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Ghrelin, a peptide primarily secreted in the stomach, acts via the growth hormone 
secretagogue receptor (GHSR). It regulates several physiological processes, 
such as feeding behavior, energy homeostasis, glucose and lipid metabolism, 
cardiovascular function, bone formation, stress response, and learning. GHSR 
exhibits significant expression within the central nervous system. However, 
numerous murine studies indicate that ghrelin is limited in its ability to enter the 
brain from the bloodstream and is primarily confined to specific regions, such 
as arcuate nucleus (ARC) and median eminence (ME). Nevertheless, the central 
ghrelin system plays an essential role in regulating feeding behavior. Furthermore, 
the role of vagal afferent fibers in regulating the functions of ghrelin remains 
a major topic of discussion among researchers. In recent times, numerous 
studies have elucidated the substantial therapeutic potential of ghrelin in most 
gastrointestinal (GI) diseases. This has led to the development of numerous 
pharmaceutical agents that target the ghrelin system, some of which are currently 
under examination in clinical trials. Furthermore, ghrelin is speculated to serve as 
a promising biomarker for GI tumors, which indicates its potential use in tumor 
grade and stage evaluation. This review presents a summary of recent findings in 
research conducted on both animals and humans, highlighting the therapeutic 
properties of ghrelin system in GI disorders.
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1 Introduction

Gastrointestinal (GI) disorders are extremely common worldwide and severely affect 
human health. They primarily comprise chronic gastritis, peptic ulcer, inflammatory bowel 
disease (IBD), functional disorders, and gastrointestinal tumors (1). At present, conventional 
treatment methods yield dissatisfactory results and lack adequate effectiveness in alleviating 
symptoms associated with these diseases. Hence, new GI disorder therapeutics are needed. 
The brain-gut hormones are widely known to influence gut motility. Various important gut 
hormones, including motilin, peptide YY (PYY), cholecystokinin (CCK), glucagon-like 
peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and ghrelin, have been 
identified. The use of pharmacological therapy targeting these hormones is considered a novel 
approach for treating GI disorders (2). Particularly, ghrelin has attracted considerable attention 
as a potential therapeutic target because of its diverse bioactivities.
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Ghrelin is a 28-amino-acid peptide gastrointestinal hormone that 
was discovered by Kojima et al. in 1999 (3). It has multiple physiological 
functions, including the regulation of growth hormone release, energy 
homeostasis, glucose and lipid metabolism, cardiovascular activity, and 
food intake and the stimulation of gastric acid production, motility, 
emptying, fertility, memory, stress response, reward-seeking behaviors, 
and learning (4–7). To date, ghrelin is the sole gastrointestinal hormone 
known to exhibit orexigenic function (8). The levels of ghrelin in 
circulation exhibit are widely acknowledged to exhibit a strong 
correlation with eating habits, characterized by an elevation in ghrelin 
levels before meals and during periods of fasting, followed by a decrease 
in response to food consumption (9, 10). In addition to its function in 
increasing food intake, ghrelin also facilitates carbohydrate oxidation, 
while suppressing fat utilization, thereby promoting a state of positive 
energy balance (11). The orexigenic and prokinetic abilities of ghrelin 
make it a promising candidate for therapeutic interventions in GI 
disorders. Clinical trials have been conducted to assess the efficacy of 
ghrelin as a novel therapeutic target in various disorders such as anorexia, 
cachexia, functional gastrointestinal disorders, gastroparesis, and 
gastrointestinal cancers (12–16). The prokinetic effects of ghrelin on the 
GI system in vivo have been observed using different methods of 
administration in models involving surgery, opioid-induced conditions, 
and diabetes (17). Several animal models have also been used to explore 
ghrelin’s impact on migratory motor complexes (MMCs), which 
indicates its ability to stimulate phase II of the MMC through the vagus 
nerve (18, 19). Additionally, ghrelin or ghrelin agonist treatment was 
shown to enhance delayed gastric emptying and reduce the antral 
motility of mice subjected to restraint stress (20).

In recent years, the development of synthetic ghrelin agonists as 
potential prokinetic agents for the management of GI motility 
disorders, including post-operative ileus and gastroparesis, has 
received increasing interest. Pirnik et al. conducted a study wherein 
they demonstrated that the subcutaneous treatment of a ghrelin 
receptor agonist, specifically Dpr-(N-octanyl)-3-ghrelin, aided the 
stimulation of food intake through the induction of Fos expression 
and activation of tyrosine hydroxylase neurons in the hypothalamic 
arcuate nucleus (17). Additionally, the intraperitoneal administration 
of the ghrelin-O-acyltransferase (GOAT) inhibitor led to a decrease 
in food consumption in Sprague–Dawley rats. This anorexigenic effect 
primarily resulted from a decline in the frequency of meals, even as 
the size of individual meals remained unchanged compared to that in 
the control group (21).

This review provides a comprehensive analysis of the association 
between ghrelin and several significant GI diseases, as reported in 
recent years. The findings indicate that ghrelin exerts a defensive 
impact in esophageal disorders, gastric disorders, GI functional 
disorders, and cancer cachexia. Moreover, ghrelin exhibits promising 
therapeutic potential and has aided the development of numerous 
drugs targeting the ghrelin system, some of which are currently 
undergoing clinical trials. However, the research community has been 
divided on the involvement of ghrelin in the pathogenesis of IBD. This 
necessitates further investigations to ascertain the precise impact of 
ghrelin on IBD. Furthermore, ghrelin has been considered promising 
as a biomarker for GI malignancies based on its use as an indicator for 
assessing tumor grade and stage. In summary, this review aims to a 
point of reference for future studies on the correlation between ghrelin 
system and GI diseases.

2 The GOAT/ghrelin/GHSR system

2.1 Synthesis and post-translational 
modification of ghrelin

Ghrelin was initially discovered by Kojima et al. It was known as 
the endogenous ligand for the growth hormone secretagogue receptor 
(GHSR). X/A-like cells in the stomach are the primary location for 
ghrelin synthesis (3). Subsequently, in 2000, Tschöp et al. demonstrated 
that ghrelin stimulates food consumption and influences body weight 
(22). Consequently, ghrelin was designated as the “hunger hormone.” 
Currently, ghrelin is recognized as a hormone associated with hunger. 
The ghrelin gene encodes a pre-proghrelin peptide composed of 117 
amino acids, which undergoes several processing steps to form a 
mature and active peptide (23). Initially, pre-proghrelin undergoes 
cleavage to generate proghrelin, which is then cleaved at the 
C-terminal by the enzyme prohormone convertase 1/3 (PC1/3) to 
yield fully mature ghrelin (24). In addition, the third serine residue of 
ghrelin can undergo acylation through the catalytic action of GOAT 
(Figure 1). To remove ambiguity in the terminology of the ghrelin 
system, Perelló et al. conducted a survey and recommended the use of 
specific designations. They suggested “ghrelin” for the octanoyl-
modified peptide, “desacyl-ghrelin” for the non-acylated version, 
“GHSR” for the ghrelin receptor and liver-expressed antimicrobial 
peptide 2 (LEAP2), and “LEAP2” for the newly identified endogenous 
GHSR antagonist/inverse agonist (25). As mentioned above, in this 
manuscript, we  used the current consensus nomenclature for the 
ghrelin system.

