABLE 5 Comparison of the HUA and HC groups in middle-aged 
participants.

Variable
HUA group 

(n=162)
HC group 
(n=215)

Z P

UA (umol/L) 460.8(426.75, 518.68) 287.1(233.6, 337.6) −25.183 <0.001

ALT (U/L) 23(17.9, 34.13) 18.4(14, 24.5) −5.417 <0.001

AST (U/L) 22(18, 30.2) 18(15, 22) −5.237 <0.001

TP (g/L) 71.9(67.73, 76.35) 72.2(69, 74.7) 4.533 <0.001

TBIL (umol/L) 12.85(9.9, 17) 11.9(9.3, 15.6) −2.332 0.021

IBIL (umol/L) 9.78(7.38, 12.74) 8.8(6.5, 12.1) −2.314 0.021

GGT (U/L) 30.8(19, 51.95) 18.5(14, 25.7) −4.599 <0.001

Urea (mmol/L) 4.97(4.36, 6.01) 4.7(4.12, 5.6) −3.121 0.002

Crea (umol/L) 73.85(63.78, 84.3) 63(55.1, 72) −6.114 <0.001

TG (mmol/L) 1.42(1.14, 2.05) 1.32(0.87, 1.75) −2.399 0.017

LDL-C (mmol/L) 2.67(1.95, 3.24) 2.37(1.71, 2.92) −3.150 0.002

GLU (mmol/L) 5.33(4.93, 5.77) 4.95(4.66, 5.33) −4.112 <0.001

TABLE 6 Comparison of the HUA and HC groups in older adults 
participants.

Variable
HUA group 

(n=68)
HC group 

(n=29)
Z P

UA (umol/L) 487.5(446.68, 536.85) 277(230.9, 316.5) −12.172 <0.001

ALT (U/L) 21.75(17.63, 32.83) 18.2(13.85, 23.3) −3.170 0.002

AST (U/L) 21.2(15.23, 29.25) 20.9(16, 24.8) −2.037 0.045

ALB (g/L) 39.55(36.55, 43.7) 44.2(41.1, 46.05) 3.733 <0.001

A/G 1.4(1.27, 1.59) 1.68(1.5, 2) 4.909 <0.001

GGT (U/L) 29(20.43, 43.45) 19.4(14, 29.5) −2.473 0.016

Urea (mmol/L) 6.99(5.32, 10.35) 5.5(4.61, 6.11) −4.528 0.012

Crea (umol/L) 80.75(66.15, 96) 68.6(55.15, 76.05) −2.591 0.012

GLU (mmol/L) 5.67(4.87, 7.11) 5.33(4.91, 5.81) −2.903 0.005

FIGURE 4

ROC curves of potential biomarkers in young (A), middle-aged (B), and older adults (C) participants.
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TABLE 7 Comparison of basic characteristics in the HUA and HC groups.

Variable
HUA group 

(n=349)
HC group 
(n=356)

Z P

UA (umol/L) 469(432.4, 531.1) 288.3(235.98, 333.2) −34.492 <0.001

ALT (U/L) 23.3(17.55, 33.3) 18(13, 24) −5.896 <0.001

AST (U/L) 21.5(17, 31) 18(15, 22) −5.098 <0.001

TP (g/L) 71.5(65.6, 76.2) 72.35(69.3, 75.05) 6.398 <0.001

ALB (g/L) 45.2(41.4, 47.5) 45.5(43.2, 47) 3.997 <0.001

TBIL (umol/L) 13(9.53, 17.30) 11.65(9.2, 15.5) −2.773 0.006

DBIL (umol/L) 3(2.1, 4.5) 2.9(2.1, 4) −2.348 0.019

IBIL (umol/L) 9.7(6.95, 13.07) 8.65(6.41, 11.65) −2.826 0.005

GGT (U/L) 29(19, 48) 18(14, 25) −5.969 <0.001

Urea (mmol/L) 5.1(4.34, 6.26) 4.69(4.08, 5.55) −5.490 <0.001

Crea (umol/L) 74.6(64.3, 85.25) 63.15(55.1, 72.55) −3.984 <0.001

TG (mmol/L) 1.39(1.07, 2.05) 1.31(0.88, 1.68) −4.331 <0.001

LDL-C (mmol/L) 2.5(1.9, 3.32) 2.27(1.65, 2.78) −5.458 <0.001

GLU (mmol/L) 5.28(4.82, 5.77) 4.92(4.63, 5.3) −5.769 <0.001

of 0.958 for the training set and 0.875 for the validation set (Figure 6; 
Supplementary Figure S1).

