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Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has emerged 
as a prevalent health concern, encompassing a wide spectrum of liver-related 
disorders. Insulin resistance, a key pathophysiological feature of MASLD, can 
be  effectively ameliorated through dietary interventions. The Mediterranean 
diet, rich in whole grains, fruits, vegetables, legumes, and healthy fats, has 
shown promising results in improving insulin sensitivity. Several components of 
the Mediterranean diet, such as monounsaturated fats and polyphenols, exert 
anti-inflammatory and antioxidant effects, thereby reducing hepatic steatosis 
and inflammation. Furthermore, this dietary pattern has been associated 
with a higher likelihood of achieving MASLD remission. In addition to dietary 
modifications, physical exercise, particularly resistance exercise, plays a crucial 
role in enhancing metabolic flexibility. Resistance exercise training promotes 
the utilization of fatty acids as an energy source. It enhances muscle glucose 
uptake and glycogen storage, thus reducing the burden on the liver to uptake 
excess blood glucose. Furthermore, resistance exercise stimulates muscle 
protein synthesis, contributing to an improved muscle-to-fat ratio and overall 
metabolic health. When implemented synergistically, the Mediterranean diet 
and resistance exercise can elicit complementary effects in combating MASLD. 
Combined interventions have demonstrated additive benefits, including 
greater improvements in insulin resistance, increased metabolic flexibility, and 
enhanced potential for MASLD remission. This underscores the importance of 
adopting a multifaceted approach encompassing dietary modifications and 
regular physical exercise to effectively manage MASLD. This narrative review 
explores the biological mechanisms of diet and physical exercise in addressing 
MASLD by targeting insulin resistance and decreased metabolic flexibility.
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1 The high prevalence of MASLD urges 
effective treatment options based on 
optimization of lifestyle changes

Metabolic Dysfunction-Associated Steatotic Liver Disease 
(MASLD) is a prevalent condition that affects approximately 25% of 
the global population (1). It is commonly considered as the liver-
related manifestation of the metabolic syndrome and is closely linked 
to obesity and type 2 diabetes (T2D) (2). MASLD is a disease spectrum 
spanning from simple excess triacylglycerol (TAG) accumulation 
within the hepatocytes (steatosis) to inflammation (metabolic 
dysfunction-associated steatohepatitis, MASH), cirrhosis and 
hepatocellular carcinoma (HCC) (3). MASLD carries a burden of 
morbidity and mortality, primarily due to liver-related complications, 
but more significantly due to unfavorable cardiovascular events. 
Glucose lowering drugs based on the incretin system are often used 
off-label to promote the optimization of glucose control when type 2 
diabetes is an issue, or for the management of weight loss (4, 5). The 
primary approach to managing the disease involves substantial weight 
loss and intensive reduction of cardiovascular risk factors.

Nonetheless, lifestyle changes aimed at weight loss remain the 
mainstay of MASLD treatment in general population.

As far as weight loss for the treatment of MASLD is concerned, 
the recommendation is a targeted weight reduction of 7–10%, a 
measure found to be  effective in mitigating lipid accumulation, 
enhancing metabolic flexibility, and ameliorating insulin resistance (6).

Weight loss exceeding 10% has demonstrated superior efficacy in 
resolving MASLD and MASH, exhibiting regression of fibrosis and 
inflammation (6, 7). Notably, the synergistic benefits of weight loss are 
contingent on the adoption of a combined dietary and exercise 
approach (8).

Resmetirom, an oral, liver-directed, thyroid hormone receptor 
beta (THR-β)–selective agonist, were superior to placebo with respect 
to MASH resolution and improvement in liver fibrosis in a stage 3 trial 
(9). Resmetirom may represent the first approved liver specific drug 
aimed at MASH resolution (10), on top of lifestyle changes aimed at 
weight loss.

With this article we  would like to review the mechanisms by 
which dieting and physical exercise may benefit metabolic health and 
fatty liver through improved insulin resistance and metabolic 
flexibility. While insulin resistance has been considered one of the 
most relevant pathogenetic feature of MASLD and the driver for the 
progression of liver inflammation (11), reduced metabolic flexibility 
remains a less explored mechanism (12).

1.1 Energy expenditure at rest and 
metabolic adaption as determinants of 
weight loss programs success

Basal metabolic rate (BMR) refers to the amount of energy 
expended by an organism during a state of physical and psychological 
rest, measured in the morning while fasting (after a 10-h period since 
the last meal), without preceding physical exertion after eating, and in 
a thermoneutral environment (13).

Understanding how human bodies oxidize calories at rest can help 
us understand why some people are more susceptible to 
MASLD. Conditions like obesity and diabetes, which are linked to 

BMR reduction, are also known to contribute to MASLD. However, 
the exact impact of BMR on MASLD needs further investigation 
(14, 15).

In individuals who lead a sedentary lifestyle, BMR accounts for a 
significant proportion, ranging from 60 to 70% of the total energy 
expenditure, whereas in those who regularly engage in physical 
activities, this percentage decreases to approximately 50% (16).

The factors that influence basal metabolism have demonstrated 
their crucial role, as changes in these parameters have been causatively 
associated with an increased susceptibility to specific clinical 
conditions, such as obesity, thereby raising the risk of developing 
MASLD (17).

According to existing literature, modifications in lean mass and 
adipose tissue mass are recognized as the primary influencers of 
BMR (13).