GOAT was first discovered in 2008 by two independent 
laboratories (26, 27). GOAT is a transmembrane protein belonging 
to the family of membrane-bound O-acyltransferases (MBOAT) 
(28). GOAT is found not only in the stomach, brain, and pancreas 
but also in the intestine, ovary, serum, placenta, muscle, heart, and 
adrenal glands. Its distribution in various tissues is of particular 
importance as all of these tissues collectively contribute to food 
consumption control and energy balance maintenance (29–31). 
However, the structure of GOAT is yet to be determined, and the 
active site and substrate-binding sites of the enzyme remain 
unidentified (32). Nevertheless, through selective permeabilization 
experiments, the membrane topologies of GOAT, hedgehog 
acyltransferase (HHAT), and various lipid- and small-molecule-
acylating MBOAT enzymes have been established (32–34). These 
investigations have shown that MBOAT enzymes exhibit intricate 
topological characteristics, including the presence of numerous 
transmembrane helices. For instance, GOAT contains 11 
transmembrane domains (32). Furthermore, these aforementioned 
studies have demonstrated that ghrelin serves as an exclusive 
substrate for GOAT in the human proteome (35, 36). Therefore, 
GOAT inhibitors are considered a potential agent for suppressing the 
effects of ghrelin, including the modulation of insulin release, 
reduction of food intake, and attenuation of adiposity (37). In recent 
times, numerous GOAT inhibitors have been formulated in both 
academic and industrial settings. Notably, GO-CoA-Tat, a 
bisubstrate analog inhibitor of GOAT, is the most robust agent 
supporting the potential of GOAT inhibition as a therapeutic 
strategy for regulating ghrelin-dependent physiological processes 
(32, 35, 36).
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Approximately 90% of the total ghrelin present in the bloodstream 
exists as desacyl-ghrelin, whereas less than 10% exists as ghrelin (23, 38). 
Initially, desacyl-ghrelin was regarded as an inactive precursor to acyl-
ghrelin. Currently, limited data are available on the biological effects of 
desacyl-ghrelin. However, increasing evidence suggests that desacyl-
ghrelin can independently or antagonistically modulate the metabolic 
activities of the ghrelin system, potentially through GHSR-independent 
pathways and the activation of an unidentified receptor (39). For instance, 
the induction of genome-wide alterations in gene expression related to 
glucose and lipid metabolism in adipose tissues, skeletal muscles, and 
hepatic tissues of GHSR−/− mice by desacyl-ghrelin serves as 
substantiation for the presence of an unidentified desacyl-ghrelin receptor 
(40). Simultaneously, desacyl-ghrelin inhibited neuronal activity induced 
by ghrelin in the brainstem and hindered ghrelin/GHSR-mediated 
augmentation in food intake (41). Furthermore, ghrelin was previously 
shown to stimulate adult hippocampal neurogenesis and improve pattern 
separation memory (42). Jeffrey et al. used rodent models in vitro and in 
vivo, besides analyzing human plasma, to demonstrate that desacyl-
ghrelin impairs neurogenesis and that the ghrelin: desacyl-ghrelin ratio 
in circulation is diminished in Parkinson’s dementia (43).

GHSR, a G-protein-coupled receptor, relays signals using a 
Gq/11 alpha-subunit, which leads to the activation of phospholipase 
C and the synthesis of inositol triphosphate (IP3), eventually 
leading to the release of Ca2+ from the endoplasmic reticulum (44). 
GHSR is predominantly expressed in the pituitary gland and 

hypothalamus and may be present in different tissues and organs, 
such as the thyroid gland, pancreas, spleen, myocardium, and 
adrenal gland (45). According to Ge et al., LEAP2, an endogenous 
antagonist of GHSR found in the liver and small intestine, can 
suppress the stimulatory effects of ghrelin on GHSR (46). Inhibiting 
ghrelin receptor activation by LEAP2 suppresses the major effects 
of ghrelin, including food consumption, growth hormone release, 
and glucose levels during fasting (46). Subsequently, M’Kadmi et al. 
discovered that both LEAP2 and its N-terminal region act as inverse 
agonists of GHSR and can compete against ghrelin-induced inositol 
phosphate synthesis and calcium mobilization (47). GHSR is 
currently known to exhibit both ligand-dependent and 
-independent functions. Both ghrelin and LEAP2 bind to GHSR in 
a ligand-dependent manner. Furthermore, GHSR exhibits diverse 
ligand-independent functions through its constitutive activity or 
interaction with other G protein-coupled receptors, such as 
dopamine receptors (D1R and D2R), orexin receptor (OX1R), 
serotonin receptor (5-HT2C), melanocortin-3 receptor (MC3), 
somatostatin receptor (SST5), and oxytocin receptor (44, 48). 
Moreover, evidence from an increasing number of research studies 
suggests that, in addition to its effects on neuroendocrine and 
metabolic functions, GHSR contributes to the regulation of the 
mesocorticolimbic pathway and influences diverse reward-related 
behaviors in response to various stimuli through both ligand-
dependent and -independent mechanisms (49).

FIGURE 1

Post-translational processing of ghrelin. Initially, preproghrelin, which is composed of 117 amino acids, undergoes cleavage in the endoplasmic 
reticulum, resulting in the formation of proghrelin. Proghrelin undergoes acylation through the action of the enzyme known as ghrelin 
O-acyltransferase (GOAT). Following this, proghrelin peptides undergo additional conversion by the prohormone convertase, PC1/3, leading to the 
production of mature variations known as ghrelin and desacyl-ghrelin. These mature forms are then transported to the secretory vesicles located in 
the Golgi apparatus. After being released into the bloodstream, ghrelin attaches to the growth hormone secretagogue receptor (GHSR), initiating 
downstream signaling pathways. Conversely, DAG desacyl-ghrelin can also attach to its specific receptor. SP, signal peptide; GOAT, enzyme ghrelin 
O-acyltransferase; GHSR, growth hormone secretagogue receptor. Created by Figdraw.com.
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2.2 Effects of ghrelin on gastrointestinal 
disorders