4 Discussion

UA is the end product of purine nucleotide catabolism, and as UA 
levels increase, the risk of lipid metabolism disorders, coronary heart 
disease, hypertension, T2DM, and obesity gradually increases (22). In 
recent years, the research focus on HUA has increased. In clinical 
practice, SUA levels are still used to diagnose HUA, but the goal to 
control of HUA is not fully defined. Early identification of asymptomatic 
individuals at high risk of HUA is crucial to help the early prevention 
and control of HUA. Therefore, the present study developed a new 
diagnostic model involving routine clinical biochemical markers, and 
the risk factors for different gender and age groups were analyzed.

4.1 Relationship between HUA and liver 
function indicators

As the largest organ in the human body, the liver has several 
functions, including nutrient metabolism, bile secretion, immune 
defense, and blood volume regulation. Hepatocyte cell culture studies 
have shown that UA can cause mitochondrial oxidative stress, which 
may lead to liver dysfunction. UA catalyzes an increase in liver 
inflammation by inducing inflammation and oxidative stress, either 
directly or through lipids and glucose, leading to hepatocyte death and 
functional hemocytopenia. The damaged liver further causes the levels 
of ALT and AST to increase, and the ability to synthesize ALB 
decreases. In turn, hepatic dysfunction can directly lead to elevated UA 
levels through multiple mechanisms (23). Chen et al. (24) reported 
that SUA concentration is positively correlated with ALT levels and 
that elevated UA levels may be associated with ALT elevation. In the 
present study, ALT and AST levels were significantly elevated in 
patients with HUA, which may indicate liver or mitochondrial 

damage. In particular, Pearson correlation and logistic regression 
analyses revealed that the ALT levels in middle-aged participants 
(r = 0.344, p < 0.001, OR = 1.044) and in older adults participants 
(r = 0.313, p = 0.002, OR = 1.074) were both strongly correlated with 
UA. Nevertheless, there were differences in the distribution of ALT 
and AST in hepatocytes. ALT is mainly distributed in the hepatocyte, 
reflecting hepatocyte membrane damage; AST is mainly distributed in 
hepatocyte mitochondria, and its elevation indicates hepatocyte 
damage at the organelle level (24, 25). In middle-aged and older adults 
individuals, AST/ALT >1 indicated that hepatocytes and mitochondria 
were severely destroyed, and the risk of cirrhosis was increased. 
Therefore, compared to AST, ALT is a better predictor of HUA, which 
can detect problems at an early stage of liver damage and control the 
onset and progression of HUA early.

In the present study, 14 metrics were selected for modeling, 
including ALT, AST, TP, ALB, TBIL, DBIL, IBIL, GGT, Urea, Crea, TG, 
LDL-C, GLU, and age. Among them, TP was considered the best 
indicator for predicting HUA. ALB, which is the main component of 
TP, was also ranked highly. Han et al. (26) reported that TP is an 
independent risk factor for HUA in individuals over 80 years of age. 
In patients with T2DM, ALB was included in the risk prediction 
model for HUA and was considered an independent risk factor for 
HUA (27). Compared to the HC group, the TP and ALB levels were 
significantly reduced in the HUA group. There is evidence of an 
important correlation between HUA and nonalcoholic fatty liver 
disease (NAFLD), and high levels of UA may damage liver 
parenchymal cells (28). The liver, as the only organ that synthesizes 
albumin, has a strong compensatory function. If there is slight damage 
to the liver in the early stages of the disease, TP and ALB may not 
necessarily be significantly altered. Only when the body has chronic 
liver parenchymal injury, such as chronic hepatitis and cirrhosis, the 
serum TP and ALB are reduced due to the obvious impairment of 
hepatocyte protein synthesis function. In addition, SUA causes 
endothelial dysfunction and low-grade inflammation by inhibiting the 
production of nitric oxide and reactive oxygen species (ROS). ALB is 
a negative acute phase-reactive protein, and ALB levels decrease 
during chronic inflammation. Moreover, HUA is a risk factor for 
chronic kidney disease (CKD). Studies have shown that the ALB gene 
is a differentially expressed gene (DEG) for CKD in patients with 
asymptomatic HUA, and ALB may be a major target of oxidative 
stress. Therefore, control of SUA is important to reduce complications 
and delay the progression of kidney disease (29).