Contemporary research is increasingly focused on developing 
strategies for weight loss in individuals with overweight or obesity, 
while simultaneously preserving lean mass, which plays a significant 
role in basal energy expenditure. Conversely, divergent studies have 
revealed that after periods of calorie restriction, BMR may exhibit an 
adaptive response known as “metabolic adaptation,” which negatively 
affects the rate of BMR and predisposes individuals to a higher risk of 
weight regain (17–19).

The precise mechanisms underlying metabolic adaptation remain 
incompletely understood, although it is hypothesized to potentially 
involve reduced sympathetic drive or decreased thyroid activity (20). 
Caloric intake, dietary patterns and specific dietary components 
influence BMR. For instance, sufficient protein intake is considered 
crucial for maintaining lean mass in low-calorie dietary regimens 
(21, 22).

Additional factors that have emerged in the literature as influential 
in modulating BMR include exercise, height, general weight, age, and 
circulating thyroid hormones (23).

Physical activity has a profound impact on the rate of BMR by 
affecting changes in lean mass among individuals (see section 4). The 
influence of thyroid hormones on BMR has long been acknowledged, 
with hyperthyroidism or hypothyroidism conditions exerting 
noticeable effects on BMR. A recent study demonstrated that elevated 
plasma concentrations of T4 were associated with increased BMR. The 
role of triiodothyronine (T3) in this context remains a subject of 
debate (23).

1.2 Definition of metabolic flexibility

In order to understand the regulatory mechanisms of metabolism 
at rest, it is helpful to introduce the concept of metabolic flexibility. 
Metabolic flexibility refers to the body intrinsic ability to utilize readily 
available substrates as an energy source. During periods of rest, the 
body can shift between using glucose and lipids as primary fuel 
sources. After a meal, insulin promotes the storage of glucose as 
glycogen in the liver and facilitates glucose uptake in skeletal muscle. 
Conversely, during fasting conditions, glucagon stimulates hepatic 
gluconeogenesis and glycogenolysis, while also promoting lipolysis in 
adipose tissue to release free fatty acids for use as an energy substrate. 
This coordinated regulation by insulin and glucagon allows the body 
to maintain metabolic homeostasis by adapting its fuel utilization to 
the prevailing nutritional state.
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Disruptions to this metabolic flexibility, such as in metabolic 
disorders like MASLD, can impair the body ability to efficiently switch 
between glucose and lipid oxidation. This can lead to the accumulation 
of lipids in non-adipose tissues like the liver, exacerbating 
disease progression.

1.3 Regulatory mechanisms of energetic 
metabolism at rest revolve around insulin 
and glucagon insulin

1.3.1 Insulin
Metabolic regulation during periods of rest involves complex 

molecular signaling pathways.
We begin our examination with the role of insulin. After a meal, 

pancreatic β cells release insulin into the bloodstream, resulting in an 
elevated insulin-glucagon ratio. Insulin exerts its effects on various 
tissues, promoting glycolysis and glycogen synthesis in the liver while 
inhibiting gluconeogenesis and glycogenolysis. In skeletal muscle, 
insulin facilitates glucose uptake by translocating the insulin-
dependent glucose transporter GLUT 4 to the plasma membrane, and 
it also promotes glycogen synthesis and glycolysis. Moreover, in 
adipose tissue, insulin, upon binding to its receptor, suppresses 
lipolysis while simultaneously stimulating the production of 
lipids (24).

Additionally, insulin exerts its effects by promoting protein 
synthesis, regulating mitochondrial biogenesis, and inhibiting 
autophagy (25). This hormone plays a crucial role in the regulation of 
glucose homeostasis and the storage of energy in the form of lipids 
and glycogen. Acting as a peptide hormone, insulin interacts with the 
tyrosine kinase receptor (INS-R), initiating a signaling cascade that 
encompasses the aforementioned effects.

1.3.2 Glucagon
Glucagon is released by pancreatic α-cells and acts as antagonist 

to insulin. Glucagon secretion is stimulated during fasting conditions 
and primarily exerts its effects at the hepatic level by promoting 
gluconeogenesis, glycogenolysis, lipolysis, and ketogenesis. 
Simultaneously, glucagon inhibits the pathways activated by insulin, 
such as glycolysis and lipogenesis. The decrease in insulin levels 
during fasting conditions suppresses malonyl-coenzyme A synthesis 
in liver cells, leading to the activation of fatty acid oxidation as the 
predominant energy source (26).

The regulation of energy homeostasis in the body relies on the 
interplay between insulin and glucagon. The contribution of 
gut-secreted incretin hormones, such as GLP-1, in stimulating insulin 
secretion has been extensively demonstrated in mechanicistic and 
clinical studies (27–29). Furthermore, there is evidence suggesting a 
reciprocal relationship, where glucose-induced insulin secretion 
inhibits glucagon secretion from α cells in a paracrine manner (26).

1.3.3 Mitochondria
Insulin inhibits enzymes responsible for fatty acid oxidation, 

thereby directing mitochondria to preferentially utilize glucose as a 
fuel source.

When glucagon levels rise during fasting or starvation, the 
hormone signals mitochondria to shift away from glucose oxidation 
and toward increased fatty acid beta-oxidation.

Disruptions in mitochondrial function can lead to diminished 
energy production and an increased tendency for the accumulation of 
lipids within the liver (30). Dysfunctional mitochondria exhibit 
reduced efficiency in oxidizing fatty acids, resulting in an overflow of 
lipids and the formation of toxic lipid intermediates such as 
diacylglycerols and ceramides. These lipid species interfere with 
insulin signaling pathways, compromising the ability of hepatocytes 
to respond appropriately to insulin and regulate glucose 
metabolism (31).