Ghrelin is primarily produced in the stomach, although there is 
ongoing debate regarding its synthesis within the brain (50–52). 
Therefore, it is imperative to determine whether peripheral ghrelin 
can activate central targets and the potential mechanisms involved. 
Findings from recent hypotheses suggest that ghrelin may cross the 
blood–brain barrier (BBB), diffuse through fenestrated capillaries 
located in circumventricular organs (CVOs), or traverse the blood-
cerebrospinal fluid (CSF) barrier (53). Banks et  al. conducted 
experiments to assess the ability of three radiolabeled ghrelin peptides, 
derived from human ghrelin, mouse ghrelin, and mouse desacyl-
ghrelin, to traverse BBB bidirectionally in mice (54). Mouse ghrelin 
exhibited saturable transport exclusively from the brain into the 
bloodstream, but not in the reverse direction, whereas mouse desacyl-
ghrelin demonstrated non-saturable diffusion from the blood into the 
brain, but not vice versa. Interestingly, human ghrelin, which has two 
amino acids different from mouse ghrelin, can traverse the mouse 
BBB bidirectionally using saturable transport mechanisms (54). CVOs 
are regions of the brain characterized by high vascularity and a 
compromised BBB, exemplified by structures like median eminence 
(ME) and area postrema (AP). Perelló et al. observed the effects of 
peripheral ghrelin on specific brain regions using fluorescent ghrelin 
tracers. They detected a notable fluorescent signal exclusively in the 
arcuate nucleus (ARC) and ME in mice that received peripheral 
administration of fluorescein-ghrelin at a low dose (55). However, in 
mice that received peripheral administration of a high dose of 
fluorescein-ghrelin, the fluorescein signal was observed not only in 
the ARC and ME but also in the AP and paraventricular nucleus 
(PVN), suggesting that circulating ghrelin can traverse fenestrated 
capillaries and reach certain CVOs (55). In addition, subsequent 
investigation illustrated that plasma fluorescent-ghrelin exhibits 
selective internalization by cells forming the CSF barrier, including 
ependymal cells of the choroid plexus and β-type tanycytes in mice. 
This internalization enables the transport of ghrelin to the CSF, 
promoting diffusion to the periventricular hypothalamic regions and 
subsequently mediating diverse effects (56).

However, despite current evidence suggesting limited peripheral-to-
central nervous system (CNS) passage of ghrelin, the central ghrelin 
system plays a crucial role in the regulation of feeding behaviors. 
Accordingly, significant GHSR expression is observed in the brain areas 
that regulate food intake, such as the hypothalamus, brainstem, 
hippocampus, amygdala, and ventral tegmental area (VTA) (57, 58). 
Furthermore, microinjection of ghrelin into regions of the brain 
abundant in GHSRs has been shown to motivate behaviors aimed at 
acquiring and consuming food (55). In the ARC, GHSR is expressed 
primarily in neuropeptide Y/agouti-related peptide (NPY/AgRP) 
neurons and proopiomelanocortin/cocaine and amphetamine-regulated 
transcript (POMC/CART) neurons, but to a lesser degree. (59–61). 
NPY/AgRP neurons play a role in appetite enhancement. The 
stimulation of POMC/CART neurons promotes satiety (62). 
Interestingly, ghrelin stimulates NPY and AGRP orexigenic peptide 
transcription, but not that of the anorectic peptide POMC (63). In 
addition, mice with ablated ARC do not exhibit increased appetite when 
subcutaneously administered ghrelin, whereas they exhibit orexigenic 
traits when ghrelin is administered centrally (55). Consequently, the 
ARC is determined to be a critical mediator of the acute orexigenic 

response to ghrelin administration. Moreover, the AP, which is situated 
in the caudal brainstem and is part of the dorsal vagal complex (DVC), 
which also includes the nucleus of the solitary tract (NTS) and the dorsal 
motor nucleus of the vagus (DMV), acts as a critical nucleus where 
peripheral ghrelin transmits orexigenic messages. Previous research has 
demonstrated that rats with AP lesions do not consume more food when 
they receive chronic peripheral ghrelin injections, in contrast to the 
observations in control groups (64). Also, Cabra et al. demonstrated that 
AP-ablated mice exhibit slower gastric emptying induced by circulating 
ghrelin (65). Meanwhile, ghrelin promotes food intake through the 
ventral tegmental area (VTA), which contains dopaminergic neurons 
implicated in reward-based eating behaviors (66). In contrast to sham-
operated rats, rats with VTA lesion maintained regular 
intracerebroventricular ghrelin-driven feeding; however, they consumed 
and explored rewarding food less frequently (67). Similarly, intra-VTA 
infusions of ghrelin have been shown to stimulate food intake and 
increase the desire to eat palatable foods (68). Conversely, rats subjected 
to the intra-VTA administration of [Lys-3]-GHRP-6, an antagonist of 
the ghrelin receptor, exhibited selectively diminished feeding and 
decreased the motivation for obtaining palatable food compared to 
control and ghrelin-treated rats (68). Nonetheless, it is currently 
unknown whether peripheric ghrelin can reach the VTA directly.

The vagus nerve facilitates bidirectional connection between the 
gut and brain. Specifically, vagal afferent neurons convey signals from 
the gut to the brain, whereas vagal efferent neurons transmit signals 
from the brain to the gut. However, the involvement of vagal afferent 
nerves in mediating the effects of ghrelin remains a contentious topic 
(69) (Figure 2). Research shows that ghrelin binds to GHSR in vagal 
afferent neurons within the GI tract. These neurons relay mechanical, 
osmosensory, and chemosensory signals to the NTS located in the 
brainstem. The NTS is an area of the brain associated with visceral 
reflexes and establishes connections with the hypothalamus to regulate 
feeding (70, 71). This neural communication eventually excites the 
preganglionic motor neurons of the DMV, which subsequently activate 
postganglionic cholinergic neurons, leading to enhanced GI motility 
(70, 71). Notably, surgically removing and selectively destroying the 
vagal afferent nerves can completely suppress the orexigenic effects of 
peripheral ghrelin, while vagotomized rodents can retain their 
responsiveness to centrally injected ghrelin (72, 73). Conversely, it has 
been suggested that peripheral ghrelin does not need vagal afferent 
nerves to stimulate food intake (74). Arnold et  al. used the 
subdiaphragmatic vagal deafferentation method to demonstrate that 
vagotomized rats consume more food than sham-lesioned rats after 
receiving peripheral ghrelin injections (74). This finding indicates that 
the activation of neural orexigenic pathways in response to peripheral 
ghrelin is not strictly dependent on vagal afferent nerves (74). 
Consequently, the precise role played by the vagus nerve in ghrelin’s 
orexigenic effects warrants further investigation to elucidate this role.