As an essential enzyme for glutathione metabolism, GGT can 
produce free radicals and trigger oxidative stress, indicating that GGT 
is an independent marker of oxidative stress. In addition, GGT has 
been associated with the development of hypertension, coronary heart 
disease, T2DM, and metabolic disorders. By regulating the interaction 
between leukotriene C4 and leukotriene D4, GGT plays a 
non-negligible role in inflammation (30, 31). Additionally, Ryoo JH 
et al. reported that GGT level may be a predictor of the development of 
insulin resistance (32). A high concentration of insulin can promote 
renal tubular hydrogen and sodium exchange, increase UA 
reabsorption, and inhibit UA excretion. Moreover, a high concentration 
of insulin can also cause an increase in purine metabolism by activating 
the hexose monophosphate shunt, resulting in an increase in SUA levels 
(30). In the male population, GGT (r = 0.353, p < 0.001) was significantly 
associated with SUA. As a risk factor for HUA, GGT (AUC = 0.7226) 
was also an independent predictor of disease development. High levels 
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of SUA can induce oxidative stress, which leads to cell damage, resulting 
in various kidney diseases. Furthermore, GGT is a non-specific 
indicator of liver damage and may be  elevated in patients with 
hepatobiliary disease or individuals who have high alcohol intake (33). 
Consistent with the present results, He et al. (34) reported that heavy 
alcohol consumption in men, but not in women, is associated with the 
risk of HUA, which may be due to the higher tendency of men to drink 
alcohol than women.

4.2 Relationship between HUA and kidney 
function indicators

Studies have shown that the presence of HUA is an essential 
biomarker of renal risk (35). UA crystals are deposited in renal collecting 
ducts, leading to acute kidney injury and kidney disease. At the same 
time, high levels of UA can induce oxidative stress and ROS production 
in vascular endothelial cells, as well as promote the expression of the 
interleukin (IL)-6 and tumor necrosis factor (TNF)-α pro-inflammatory 
cytokines (36). Through a cross-sectional study, Lyu et al. (37) reported 
that Crea is a risk factor for HUA. The present study further demonstrated 

that Crea levels were significantly higher in the HUA group than in the 
HC group, indicating potential kidney damage (p < 0.05). In addition, 
Crea had a good predictive value in different populations (AUC >0.65), 
and the predictive value was higher in the male population 
(AUC = 0.7208) and older adults participants (AUC = 0.7211). Serum 
Crea is the most commonly used indicator of renal function, and 
abnormal UA levels can indirectly affect renal function by affecting 
serum Crea levels. Due to renal arteriosclerosis and insufficient blood 
circulation in the kidney, older adults individuals experience a decrease 
in glomerular filtration rate and renal tubular excretion, eventually 
resulting in reduced UA excretion and increased blood UA levels (37). 
Therefore, older adults individuals should be aware of HUA nephropathy.