1.4 Insulin resistance and gut-liver axis

Insulin resistance is a pathophysiological condition characterized 
by the decreased ability of target tissues, such as the liver, skeletal 
muscle, and adipose tissue, to respond appropriately to insulin (10). 
This impairment in insulin signaling and action results in impaired 
glucose and lipid metabolism (11). Insulin resistance can manifest at 
both the systemic and hepatic levels. Systemic insulin resistance refers 
to a whole-body phenomenon, where peripheral tissues exhibit 
reduced sensitivity to insulin, leading to hyperglycemia and 
compensatory hyperinsulinemia (11). In contrast, hepatic insulin 
resistance is the specifically impaired insulin action within the liver, 
which fails to properly suppress gluconeogenesis and increase glucose 
uptake in response to insulin. Hepatic insulin resistance contributes 
to the dysregulation of glucose and lipid homeostasis, further 
exacerbating metabolic disturbances and the development of MASLD.

Concurrently, targeting the gut-liver axes can improve systemic 
insulin sensitivity. The gut microbiome plays a pivotal role in this 
gut-liver axis, influencing metabolic flexibility through several 
mechanisms (12). Gut bacteria produce a variety of metabolites, 
including short-chain fatty acids (SCFAs), that can modulate hepatic 
and peripheral insulin sensitivity. SCFAs, for instance, can activate 
AMP-activated protein kinase (AMPK) in the liver, enhancing 
mitochondrial fatty acid oxidation and glucose metabolism (13) (see 
section 1.5).

Furthermore, the gut microbiome shapes the production of bile 
acids, which act as signaling molecules to regulate energy homeostasis. 
Specific bile acid species can activate the Farnesoid X Receptor (FXR) 
and G-protein coupled bile acid receptor (TGR5) in the liver, leading 
to improved gluconeogenesis, lipid metabolism, and insulin sensitivity 
(14, 15). Dysbiosis of the gut microbiome, as seen in MASLD, can 
disrupt this delicate balance and contribute to impaired metabolic 
flexibility (16).

Targeting the gut-liver axis through dietary interventions, 
prebiotics, probiotics, or pharmacological modulation of the 
microbiome and bile acid signaling may therefore represent a 
promising strategy to improve metabolic flexibility and mitigate 
insulin resistance in MASLD patients.

1.5 PGC-1α is a sensor of energy 
expenditure

Peroxisome Proliferator-Activated Receptor Gamma Coactivator-
1alpha (PGC-1α) is a critical regulator of cellular processes and energy 
metabolism. Its expression is highest in tissues that have a high 
capacity for oxidative metabolism, such as skeletal muscle, liver, 
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brown adipocytes, and myocardium (32). The role of PGC-1α varies 
depending on the specific tissue. In the liver, extensive research has 
been conducted on the effects of PGC-1α on mitochondrial and 
energy metabolic activities of hepatocytes. During fasting, there is an 
increase in the ratio of AMP to ATP, which activates AMPK and 
subsequently leads to the activation of PGC-1α. The primary effect of 
PGC-1α activation is the induction of mitochondrial biogenesis 
through its stimulation of nuclear transcription factors NRF1 and 
NRF2 (33). These transcription factors control the expression of 
important genes involved in energy metabolism, leading to increased 
expression of mitochondrial proteins and enhanced enzymatic 
capacity in oxidative metabolic pathways such as beta-oxidation, the 
tricarboxylic acid cycle, and oxidative phosphorylation (34). 
Furthermore, PGC-1α activation also induces the expression of 
antioxidant molecules that protect against reactive oxygen species 
(ROS) (34).

In individuals with obesity and insulin resistance, the liver is 
chronically exposed to high levels of free fatty acids from the portal 
circulation. Additionally, hyperinsulinemia, which is associated with 
insulin resistance, promotes the synthesis of fatty acids in the liver. 
These conditions contribute to the excessive accumulation of fatty 
acids, surpassing the mitochondrial oxidative capacity of hepatocytes 
and resulting in MASLD. In the context of MASLD, appropriate levels 
of PGC-1α play a positive role. This is because an increase in both 
mitochondrial mass and function has been observed, leading to 
enhanced beta-oxidation. Studies have shown a correlation between 
reduced levels of PGC-1α and an increased risk of developing hepatic 
steatosis, which can be attributed to impaired interaction with NRF 
promoters (34). This impaired interaction leads to decreased levels of 
mitochondrial proteins and antioxidants, resulting in further 
increased oxidative stress (35). Both in vivo and in vitro studies have 
demonstrated that overexpression of PGC-1α leads to increased 
hepatic beta-oxidation, causing a significant reduction in hepatocyte 
triglyceride accumulation. Exercise has also been identified as a useful 
tool for increasing PGC-1α levels in the liver, as well as in skeletal 
muscle tissue (36).

In skeletal muscle, contraction plays a crucial role in shaping its 
characteristics, including mitochondrial content and function, gene 
transcription, and intracellular signaling related to contractile proteins 
(12). However, in individuals with obesity and insulin resistance or 
T2D, there is a limited ability to switch from glucose oxidation to fatty 
acid oxidation, impairing metabolic flexibility (12). This is influenced 
by factors such as increased free fatty acid (FFA) intake, which leads 
to elevated mitochondrial acetyl CoA and cytosolic citrate levels. The 
accumulation of citrate inhibits phosphofructokinase, resulting in 
increased glucose-6-phosphate and inhibition of glycolysis by 
suppressing glucokinase. Furthermore, metabolic by-products of FFA 
degradation, such as ceramides and diacylglycerol, interfere with 
insulin receptor signaling, hindering GLUT 4 translocation to the cell 
membrane and exacerbating insulin resistance (37).