3 Ghrelin system and esophageal 
disorders

The impact of ghrelin treatment on the recovery process in 
esophageal injury remains uncertain. Previous clinical and 
experimental investigations have shown the levels of ghrelin in 
Barrett’s esophagus and gastroesophageal reflux disease (GERD), 
although the findings were inconsistent (75–77). Thomas et  al. 

https://doi.org/10.3389/fnut.2024.1422431
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ma et al. 10.3389/fnut.2024.1422431

Frontiers in Nutrition 05 frontiersin.org

conducted a case–control study investigating the correlation between 
the incidence of Barrett’s esophagus and serum ghrelin levels (78) 
(Table 1). Their findings indicated that an elevated ghrelin level is 
linked to a greater likelihood of Barrett’s esophagus than that in the 
control group. Meanwhile, ghrelin concentration did not appear to 
be correlated to the frequency of GERD symptoms. Additionally, a 
separate clinical study revealed a favorable connection between serum 
ghrelin levels and the incidence of Barrett’s esophagus, but also 
showed an inverse association between serum ghrelin levels and 
GERD (75). Conversely, GERD rats exhibit elevated levels of plasma 
ghrelin, and ghrelin signaling in these rats may be inhibited owing to 
the reduced synthesis of melanin-concentrating hormone (MCH) and 
orexin in the hypothalamus (94). Findings from another animal study 
showed that impaired ghrelin signaling may be  implicated in GI 
dysmotility in GERD rats. Furthermore, the administration of 
rikkunshito promoted a diminished response to ghrelin, thereby 
improving gastrointestinal motility. Consequently, enhancing ghrelin 
signaling may be a novel method for treating GERD.

In addition, individuals with low initial serum ghrelin levels are 
more susceptible to the onset of esophagogastric junctional and gastric 
adenocarcinomas, indicating the potential involvement of ghrelin in 
the development of these cancers (79). Nevertheless, the introduction 
of ghrelin does not affect the apoptosis of the OE-19 Barrett 
adenocarcinoma cell line when tested in vitro. Conversely, treatment 
with ghrelin appears to hinder the progression of Barrett’s 
carcinogenesis by suppressing the expression of proinflammatory 
factors (95). Based on findings reported to date, additional research is 
necessary to clarify the underlying mechanism.

4 Ghrelin system and gastric disorders

The stimulatory effects of ghrelin on gastric motility and 
gastric emptying have been widely acknowledged (96). Research 
has demonstrated that the peripheral application of ghrelin leads 
to an increase in gastric acid secretion in a dose-dependent 

FIGURE 2

Effects of ghrelin on gastrointestinal disorders. Ghrelin binds the growth hormone secretagogue-receptor1a (GHSR) in vagal afferent nerve fibers. This 
binding leads to the transmission of signals to the nucleus of the solitary tract (NTS). Neuropeptide Y (NPY) neurons projecting onto the arcuate 
nucleus (ARC) of the hypothalamus activate the signal from the NTS. Eventually, this message is relayed to the dorsal motor nucleus of the vagus 
(DMV) via vagal efferent fibers, resulting in increased gastric contractions, acid production, and gastrointestinal motility. Furthermore, it affects the 
paraventricular nucleus (PVN) and ARC of the hypothalamus by traversing the blood–brain barrier, thereby augmenting the release of growth hormone 
and stimulating appetite. Additionally, it modulates the activity of neurons in the area postrema, leading to a reduction in nausea. NTS, nucleus tractus 
solitaries; ARC, arcuate nucleus; DMV, dorsal motor nucleus of the vagus; GHSR; growth hormone secretagogue receptor; IBD, inflammatory bowel 
disease. Created by Figdraw.com.
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manner, which is mediated by the activity of the vagal nerve and 
the release of histamine (97). Conversely, the central 
administration of ghrelin elicits an inhibitory response, 
suppressing gastric acid release (98). The gastroprotective effects 
of ghrelin have been demonstrated in various experimental models 
of gastric ulcers. Studies have shown that both central and 
peripheral administration of ghrelin effectively prevents the 
formation of gastric ulcers caused by ethanol in rats (99) (Table 2). 
Additionally, pretreatment with ghrelin was shown to inhibit the 
formation of stomach ulcers induced by immersion in water and 
restraining stress, gastric ischemia/reperfusion, intragastric 
concentrated hydrochloric acid administration, or alendronate 
treatment (100, 107).

Numerous studies have investigated the concentrations of ghrelin 
in the bloodstream and tissues of individuals infected with 
Helicobacter pylori (H. pylori). Circulating ghrelin and GOAT levels 
are substantially lowered in H. pylori-infected individuals compared 
to that in non-infected individuals (80, 108). Moreover, the levels of 
circulating ghrelin were found to decrease in correlation with the 
degree of H. pylori-induced gastritis and the severity of chronic 
atrophic gastritis (81, 109, 110). Furthermore, ghrelin levels were 
found to be significantly lowered in individuals with autoimmune 
gastritis who exhibited delayed gastric emptying and impaired 
autonomic function. This indicates that ghrelin may have an important 
function in the delayed gastric emptying observed in these individuals 
(82). Nevertheless, differences in GHSR mRNA expression among the 
different groups were not significant, whereas GHS-R1b expression 
was considerably higher in patients with H. pylori infection and 
gastritis. Bahar et al. proposed that intermediaries of the ghrelin axis, 
such as GHS-R1b, could potentially serve as a clinical target for gastric 
disorders (111).

Additionally, previous research has demonstrated that ghrelin 
can enhance blood circulation in the digestive system in a sepsis 
model and potentially prevent the apoptosis of stomach mucosa 
cells by regulating apoptosis-related elements in gastric tissues, 
including B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), 
and caspase-3 proteins (112). Furthermore, Slomiany et  al. 
indicated that the modulatory effects of ghrelin on gastric mucosal 
reactions to H. pylori lipopolysaccharide (LPS) rely on stimulation 
by phosphatidylinositol 3-kinase (PI3K), which is contingent on 
the PLC/PKC signaling pathway (113). Moreover, ghrelin exhibits 
a counteractive effect on the proinflammatory outcomes induced 
by H. pylori by interfering with the activation of AP-1 through the 
p38/ATF-2 pathway while concurrently enhancing Src/
Akt-dependent cNOS phosphorylation (114). Collectively, ghrelin 
holds potential as a novel therapeutic target for managing 
gastric disorders.

5 Ghrelin system and inflammatory 
bowel disease

IBD is a chronic inflammatory disease affecting the digestive 
system. There are two types of IBD: ulcerative colitis (UC) and 
Crohn’s disease (CD) (115). The association between ghrelin and 
IBD remains ambiguous. Numerous investigations have 
demonstrated the favorable impact of ghrelin on individuals 
afflicted with IBD. In in vitro and in vivo experiments, ghrelin 

could protect against TNF-α-induced apoptosis caused by dextran 
sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid 
(TNBS) in Caco-2 cells, which are intestinal epithelial cells, and 
mouse colitis models. This protective effect was mediated via the 
regulation of the unfolded protein response and modulation of 
caspase-3, Bax, and Bcl-2 expression. However, notably, this 
protective effect could be disrupted by the antagonist of GHSR, 
[D-lys3]-GHRP-6 (116). In the present study, ghrelin treatment in 
a comparable animal model, either at the onset of the illness or a 
few days after colitis was established, induced a mitigating effect 
on the disease’s clinical and histopathologic severity. The 
therapeutic outcome was found to be linked with the inhibition of 
both inflammatory and Th1-induced autoimmune responses, along 
with an increase in IL-10 levels (101). Furthermore, previous 
studies have indicated that the administration of ghrelin can 
improve the characteristics of newborn rats suffering from mild 
necrotizing enterocolitis and expedite healing in rats with acetic 
acid-induced colitis (102, 103). Additionally, Yeon et  al. 
demonstrated that GHSR KO mice exhibit heightened susceptibility 
to experimental colitis, characterized by elevated levels of 
proinflammatory cytokines and diminished expression of gut tight 
junction proteins (117).