4.3 Relationship between HUA and blood 
lipids

Dyslipidemia is one of the most common chronic diseases, and it 
increases the risk of HUA, cardiovascular disease, stroke, and T2DM (38, 
39). TGs are esterified from three molecules of fatty acids and one 
molecule of glycerol, and they are the most abundant lipids in the human 

FIGURE 5

(A) Comparison of SVM cross-validation parameters. (B) Performance indicators of the optimal SVM parameter model. (C) Number of optimal decision 
trees in the RF method. (D) Performance indicators of the optimal RF parameter model.
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FIGURE 6

(A) Optimal number of features. (B) Feature importance ranking. (C) ROC curve for SVM.

body. Multivariate logistic regression showed that TG (OR = 1.374, 95% 
CI: 1.071–1.763, p = 0.012) and LDL-C (OR = 1.839, 95% CI: 1.362–
2.482, p < 0.001) levels were risk factors for HUA in men. For every 
1 mmol/L increase in TGs and LDL-C, the risk increases by 37 and 84%, 
respectively. Fatty acid synthesis is related to de novo purine synthesis, 
and when the content of TGs increases, it promotes the production and 
utilization of free fatty acids, thereby accelerating the production of UA 
(40). In the present study, LDL-C and TGs ranked second and fourth in 
feature extraction, respectively, suggesting that they play a role in the 
prediction of HUA. Moreover, LDL-C and TG levels were significantly 
increased in the HUA group. Increased lipoprotein may lead to 
decreased SUA clearance. Dyslipidemia is common in HUA patients, 
and elevated levels of TG and TC are considered independent risk 
factors for HUA (29). Ye et al. (41) reported that higher UA levels are 
associated with an increased risk of developing LDL-C abnormalities in 
children, and they suggested that there is a 2.9% increased risk of high 

LDL-C with a 10 μmol/L increase in UA levels. As humans age, TG 
clearance decreases, plasma TG increases and continuous deposition of 
visceral adipose tissue increases, all of which indicate an elevated risk of 
metabolic disease (8). Therefore, men, especially middle-aged and older 
adults men, are considered a high-risk group for HUA and should pay 
special attention to daily dietary habits and regular physical examinations 
for early prevention and disease control.

4.4 Relationship between HUA and blood 
GLU

In the present study, the prevalence of HUA in the entire population 
was 16.20%, while the prevalence of HUA in individuals with T2DM 
was 17.24% (42). Guo and Xu (43) reported that insulin resistance is 
positively correlated with SUA in women (p < 0.05) and that insulin 
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sensitivity is lower in postmenopausal women than in premenopausal 
women. Insulin resistance can cause blood glucose metabolism 
disorders and increase liver fat synthesis, and it can eventually lead to 
purine metabolism disorders, thus raising blood UA levels. Liu et al. 
(44) demonstrated that the risk factor for HUA in women is high blood 
GLU (OR = 1.508; 95% CI: 1.084–2.099), and the risk increases by 50.8% 
for every 1 mmol increase in blood GLU. Consistently, the present study 
demonstrated that GLU (OR = 3.225; 95% CI: 2.047–5.081; 
AUC = 0.7088) was a risk factor for HUA in women, with good 
predictive value. Logistic regression analysis and ROC curves indicated 
that serum GLU was a common risk factor in the three age groups, 
namely, young, middle age, and older adults, and the cut-off value 
increased with age. In addition, GLU also performed well with the HUA 
model predictions. The prevalence of uric acidemia increases with age, 
and the risk point for women is 50 years. Because most women after the 
age of 50 enter menopause, estrogen secretion decreases, and its 
protective effect on the body gradually declines (45). Therefore, 
individuals, especially middle-aged women, should pay close attention 
to their blood sugar changes during physical examinations and take 
active measures to correct poor dietary habits to strictly control the 
intake of purines and foods with high levels of sugar or oil.

The present cross-sectional survey had certain limitations. For 
example, the causal relationship between the screened biochemical 
indexes and UA could not be confirmed, and the dynamic changes of 
biochemical indicators could not be captured. Although there were 
exclusion criteria for the included population, confounding factors, 
such as work style and education status, were not included in the 
scope of correction.

5 Conclusion

The present study analyzed the risk factors for HUA according to 
different genders and ages using easily available physical examination 
indicators to establish a simple prediction model for HUA. TP, LDL-C, 
and GLU levels are risk factors important for predicting HUA. The 
present study identified high-risk groups and screened out clinically 
meaningful indicators in different groups. However, the influencing 
factors of HUA are complex and diverse, and additional mechanistic 
studies are needed to verify these factors to promote the prevention 
and treatment of HUA.
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