Elevated plasma FFA levels and increased muscle lipid content 
contribute to insulin resistance by disrupting mitochondrial 
regulation and promoting ectopic fat deposition (12). In the 
skeletal muscle of people with obesity, there is a predominance of 
type IIB fibers characterized by lower mitochondrial density and 
oxidative capacity, along with reduced expression of PGC-1α, a 
key regulator of mitochondrial biogenesis. PGC-1α is strongly 
induced by muscle contraction and, through positive feedback, 

upregulates the expression of MEF2, promoting myocyte 
enhancement. People with insulin resistance and obesity generally 
exhibit decreased expression of PGC-1α and NRF-1 in myocytes, 
resulting in reduced oxidative phosphorylation capacity and 
impaired fatty acid oxidation (38). Specifically, individuals with 
type 2 diabetes and glucose intolerance exhibit inhibited PGC-1α 
transcription, leading to reduced mitochondrial protein 
expression (39).

Intervention studies have shown that physical activity can 
positively impact mitochondrial metabolism and improve metabolic 
flexibility. In one study, aerobic exercise in elderly prediabetic 
subjects led to enhanced metabolic flexibility, as evaluated by the 
respiratory quotient during a hyperinsulinemic euglycaemic clamp 
(40). Considering the various roles of PGC-1α in energy metabolism, 
its induction by physical activity, and its reduced expression in 
obesity, diabetes, and insulin-resistance, it is evident that PGC-1α 
plays a critical role in the metabolic flexibility of skeletal 
muscle tissue.

White adipose tissue (WAT) serves not only as an energy reservoir 
in the form of triglycerides but also as an active regulator of metabolic 
health and substrate flow. Excessive WAT accumulation and 
dysfunction are closely associated with metabolic impairments, 
contributing to adipose-related diseases (12). Similar to muscle tissue, 
adipose tissue relies on insulin for its proper functioning. Insulin 
binding to its receptor initiates a phosphorylation cascade that 
ultimately leads to the translocation of GLUT4-containing vesicles to 
the cell membrane, facilitating glucose uptake. Insulin also inhibits 
lipolysis, reducing the release of non-esterified fatty acids (NEFA) into 
the circulation (41). However, insulin-resistant individuals experience 
dysregulation in these tightly controlled mechanisms, resulting in 
impaired modulation of lipolysis and persistent release of NEFA into 
the bloodstream (12).

There are two main types of adipose tissue: white adipose tissue 
(WAT) and brown adipose tissue (BAT). Brown adipocytes, 
characterized by their smaller size, rich cytoplasm, and high 
mitochondrial density, exhibit a remarkable oxidative capacity. The 
high expression of uncoupling protein 1 (UCP1) in brown adipocytes 
enables thermogenesis by dissipating the proton gradient in the 
mitochondrial intermembrane space, generating heat instead of 
ATP (42).

Studies have shown that white adipocytes can undergo conversion 
to brown-like adipocytes, and the key transcriptional factors involved 
in this process are PPAR-γ and PGC-1α (43). Treatment with 
rosiglitazone, a PPAR-γ agonist, has been found to significantly 
increase the expression of UCP1 and PGC-1α (44). PGC-1α, a 
coactivator, plays a crucial role in thermogenesis during cold exposure 
by increasing the AMP/ATP ratio, which activates AMPK. AMPK 
then phosphorylates PGC-1α, orchestrating thermogenesis and 
oxidative metabolic processes. Analysis of subcutaneous WAT in 
individuals with obesity reveals downregulation of PGC-1α (45). 
Moreover, experiments in mice with a specific deletion of PGC-1α in 
adipose tissue demonstrate reduced gene expression related to 
oxidative phosphorylation, beta-oxidation, glucose tolerance, and 
insulin resistance (46).

It is worth noting that aerobic and resistance exercise promotes 
increased lipolysis in white adipose tissue, leading to reduced adiposity 
and altered expression of key proteins involved in energy metabolism, 
such as the GLUT4 transporter and PGC-1 coactivator (46).
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1.6 PPARα as crucial regulator of energy 
metabolism gene expression

PCG-1α can activate Peroxisome proliferator–activated receptor 
alpha (PPARα) through a complex regulatory mechanism. PCG-1α 
interacts with PPARα and enhances its transcriptional activity by 
acting as a coactivator. PCG-1α binds to PPARα and promotes the 
recruitment of other coactivators, such as CBP/p300, leading to the 
activation of target genes.

The activation of PPARα by PCG-1α has important hepatic effects. 
PPARα plays a crucial role in regulating lipid metabolism in the liver. 
When activated by PCG-1alpha, PPARα promotes fatty acid oxidation, 
leading to increased mitochondrial beta-oxidation and subsequent 
energy production. This activation also stimulates the expression of 
genes involved in fatty acid transport and metabolism, as well 
as ketogenesis.

PPARα is a transcription factor belonging to the nuclear receptor 
family. It is known for its affinity for various endogenous ligands, 
primarily lipid molecules such as fatty acids, prostaglandins, 
leukotrienes, and fatty acid-derived metabolites, as well as antidiabetic 
drugs (47). PPARα is predominantly found in tissues with high 
metabolism and energy demand, such as the liver, heart, skeletal 
muscle, and kidney. However, its presence in other tissues, including 
adipose tissue, highlights its significant role in lipid metabolism 
regulation (48).