Nevertheless, certain studies suggest that ghrelin may exert 
detrimental effects on IBD. Previous research has demonstrated 
that individuals with IBD, particularly individuals with active 
inflammation in UC, exhibit increased circulating levels of ghrelin 
(83, 104). Additionally, the administration of exogenous ghrelin 
has been found to worsen experimental colitis (83, 104). Moreover, 
the levels of circulating ghrelin in patients with UC and CD are 
associated with the levels of TNF-α, C-reactive protein, and 
fibrinogen and the erythrocyte sedimentation rate, while exhibiting 
a negative correlation with nutritional status parameters (118). In 
addition, the mRNA levels of ghrelin and its receptor were elevated 
in mice with TNBS-induced colitis, and ghrelin was found to 
enhance IL-8 promoter activity and stimulate the NF-κB/IκB 
pathway in a human colonic epithelial cell line (119). According to 
the aforementioned findings, exogenous ghrelin treatment in 
animal models has facilitated, in certain studies, an improvement 
in the disease course. However, this effect has not been observed 
consistently across studies. Notably, ghrelin levels are elevated in 
IBD. However, the clinical significance of the increase in ghrelin 
expression remains unclear. Some researchers speculate that the 
upregulation of ghrelin represents a compensatory mechanism 
aimed at mitigating tissue damage subsequent to intestinal 
inflammation, suggesting that such damage may induce the 
secretion of endogenous ghrelin (120). Nonetheless, the therapeutic 
efficacy of this elevated endogenous ghrelin concentration remains 
to be elucidated through further investigations on IBD.

6 Ghrelin system and functional 
gastrointestinal disorders

6.1 Gastroparesis

Gastroparesis is distinguished by the delayed emptying of the 
stomach without any mechanical obstruction (121). Diabetic, 
postsurgical, and idiopathic gastroparesis are the primary forms of the 
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TABLE 1 Circulating ghrelin levels in gastrointestinal disorders patients.

Study groups Study methods Level of Ghrelin
Correlations with 
clinical parameters

Reference

N = 320 BE; N = 316 GERD; 

N = 317 control
a case–control study ↑ BE vs. GERD and control

higher levels correlation with an 

increased risk of BE
(78)

N = 261 GNCA; N = 98 EGJA; 

N = 441 control
a case–control study

↓ GNCA vs. control; ↓ EGJA vs. 

control

lower levels correlation with an 

increased risk of GNCA and EGJA
(79)

N = 16 H. pylori positive; N = 14 

H. pylori negative
a case–control study

↓ H. pylori positive vs. H. pylori 

negative

lower levels correlation with an 

increased risk of H. pylori infection
(80)

N = 82 H. pylori positive; N= 70 

H. pylori negative
a cross-sectional study

↓ H. pylori positive vs. H. pylori 

negative

lower levels correlation with 

persistent H. pylori infection and 

the severity of gastric pathology of 

the corpus in dyspeptic patients

(81)

N = 22 AIG with delayed GE; 

N = 19 AIG with normal GE
a case–control study

↓ AIG with delayed GE vs. AIG 

with normal GE

lower levels correlation with an 

increased risk of delayed GE in AIG
(82)

N = 53 UC (27 active, 26 

inactive); N = 43 Crohn’s disease; 

(15 active, 28 inactive); N = 40 

control

a case–control study
↑ active IBD vs. inactive IBD and 

control

ghrelin secretion increases in active 

IBD
(83)

N = 42 FD; N = 14 control a case–control study ↓ FD vs. control lower levels correlation with FD (84)

N = 36 EPS; N = 76 PDS; N = 39 

NERD; N = 20 control
a case–control study ↓ PDS and NERD vs. control

lower levels correlation with the 

pathophysiology of PDS through its 

effect on GE

(85)

N = 16 IBS-D; N = 16 IBS-C; 

N = 16 control
a case–control study ↑ IBS-D vs. IBS-C and control

ghrelin may play a vital role in IBS 

pathophysiology
(86)

N = 220 gastroesophageal 

cancers; N = 125 control
a case–control study

↓ gastroesophageal cancers vs. 

control

serum ghrelin is inversely 

associated with gastric cancer; lower 

serum ghrelin was also associated 

with ESCC

(87)

N = 82 OSCC; N = 82 control a case–control study ↓ OSCC vs. control
lower levels correlation with an 

increased risk of OSCC
(88)

N = 298 ESCC; N = 518 GCA; 

N = 258 GNCA; N = 770 control
a prospective cohort study

↓ GNCA and GCA vs. control;  

↑ ESCC vs. control

lower levels correlation with an 

increased risk of GNCA and GCA; 

but correlation with a reduced risk 

of GCA

(89)

N = 284 colon cancers; N = 239 

rectal cancers;

N = 523 control

a case–control study
↓ colon and rectal cancers vs. 

control

lower levels correlation with an 

increased risk of colon and rectal 

cancers within 10 years of blood 

draw; but with a decreased risk of 

colorectal cancer more than 20 years 

after blood draw

(90)

N = 21 cancer cachexia; N = 24 

cancer but without cachexia; 

N = 23 control

a case–control study
↑ cancer cachexia and cancer but 

without cachexia vs. control

higher levels correlation with an 

increased risk of cancer cachexia
(91)

N = 43 colorectal adenomas with 

high-grade dysplasia; N = 49 

colorectal adenomas with low-

grade dysplasia

a case–control study
↑ high-grade adenoma vs. low-

grade adenomas

higher levels correlation with an 

increased risk of dysplasia in 

colorectal adenomas

(92)

N = 95 colon cancer; N = 39 

control
a case–control study ↑ colon cancer vs. control

higher levels correlation with an 

increased risk of colon cancer
(93)

↓↑, decrease/increase level; BE, Barrett’s esophagus; GERD, gastroesophageal reflux disease; GNCA, gastric noncardia adenocarcinoma; EGJA, esophagogastric junctional adenocarcinoma; 
AIG, autoimmune gastritis; GE, gastric emptying; UC, ulcerative colitis; IBD, inflammatory bowel disease; FD, functional dyspepsia; EPS, epigastric pain syndrome; PDS, postprandial distress 
syndrome; NERD, non-erosive reflux disease; IBS-D, irritable bowel syndrome diarrhea; IBS-C, irritable bowel syndrome; ESCC, esophageal squamous cell carcinoma; OSCC, oesophageal 
squamous cell carcinoma; GCA, gastric cardia adenocarcinoma; EGJA, esophagogastric junctional adenocarcinoma.
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TABLE 2 Effects of the ghrlein on gastrointestinal disorders in animal experiments.