PPARα plays a central role in lipid metabolism by regulating a key 
molecular pathway involved in beta-oxidation. It stimulates the 
expression of enzymes such as CPT1 and acyl-CoA oxidase (ACOX), 
which are crucial for the transport and subsequent oxidation of fatty 
acids within the mitochondrial matrix (49). Activation of PPARα also 
leads to the transcription of genes responsible for ketogenesis and bile 
acid metabolism during fasting, promoting the synthesis of ketone 
bodies (50). Additionally, PPARα positively affects lipoprotein 
metabolism by regulating the expression of apolipoproteins A1 and 
A2 (APOA1, APOA2), leading to increased plasma levels of these 
proteins and contributing to the modulation of HDL (51).

PPARα is involved in the regulation of the inflammatory response 
by negatively regulating leukotriene synthesis and trans-repressing the 
activities of inflammatory regulators such as NF-kB, AP-1, and 
STAT. This overall reduces the expression of inflammatory molecular 
pathways (52). Interestingly, an inverse correlation is observed 
between PPARα and the development of NASH. This suggests that 
increased inflammation may contribute to the suppression of PPARα 
expression (53).

Dysregulation of PPARα could have important consequences in 
hepatic lipid accumulation and increase the risk of cardiovascular 
disease. Therefore, PPARα could be a therapeutic target for resolving 
altered lipid metabolism.

1.7 PPARα functions as a lipid sensor in 
white adipose tissue

PPARα serves as a critical lipid sensor that coordinates the 
transcriptional response to fatty acids and plays a vital role in 
controlling oxidative capacity and thermogenesis, especially in brown 
adipose tissue. As such, PPARα is also expressed in adipose tissue and 
regulates several metabolic processes, including lipolysis, 

beta-oxidation, adipocyte differentiation, thermogenesis, and the 
inflammatory response. Activation of PPARα induces the expression 
of molecules involved in lipid metabolism.

PPARα functions as a lipid sensor, as it increases the transcription 
of PPARα-regulated genes in response to elevated fatty acid levels and 
chronic stimulation of beta-adrenergic receptors. This leads to an 
increase in oxidative capacity and thermogenesis (54). PPARα is 
mainly expressed in brown adipose tissue and has low expression in 
white adipocytes. However, studies have shown a negative correlation 
between PPARα mRNA levels in human adipose tissue and body mass 
index (55). Interestingly, some studies have found that PPARα agonists 
increase beta-oxidation and glycerol kinase expression in human 
white adipocytes (56, 57). PPARα has also been shown to induce 
subcutaneous white adipose tissue browning and stimulate 
thermogenesis, improve insulin resistance, and reduce inflammation 
in animal models when treated with fenofibrate (58). However, it is 
important to note that results obtained in animal models may not 
directly translate to humans due to species differences (55).

2 Physical exercise drives several 
mechanisms aimed at improved usage 
of energy substrates

2.1 Physical exercise as part of the 
interventions aimed at MASLD regression

Aerobic exercise, such as walking and cycling, is a cost-effective and 
widely accessible non-pharmacological intervention for the general 
public. It is characterized by increased energy expenditure during 
exercise sessions and has been shown to have positive effects on various 
factors associated with MASLD, including hemoglobin A1c, resting 
blood pressure, and serum cholesterol levels (59). Nonetheless, it is 
important to note that aerobic exercise can lead to fatigue and discomfort, 
potentially compromising long-term adherence to exercise regimens.

Several informative reviews have been published in the medical 
literature, discussing the role of exercise prescription for MASLD and 
highlighting the potential benefits of both aerobic and resistance 
exercises (60–64). However, there remains a lack of clarity regarding 
the optimal exercise protocol, including the recommended frequency, 
intensity, and duration of aerobic and resistance exercises for 
improving MASLD. Furthermore, considering the high prevalence of 
cardiovascular diseases in individuals with MASLD (65, 66), a 
comparison of exercise types based on energy consumption has yet to 
be conducted. Additionally, it is important to target the pathogenesis 
of MASLD, specifically insulin resistance and decreased metabolic 
flexibility, through physical exercise as potential mechanisms for 
mitigating liver damage. In the following paragraphs, we will analyze 
the available evidence to better understand the benefits of aerobic and 
resistance exercise in relation to the metabolic changes they elicit.

2.2 Frequency, intensity, and duration of 
exercise for improving hepatic steatosis in 
MASLD

In a comprehensive review of clinical trials, Hashida et  al. 
included twenty-four exercise protocols from 18 articles, 
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demonstrating a decrease in hepatic steatosis in 91.7% of the 
protocols (64). The median age of patients was 48 years, with a 
median BMI of 30.9 kg/m2. All protocols had a frequency of exercise 
of 3 times per week. Moderate-intensity aerobic exercise for a 
duration of 40 min over a 12-week period was the typical protocol. 
Aerobic exercise led to improvements in BMI and serum alanine 
aminotransferase levels.

Most protocols focused on conventional aerobic exercises, such as 
walking or cycling at a constant intensity. However, a study on high-
intensity interval training (HIIT) demonstrated reductions in whole-
body fat mass, serum alanine aminotransferase levels, and hepatic 
lipids. HIIT involved high-intensity exercise intervals followed by 
recovery periods (67).

Also, very short or low-intensity exercises may be insufficient for 
improving hepatic steatosis, emphasizing the importance of exercise 
energy consumption (68, 69).

Aerobic exercise is known to promote lipolysis in adipose tissues, 
leading to the production of acetyl-CoA through increased beta-
oxidation (70). Acetyl-CoA is then metabolized in the tricarboxylic 
acid cycle, resulting in ATP production in the mitochondria’s electron 
transport system. Aerobic exercise also upregulates certain proteins, 
such as uncoupling protein-1 and peroxisome proliferator-activated 
receptor gamma (71), which further enhance lipolysis in adipose 
tissues (72). Studies have shown that aerobic exercise can decrease 
serum levels of resistin and increase levels of high molecular weight 
adiponectin, indicating potential benefits for individuals with 
conditions like hypertension and MASLD (73–75).

2.3 Resistance exercise for improving 
hepatic steatosis in MASLD

In the same work from Hashida et al. (64) resistance exercise 
resulted overall beneficial in MASLD. Based on seven protocols from 
seven studies, a reduction in hepatic steatosis was observed in 85.7% 
of the protocols, including five randomized controlled trials (76–82). 
The median age of patients was 49.2 years, with a median BMI of 
30.6 kg/m2. The exercise frequency was consistently three times per 
week, with a median metabolic equivalent (METs) of 3.5, exercise 
duration of 45 min, and a 12-week period.

Resistance exercise resulted in modest changes in BMI and serum 
alanine aminotransferase (ALT) levels. Three protocols demonstrated 
improvements in hepatic steatosis without significant weight loss (76, 
80, 83). MR spectroscopy showed a decrease in intrahepatic lipid 
levels in three studies (13%; 3%; and 25% reduction from baseline 
(76–78)).

While most studies used weight machines, one study with 53 
individuals who trained for 12 weeks evaluated the effects of simple 
bodyweight resistance exercises such as push-ups and squats, 
demonstrating improvements in muscle mass, ALT levels, and hepatic 
steatosis (83).

One study did not show improvements in hepatic steatosis through 
resistance exercise (82). The longer duration (32 weeks) and significant 
increase in body weight in that study may have influenced the results.

The optimal duration for resistance exercise to improve hepatic 
steatosis appears to be 12 weeks. General recommendations include three 
sets of 8–12 repetitions, three times per week, targeting major muscle 
groups. Using a variety of weight training exercises is recommended.

Resistance exercise may have distinct therapeutic characteristics 
compared to aerobic exercise in MASLD patients, as it showed modest 
changes in BMI and demonstrated steatosis improvement independent 
of body weight reduction.

Further research is needed to explore the long-term effects of 
resistance exercise and to better understand its mechanisms in 
improving hepatic steatosis.

Resistance exercise offers benefits for hepatic steatosis with less 
energy consumption. The exact mechanisms behind these benefits 
are not fully understood, but it may involve muscle fiber type-
specific adaptations. Muscle fibers can be categorized into type 
I (slow oxidative) and type II (fast glycolytic) based on their energy 
metabolism. Resistance exercise has been found to specifically 
promote hypertrophy in type II muscle fibers, while not 
significantly affecting type I fibers. Additionally, resistance exercise 
has been shown to increase the expression of GLUT-4 in type II 
fibers and enhance intracellular insulin sensitivity (84–87). These 
changes may contribute to improvements in hepatic steatosis and 
insulin resistance.

Moreover, resistance exercise may improve MASLD through 
muscle-liver crosstalk mediated by a myokine called irisin (88, 89). 
Irisin is released by skeletal muscles and has been shown to increase 
thermogenesis and energy expenditure by promoting the browning of 
subcutaneous adipocytes. It also exhibits regulatory effects on lipid 
metabolism in hepatocytes (88).

Studies have demonstrated that recombinant irisin inhibits the 
expression of key regulators of lipogenesis, such as sterol regulatory 
element-binding protein-1c, and lipogenic enzymes in hepatocytes (90). 
Overexpression of irisin has been found to improve hepatic steatosis in 
obese mice. Interestingly, individuals with MASLD have been reported 
to have lower serum irisin levels compared to healthy individuals (91).

Recent research by Kim et al. investigated the effects of aerobic 
and resistance exercises on circulating irisin levels. They found that 
resistance exercise significantly increased circulating irisin levels, 
while aerobic exercise did not produce the same effect. This suggests 
that resistance exercise specifically influences lipid metabolism in the 
liver through the action of irisin (92).

Therefore, one additional explanation for the improvement of 
MASLD through resistance exercise, despite lower energy consumption 
compared to aerobic exercise, could be attributed to the muscle-liver 
crosstalk facilitated by irisin. These mechanisms are key players in the 
switch from impaired metabolic flexibility to enhanced metabolic 
flexibility and might be responsible for pleiotropic, and not only liver-
focused, benefits of resistance exercise. In details, reverting the futile 
cycle of de novo lipogenesis and beta-oxidation that is typical of decreased 
metabolic flexibility, may improve the oxidation of glucose and foster the 
flux of energetic intermediates of lipid metabolism toward mitochondrial 
oxidation therefore accelerating the de-fatting of the liver (see Figure 1).

2.4 Skeletal muscle contractions enhance 
glucose uptake and by-passes insulin 
resistance

During resistance exercise, muscle contractions activate several 
molecular signaling pathways that influence glucose uptake. One key 
pathway involves the activation of AMPK. AMPK activation stimulates 
glucose uptake by promoting the translocation of glucose transporter 
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GLUT4 to the cell surface, thereby enhancing the uptake of glucose into 
muscle cells (93).