Agents Agent doses Model of the study Effects Reference

Exogenous ghrelin, GHSR antagonist 

[D-Lys3]-GHRP-6, and rikkunshito

Single i.p. injection (1 or 3 nmol/

mouse); [D-Lys3]-GHRP-6 

(0.2 μmol/mouse); orally 

rikkunshito(100, 250 mg/kg)

Male ICR mice exposed to 

acute restraint stress

May be useful in the 

treatment of decreased 

gastric function caused by 

stress

(20)

Exogenous ghrelin

Intracerebroventricularly (4–

4,000 ng/rat); s.c. injection (80 μg/

kg)

The ethanol-induced gastric 

ulcers rat model

Dose-dependently reduced 

ethanol-induced gastric 

ulcers

(99)

Exogenous ghrelin Single i.p. injection (40 g/kg)
A HCl-induced gastric 

damage rat model

Reduced (43%) the gastric 

lesions caused by 

concentrated acid

(100)

Exogenous ghrelin
i.p. injection (0.05–2.0 nmol/

mouse) for 3 days
A colitis mouse model

Ameliorated the severity of 

colitis; abrogated body 

weight loss, diarrhea, 

inflammation; and increaed 

survival

(101)

Exogenous ghrelin
i.p. injection (0.05 mg/kg) for 

5 days

A mild necrotizing 

enterocolitis newborn 

Sprague–Dawley rat model

Recovered the mild NEC-

induced changes to the 

histology, HF-HRV, and 

myenteric phenotype in a 

vagally dependent manner

(102)

Exogenous ghrelin
i.p. twice a day (8 nmol/kg) for 

7 days

An acetic acid-induced 

colitis rat model

Accelerated the healing of 

colitis
(103)

Exogenous ghrelin
i.p. injection (100 nmol/kg) twice 

daily for 10 days

DSS-induced colitis mice 

model
Aggravates colitis (104)

Rikkunshito, a traditional Japanese 

Kampo medicine that potentiates 

ghrelin signaling

Oral gavage Rikkunshito twice 

daily at 1 g/kg/day for 7 days

A cancer cachexia rat model 

induced by human gastric 

cancer-derived 85As2 cells

Rikkunshito ameliorated 

cancer anorexia-cachexia 

symptoms may involve 

alleviation of ghrelin 

resistance via enhancement 

of ghrelin signaling

(153)

HM01, ghrelin receptor agonist
Oral gavage (10 mg/kg) for 14 

consecutive days

A Colon-26 (C26) tumor-

bearing mice model

Increased food intake, body 

weight, fat mass, muscle 

mass, and bone mineral 

density while it decreased 

energy expenditure

(105) 

Exogenous ghrelin
i.p. injection (3 nmol/day) for 

7 days

AOM/DSS-induced 

inflammation-associated 

colon carcinogenesis model

Suppressed inflammation-

associated colorectal 

carcinogenesis

(106)

i.p., intraperitoneal; GHSR, growth hormone secretagogue receptor; AOM, azoxymethane; DSS, dextran sodium sulfate; HF-HRV, high frequency spectrum of heart rate variability; s.c., 
subcutaneous injection.

condition. Ghrelin strengthens gastric emptying and stimulates 
contractile activity in the GI tract (122). In a recent study, ghrelin was 
found to induce the depolarization of pacemaker potential in the 
interstitial cells of Cajal in a dose-dependent manner within the small 
intestine of mice. GHRP-6, a ghrelin receptor antagonist, completely 
disrupted this effect. These findings suggest that ghrelin likely 
modulates interstitial cells of Cajal by interacting with their receptor, 
leading to alterations in electrical signals across the digestive system 
and subsequently influencing gastrointestinal motility (123). The 
prokinetic effects of ghrelin should be  taken into account when 
considering pharmacologic interventions for gastroparesis, as they can 
enhance gastric emptying and alleviate symptoms. However, the 

limited half-life and vulnerability in the bloodstream impair the 
efficacy of ghrelin. Consequently, the development of small molecule 
ghrelin receptor agonists with extended receptor activity emerges as a 
promising therapeutic approach for addressing gastrointestinal 
motility disorders.

In recent years, various ghrelin receptor agonistshave been 
tested in clinical trials on patients with diabetic gastroparesis. These 
agonists have shown the ability to enhance gastric emptying and 
alleviate symptoms associated with gastroparesis (124). Among 
these agonists, relamorelin has been extensively investigated for its 
potential in the treatment of gastroparesis, whereas others were not 
tested further owing to their limited effectiveness (125, 126). 
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Relamorelin, an injectable agonist of the ghrelin receptor, exhibits 
a potency approximately six times greater than that of endogenous 
ghrelin, along with enhanced stability and an extended plasma 
circulating half-life in comparison to ghrelin. A prior investigation 
demonstrated that relamorelin was approximately 100 times more 
potent than ghrelin and effectively reversed delayed gastric 
emptying in a morphine-induced model of gastroparesis in 
Sprague–Dawley rats. Furthermore, the oral administration of 
relamorelin notably improved gastrointestinal transit in the small 
intestine (127). In addition, a recently published meta-analysis 
indicates that, compared to a placebo, relamorelin exhibits both 
effectiveness and tolerability in the treatment of diabetic 
gastroparesis (128).

Notably, in a double-blind phase 2 trial with 204 individuals 
suffering from diabetic gastroparesis, the primary endpoint was the 
gastric emptying half-time. Relamorelin administered twice daily 
enhanced gastric emptying and improved the vomiting severity score 
compared to that in the placebo, but it did not significantly improve 
other GI manifestations such as belly ache and satiety (129). 
Meanwhile, another study, which is the largest conducted thus far, also 
had a phase 2 double-blinded design and included 393 individuals 
with diabetes who were experiencing symptoms of gastroparesis 
ranging from moderate to severe (130). This investigation aimed to 
examine the impact of a 12-week treatment regimen using relamorelin, 
with the frequency of vomiting serving as the primary outcome 
measure. Despite the absence of improvement in the primary 
endpoint, noteworthy findings were reported, including a significant 
reduction in manifestations such as bloating, nausea, postprandial 
fullness, and bellyache. Additionally, all dosage groups treated with 
relamorelin exhibited enhanced gastric emptying compared to the 
placebo (130). These findings collectively suggest that relamorelin is 
effective in managing diabetic gastroparesis in individuals who have 
symptoms of active vomiting, as demonstrated in phase 2 trials, and 
the compound is currently being assessed in phase 3 trials (129, 130).

6.2 Functional dyspepsia

FD is a prevalent digestive disorder that presents with persistent 
epigastric discomfort, including pain, burning, and postprandial 
fullness, without any identifiable organic cause (131). However, 
despite numerous proposed pathogenic mechanisms, the exact 
etiology of FD remains elusive, and its pharmacological treatment is 
inadequately understood. The role of ghrelin in regulating gastric 
motility has been investigated and linked to the development of FD.

For example, the intravenous administration of ghrelin twice 
daily for half a month led to a notable enhancement in appetite and 
a potential increase in the daily food intake among patients with FD 
experiencing appetite loss (132). Furthermore, in a human study, 
rikkunshito treatment notably increased ghrelin and the ghrelin/
desacyl-ghrelin ratio, whereas the levels of desacyl-ghrelin exhibited 
a declining pattern (133). Meanwhile, Arai et al. observed a notable 
amelioration of GI symptoms in people diagnosed with FD in 
response to treatment with the traditional Japanese herbal medicine 
Rikkunshito. This treatment was found to elevate plasma ghrelin 
levels (134). Moreover, Takamori et  al. reported a significant 
reduction in the levels of fasting des-acyl and total ghrelin in 

patients with FD compared with that in controls, although the 
fasting and postprandial ghrelin levels in the two groups did not 
show statistically significant differences (84, 135). Besides, a recent 
study has demonstrated a notable decrease in plasma ghrelin levels 
among individuals diagnosed with FD in comparison to that in 
healthy volunteers (85). These findings substantiate the potential 
efficacy of ghrelin as a therapeutic intervention for FD. Nevertheless, 
the enduring consequences and adverse reactions associated with 
peptide hormone therapies remain unclear. Consequently, 
additional investigations elucidating the underlying mechanisms are 
imperative to confirm the effectiveness of ghrelin as a treatment 
target in FD.

6.3 Irritable bowel syndrome

IBS is a functional gastrointestinal disorder that presents with 
symptoms such as bloating, altered bowel habits, pain, and discomfort, 
without any identifiable physical cause (136). Distinct subtypes of IBS 
are categorized as diarrhea-predominant IBS (IBS-D), constipation-
predominant IBS (IBS-C), and alternating-pattern IBS (137). A 
comprehensive understanding of ghrelin’s function in IBS 
pathophysiology is warranted.

Two recent retrospective studies have reported a notable rise in 
plasma ghrelin levels in individuals with IBS-D and heightened 
staining intensity in the antral mucosal gland in individuals with 
IBS-C compared to that in control groups (86, 138). In addition, two 
recent studies have indicated a reduction in the GT genotype and the 
T allele of the GHRL rs696217 polymorphism in patients with IBS 
compared to that in healthy individuals. This suggests that ghrelin’s 
polymorphisms are closely associated with vulnerability to IBS 
development and may contribute to the pathogenesis of IBS (139, 
140). The phenomenon of a disrupted intestinal barrier function, 
commonly referred to as “leaky gut,” has been observed in various 
human disorders, such as IBS, IBD, and Alzheimer’s disease (141). 
Ishioh et  al., have found that ghrelin exerts a central effect in 
ameliorating leaky gut by modulating adenosine A2B receptors, 
subsequently activating the vagal efferent pathway (142). Moreover, in 
a Wistar rat model of stress-induced IBS, the subcutaneous injection 
of ghrelin twice weekly demonstrated an antinociceptive effect by 
regulating TRPV1/opioid systems. However, the effect was partially 
inhibited by the ghrelin antagonist [D-Lys3]-GHRP-6 (143). 
Collectively, altered ghrelin could subsequently influence gastric 
motility and potentially contribute to IBS pathophysiology. 
Consequently, ghrelin may hold promise as a novel treatment for IBS.

7 Ghrelin system and gastrointestinal 
cancer

Gastrointestinal cancers are a significant contributor to global 
morbidity and mortality rates. The current literature presents 
inconclusive and contentious findings on the association between 
ghrelin and gastrointestinal cancer. Given that ghrelin synthesis 
predominantly occurs within the GI tract, its production may 
potentially be influenced by the onset and progression of cancer in 
this region.
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7.1 Ghrelin system and the risk of 
gastrointestinal cancers

A large body of clinical evidence establishes a correlation between 
the serum concentration of ghrelin and the occurrence of GI cancers. 
Murphy et  al. documented a negative association between serum 
ghrelin levels and the susceptibility to esophageal malignancies, 
particularly esophageal squamous cell carcinoma. Notably, individuals 
with lowered ghrelin levels exhibit a seven-fold greater likelihood of 
developing this specific histological subtype of GI cancer (87, 88). The 
association between ghrelin levels and disease susceptibility has been 
confirmed in a more extensive cohort study (89). While ghrelin alone 
may not possess sufficient utility as a biomarker for assessing the 
likelihood of gastric malignancies, its combination with other early 
detection biomarkers like pepsinogen I and pepsinogen I/II ratio can 
help enhance diagnostic accuracy (89).

However, contrary to the findings of Murphy et  al., a notable 
positive association between reduced serum ghrelin level and the 
likelihood of colorectal cancer was observed in a comprehensive 
prospective case–control study conducted over a decade (90). In 
addition, an investigation on 295 individuals diagnosed with gastric 
cancer, in which data from four gene expression microarrays were used, 
led to the identification of 12 genes that were upregulated and 59 genes 
that were downregulated, with elevated GHRL expression being linked 
to unfavorable overall survival outcomes in patients with gastric cancer 
(144). Moreover, a comprehensive investigation was conducted to assess 
the levels of key elements of the ghrelin/GOAT/GHSR system in 
gastroenteropancreatic neuroendocrine tumors. The findings revealed 
a significant upregulation of GOAT in tumor specimens in comparison 
to adjacent non-tumor and normal tissues, suggesting the potential 
utility of GOAT as an innovative diagnostic biomarker (145). In 
conclusion, a greater number of clinical studies are required to establish 
the association between levels of ghrelin and GI cancers as well as to 
determine the viability of ghrelin as a GI tumor marker.

7.2 Ghrelin system and cancer cachexia

CC is a complex condition characterized by a disruption in the 
protein and energy balance, sarcopenia, abnormal metabolism, and 
progressive functional decline (146, 147). Over the past few years, an 
increasing body of research has focused on understanding the role of 
ghrelin in CC (148). A recent study conducted on a murine model 
examined the potential therapeutic effects of ghrelin and desacyl-
ghrelin. Treatment with ghrelin and desacyl-ghrelin effectively 
mitigated cachectic symptoms, enhanced the nutritional status, 
impeded muscle and adipose tissue atrophy, and lowered serum 
TNF-α levels. Furthermore, ghrelin/desacyl-ghrelin treatment 
suppressed calpain activity, inhibited atrogin-1 expression, and 
augmented Akt activity in skeletal muscles (149). Furthermore, 
ghrelin inhibited cachexic muscle atrophy, which is induced as a 
consequence of chronic renal failure, thermal injury, cancer, and 
chemotherapy. This is achieved through the augmentation of muscle 
protein synthesis and the reduction of proteolysis (150).