The mechanisms underlying this increase are complex, involving the 
docking and fusion of vesicles containing GLUT4 with the cellular 
surface membrane. It has been demonstrated that muscular contraction 
stimulates the vesicle-associated SNARE proteins, facilitating the 
merging of GLUT4-containing vesicles with the cellular surface 
membrane (94).

Additionally, resistance exercise activates the insulin signaling 
pathway, which plays a crucial role in glucose uptake. Insulin, released 
by the pancreas in response to elevated blood glucose levels, binds to 
insulin receptors on muscle cells, leading to downstream signaling events 
that result in the translocation of GLUT4 to the cell surface. This allows 
for increased glucose uptake by skeletal muscle cells (94).

Overall, increased blood glucose clearance and increased liver fat 
mobility derived from resistance exercise may exert a positive effect in 
liver health preventing and reverting MASLD progression (Figure 2).

3 Dietary components of Mediterranean 
diet can act as promoter of insulin 
sensitivity

Certain dietary components, such as specific nutrients and dietary 
patterns, have been associated with improvements in insulin sensitivity. 

Examining the evidence surrounding these components enhances our 
understanding of how dietary interventions may influence insulin 
resistance in the context of MASLD.

Contemporary literature is focusing on evaluating dietary patterns 
aiming to comprehend the collective impact of the entire diet on specific 
health conditions. This is in contrast to the focus of the past studies 
which were more aimed to individualize the role of specific nutrients 
on health.

A systematic review conducted by Tanase et al. (95) explores the 
intricate relationship among T2D, insulin resistance (IR), and 
MASLD. The review compared nine different dietary patterns, including 
vegetarian, Mediterranean diet, high-protein diet, moderate-
carbohydrate diet, low-carbohydrate diet, low-glycaemic index/GL diet, 
paleolithic diet, low-fat diet, and a control diet. More specifically, the 
review revealed that, while all dietary patterns induced a significant 
reduction in Hb1Ac levels after 12 weeks, the traditional Mediterranean 
diet emerged as the most efficacious in improving postprandial 
hyperglycaemia and insulin sensitivity at an equivalent body weight. This 
underscores the role of dietary quality in enhancing these 
metabolic parameters.

The impact of the Mediterranean diet on insulin resistance stems 
from the synergistic interplay of its constituent elements, characterized by 
elevated consumption of olive oil, nuts, fruits, legumes, vegetables, and 
fish, combined with reduced intake of red meat, processed meats, and 
sweets. Notably, mono-and polyunsaturated fatty acids (MUFAs and 

FIGURE 1

Summary of the mechanisms by which aerobic exercise and resistance exercise improve insulin sensitivity and metabolic flexibility, respectively 
[adapted from Hashida et al. (64)].
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PUFAs), primarily sourced from nuts and olive oil within this dietary 
pattern, gained a lot of interest through the years. A particular significance 
were acquired by omega-3 PUFAs, specifically eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), which are renowned for their 
antioxidant and anti-inflammatory properties (95–97).

Moreover, these fatty acids have demonstrated efficacy in enhancing 
insulin sensitivity, ameliorating steatohepatitis, and reducing intrahepatic 
triglyceride content. The mechanistic underpinnings involve the 
downregulation of SREBP-1c and activation of PPARα (98).

PUFAs also play a significant influence on glucose metabolism by 
binding and stimulating G-protein-coupled receptors (GPCRs), such as 
GPR120. This stimulation leads to an increased secretion GLP-1 by 
enteroendocrine L cells. GLP-1 stimulates insulin release from pancreatic 
β-cells, enhances glucose uptake in skeletal muscles, and may modulate 
satiety perception by attenuating appetite through central nervous system 
actions. A noteworthy observation from the review is that the favorable 
impact of unsaturated fatty acids on insulin sensitivity over saturated fatty 
acids is evident when total fat intake is below 37% of energy, while higher 
fat intake increases the risk of insulin resistance irrespective of fat 
quality (99).

Focusing on the carbohydrate sources prevalent in the 
Mediterranean diet, these primarily consist of legumes and whole grains. 
These components exhibit efficacy in postprandial hyperglycaemia, 

which increase more gradually over time, and enhance insulin sensitivity. 
The beneficial effects can be  attributed to the high fibre content, 
especially soluble fibre. Soluble fibre attenuates the pronounced 
glycaemic peaks characteristic of a Western diet, thereby mitigating 
oxidative stress, preserving pancreatic beta cell integrity, delaying gastric 
emptying, and correlating with reduced insulin requirements (100).

Furthermore, the Mediterranean diet is distinguished by its elevated 
consumption of flavonoids derived from vegetables, nuts, and whole 
grains. A review reported that individuals with heightened flavonoid 
intake exhibited an 11% reduced risk of developing T2D during 
follow-up, a condition frequently associated with MASLD (99).

It is essential to note that the Mediterranean diet, as a dietary 
pattern, not only incorporates elements conducive to improving insulin 
sensitivity but also entails a reduction in the consumption of sugar-rich 
foods, particularly added sugars such as fructose. The latter has been 
linked to the development of MASLD and insulin resistance, attributed 
to increased hepatic lipogenesis, alterations in intestinal microflora, 
heightened intestinal permeability, endotoxemia, elevated hepatic 
Tumor Necrosis Factor-α production, and lipid peroxidation (79).