In recent years, anamorelin, a particular ghrelin receptor agonist, 
has gained approval for use in treatments (151, 152). In accordance 
with findings from previous investigations, this medication showed 
efficacy in enhancing body weight, lean body mass, and appetite, as 
evidenced by findings from a randomized, double-blind study 

involving patients with CC (13). Nevertheless, anamorelin did not 
exhibit the potential to ameliorate motor function or overall survival 
in these individuals (13). Moreover, in mice with colon-26 tumors, 
the oral intake of HM01, a ghrelin receptor agonist, enhanced food 
consumption, increased body weight, augmented fat and muscle 
mass, elevated bone mineral density, and reduced energy expenditure 
(105). Additionally, anorexia is frequently observed in individuals 
with CC, even though they have high levels of ghrelin, indicating the 
potential development of ghrelin resistance in these patients (91). 
Garcia et al. speculated that ghrelin resistance observed in patients 
with cancer cachexia may be similar to insulin resistance in patients 
with type 2 diabetes mellitus, which can be mitigated by treatment 
with high doses of insulin (91). This may explain why patients with 
cancer cachexia exhibit increased levels of endogenous ghrelin 
without a corresponding increase in food intake, but they can show 
an increase in appetite and food intake when they receive exogenous 
ghrelin at levels three to four times higher than baseline (91). 
Furthermore, Terawaki et al. (2017) conducted a study using a rat 
model of cancer anorexia-cachexia induced using 85As2 cells 
derived from human gastric cancer; the authors reported ghrelin 
resistance in the study model. However, treatment with rikkunshito, 
which promotes ghrelin signaling, ameliorated symptoms related to 
cancer anorexia-cachexia (153). These findings highlight the 
potential of focusing on ghrelin as a treatment for CC, while also 
emphasizing the need for further research to enhance the efficacy of 
current pharmaceutical interventions.

7.3 Ghrelin system and GI cancer grade and 
stage

At present, numerous studies have demonstrated variations in the 
expression level of ghrelin across different tumor stages, suggesting its 
potential as a significant indicator for tumor grade or stage evaluation. 
A prior prospective study, conducted on 92 patients, revealed high 
levels of ghrelin and its receptor in colon carcinoma cells, with a 
decrease observed in less differentiated tumors. This finding indicates 
the potential importance of ghrelin in the early stages of tumorigenesis 
(92). Moreover, several studies have indicated a noteworthy escalation 
in the susceptibility to non-cardia gastric cancer and cancer at the 
junction between the esophagus and stomach in patients with initial 
lower levels of ghrelin; these alterations become apparent at an early 
stage of cancer development (87). Analogously, another study revealed 
an elevation in ghrelin levels during the later stages of the disease; this 
indicates a positive correlation between ghrelin levels and the degree 
of differentiation and is especially more pronounced in instances of 
inadequately differentiated colorectal cancer (93).

Furthermore, the initial identification of ghrelin expression in 
esophageal squamous cell carcinoma was achieved through 
immunohistochemistry, wherein tissue ghrelin levels exhibited 
significant associations with the extent of differentiation, level of tumor 
invasion, lymph-vascular invasion, and tumor stage (154). However, no 
notable association was observed between ghrelin expression levels and 
patient survival (154). In addition, a study conducted on live organisms 
indicated that ghrelin treatment effectively inhibited tumor progression 
in the colon of mice with inflammation-related colon cancer caused by 
azoxymethane/DSS (106). In summary, ghrelin holds potential in the 
assessment of GI tumors, although further experimentation is required 
to validate this assertion.
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8 Conclusion and prospects

In conclusion, this review provides a comprehensive overview 
of the association between ghrelin and GI disorders. Ghrelin, being 
the sole hormone responsible for appetite stimulation, has 
undergone extensive investigation since its initial identification, 
which has led to the discovery of its multiple functions. Notably, 
its role in stimulating appetite and promoting gastric motility 
renders it a significant target in GI disorders. Multiple studies have 
provided evidence indicating the protective role of ghrelin in the 
development of esophageal disorders, gastric disorders, GI 
functional disorders, and CC. Additionally, several clinical trials 
have demonstrated the effectiveness of ghrelin and its receptor 
agonists in the management of these GI diseases, with certain 
treatments currently being investigated in clinical trials. However, 
there is a lack of consensus regarding the involvement of ghrelin 
in the pathogenesis of IBD, which necessitates further research to 
determine the precise impact of ghrelin in this context. Meanwhile, 
there is growing interest among researchers regarding the potential 
utility of ghrelin as a biomarker for GI tumors. Nevertheless, the 
findings have yielded inconsistent results, potentially attributable 
to factors such as disease stage, nutritional status of the patients, 
and the presence of underlying comorbidities. Therefore, further 
research is warranted to adequately stratify or eliminate these 
confounding variables. Eventually, additional investigations are 
necessary to comprehensively clarify the precise function of 
ghrelin system in GI disorders. This would help facilitate the 
development of efficacious pharmaceutical interventions for the 
treatment of GI disorders.
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Glossary

GI Gastrointestinal

IBD inflammatory bowel disease

CCK cholecystokinin

GIP glucose-dependent insulinotropic peptide

GLP-1 glucagon-like peptide-1

PYY peptide YY

MMCs migratory motor complexes

GOAT ghrelin-O-acyltransferase

GHSR growth hormone secretagogue receptor

PC1/3 prohormone convertase 1/3

MBOAT membrane-bound O-acyltransferases

HHAT hedgehog acyltransferase

LEAP2 liver-expressed antimicrobial peptide 2

CNS central nervous system

NTS nucleus tractus solitarius

ARC arcuate nucleus

NPY neuropeptide Y

AgRP agouti-related peptide

DVC dorsal vagal complex

VTA ventral tegmental area

POMC peptide pro-opiomelanocortin

GABA gamma-aminobutyric acid

AP area postrema

PVN paraventricular nucleus

GERD gastroesophageal reflux disease

MCH melanin-concentrating hormone

H. pylori Helicobacter pylori

Bcl-2 B-cell lymphoma 2

Bax Bcl-2-associated X

LPS lipopolysaccharide

PI3K phosphatidylinositol 3-kinase

UC ulcerative colitis

CD Crohn’s disease

DSS dextran sulfate sodium

TNBS 2,4,6-trinitrobenzene sulfonic acid

FD functional dyspepsia

IBS irritable bowel syndrome

IBS-D diarrhea-predominant IBS

IBS-C constipation-predominant IBS

CC cancer cachexia
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