With regards to other dietary patterns investigated in the existing 
literature, the majority of studies fail to independently explore the 
impact of dietary quality aside from weight loss—a critical factor in 
enhancing insulin sensitivity. Consequently, there is a lack of consistent 

FIGURE 2

Effects of insulin resistance in the liver, white adipose tissue, and skeletal muscle.
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evidence demonstrating the direct role of these patterns in insulin 
sensitivity under conditions of normocaloric diets.

Notably, irrespective of dietary quality, weight loss has consistently 
demonstrated improvements in postprandial hyperglycaemia and 
insulin resistance. This is evidenced by enhanced serum liver enzymes, 
reduced hepatic lipid accumulation, and alleviation of liver 
inflammation following weight loss interventions (100). This is also 
supported by the joint EASL-EASD-EASO European Clinical Practice 
Guidelines for the Management of MASLD (101).

Moreover, a crossover randomized controlled trial sought to assess 
the impact of distinct dietary patterns on insulin sensitivity within the 
context of hepatic steatosis. The study involved twelve non-diabetic 
subjects (6 females/6 males) with biopsy-proven MASLD, subject to a 
randomized, cross-over 6-week dietary intervention. The dietary 
patterns examined were the Mediterranean diet and a low-fat, high-
carbohydrate diet (LF/HCD) as a control. Notably, the findings 
demonstrated that, even in the absence of weight loss, adherence to the 
Mediterranean diet led to a reduction in hepatic steatosis and an 
improvement in insulin sensitivity (102).

4 Resistance exercise can foster the 
switch from impaired metabolic 
flexibility to enhanced flexibility 
through activation of AMPK while 
aerobic exercise promotes insulin 
sensitivity

Exercise induces acute changes in the molecular and biochemical 
processes involved in mobilizing energy from carbohydrates and fatty 
acids, leading to an enhanced energy supply. AMPK, a key regulator of 
energy sensing, is stimulated by regular physical activity (103). Drug-
induced activation of AMPK produces gene expression patterns similar 
to those observed during exercise (104).

In response to resistance exercise, healthy individuals can efficiently 
switch between glucose and fatty acid oxidation for energy production, 
depending on exercise intensity and duration. As exercise intensity 
increases, there is a greater reliance on glucose oxidation through 
oxidative phosphorylation, while anaerobic glycolysis becomes the 
predominant pathway during higher intensity exercise (105). These 
metabolic shifts occur independently of insulin, as circulating insulin 
levels remain suppressed during exercise, and the contribution of fatty 
acid oxidation to energy production decreases proportionally (106, 107).

During acute exercise, the release of free fatty acids (FFAs) from 
adipose tissue is primarily driven by increased levels of catecholamines, 
with abdominal subcutaneous white adipose tissue (WAT) being the 
main source (108). In contrast, visceral adipose tissue plays a minor role 
due to its smaller size, particularly in healthy metabolic states (108).

On the other hand, the increased energy demand during aerobic 
exercise can upregulate the activity of PPAR-α within muscle cells. As 
discussed in the section 1.7, high PPARα activity in skeletal muscle 
up-regulates the delivery of fatty acids from WAT to skeletal muscle.

Studies blocking β-adrenergic receptors in abdominal subcutaneous 
WAT have demonstrated the role of WAT in metabolic flexibility during 
exercise by reducing lipolysis (109). Furthermore, the deletion of 
adipose triglyceride lipase (ATGL), a key enzyme involved in lipolysis, 
has been shown to impair exercise performance in a mouse model due 
to a decreased supply of FFAs to skeletal muscle (110).

Obesity may lead to a decrease in β2-adrenergic receptor density 
in adipocytes, resulting in resistance to catecholamine action and a 
blunted release of FFAs from WAT during fasting and exercise. The 
capacity of WAT to mobilize FFAs during acute exercise and in 
response to chronic training plays a crucial role in facilitating overall 
fat oxidation, particularly within skeletal muscle (111). Resistance 
physical activity is therefore essential for increasing energy supply to 
tissues and improving metabolic flexibility. At the same time, aerobic 
exercise can improve insulin resistance mainly through the 
re-arrangement of FFAs from WAT to tissues on a state of intense 
mitochondrial lipids oxidation. Ultimately, both kind of training, 
through different mechanisms contribute to improvement of 
steatotic liver.

Metabolic flexibility encompasses a diverse array of pathways and 
mechanisms related to fuel selection, energy expenditure, and overall 
metabolic function. These aspects present potential targets for therapeutic 
interventions, particularly in the context of MASLD. Conflicting data 
have emerged regarding the impact of increasing mitochondrial FFA flux 
and oxidation on insulin resistance (112, 113). Notably, these strategies 
do not replicate the same energy expenditure or demand observed during 
exercise. Consequently, while interventions aimed at modifying substrate 
metabolism or metabolic flexibility may hold implications for obesity and 
metabolic diseases associated with nutrient overload, they cannot 
be considered genuine exercise mimetics unless accompanied by an 
elevated energy demand (12).

5 Conclusion

Impaired metabolic flexibility impacts the body ability to properly 
adjust to different physiological conditions, including exercise. Insulin 
resistance involves various tissues and organs, with the liver being a 
key organ where the shift from metabolic flexibility to inflexibility 
occurs. During exercise and under other changing conditions, 
decreased metabolic flexibility can compromise the body ability to 
handle different substrates.

Restoring metabolic flexibility and reducing insulin resistance are 
important targets for improving health outcomes. Exercise, combined 
with dietary and pharmacological interventions, may be an effective 
way to help restore metabolic flexibility and mitigate the liver damage 
driven by insulin resistance.
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