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Efficacy of probiotics/synbiotics 
supplementation in patients with 
chronic kidney disease: a 
systematic review and 
meta-analysis of randomized 
controlled trials
Chang Liu , Letian Yang , Wei Wei  and Ping Fu *

Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, 
Chengdu, China

Background: Chronic kidney disease (CKD) is a serious and steadily growing 
health problem worldwide. Probiotic and synbiotic supplementation are 
expected to improve kidney function in CKD patients by altering imbalanced 
intestinal flora, regulating microbiota metabolites, modulating the brain-gut 
axis, and reducing inflammation.

Objectives: Our aim is to report the latest and largest pooled analyses and 
evidence updates to explore whether probiotic and synbiotic have beneficial 
effects on renal function and general conditions in patients with CKD.

Methods: We conducted a systematic literature search using PubMed, Embase, 
Web of Science, and the Cochrane Central Register of Controlled Trials from 
inception until 1 December 2023. Eligible literatures were screened according 
to inclusion and exclusion criteria, data were extracted, and a systematic review 
and meta-analysis was performed. Measurements included renal function-
related markers, inflammatory markers, uremic toxins, lipid metabolism-related 
markers and electrolytes levels.

Results: Twenty-one studies were included. The results showed that probiotic/
synbiotic significantly reduced blood urea nitrogen (BUN) (standardized mean 
difference (SMD), −0.23, 95% confidence interval (CI) −0.41, −0.04; p  =  0.02, 
I2  =  10%) and lowered c-reactive protein level (CRP) (SMD: −0.34; 95% CI: −0.62, 
−0.07; p  =  0.01, I2  =  37%) in CKD patients, compared with the control group.

Conclusion: In summary, probiotic/synbiotic supplementation seems to 
be  effective in improving renal function indices and inflammation indices in 
CKD patients. Subgroup analyses suggested that longer-term supplementation 
is more favorable for CKD patients, but there is a high degree of heterogeneity 
in the results of partial subgroup analyses. The efficacy of probiotic/synbiotic in 
treating CKD needs to be supported by more evidence from large-scale clinical 
studies.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42024526836, Unique identifier: CRD42024526836.
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1 Introduction

CKD is characterized by abnormalities in kidney structure or 
function that persist for a period of at least 3 months (1). The clinical 
features of CKD include decreased renal function and/or increased 
urinary albumin excretion (proteinuria) (2). It is a disease that 
progresses slowly over time, and a significant number of patients 
eventually reach end-stage renal disease and require dialysis for 
treatment (3, 4). Currently, the global prevalence of CKD is about 
11%, and with increasing age, the prevalence in people over 70 years 
old is as high as 34% (5, 6). In addition, patients with CKD have an 
increased risk of cardiovascular disease, hypertension, diabetes, and 
infections (7). Although CKD has received considerable attention 
from scientists and clinicians, the care and treatment of the condition 
are still not up to par (8). Consequently, there is a pressing need to 
explore new drugs or therapeutic approaches.

Previous studies have shown that ecosystem imbalances are 
strongly associated with a number of chronic diseases, such as chronic 
kidney disease, diabetes and cardiovascular disease (9, 10). There is 
also evidence showed that imbalances in the gut microbiota may 
contribute to CKD (11). In addition, worsening CKD can further 
exacerbate imbalances in gut flora (12). Researchers proposed the 
gut-kidney axis and the CKD-colon axis in 2011 (13) and 2015 (14) to 
characterize the interactions between the kidney and the gut. 
Probiotics, synbiotic supplements are then expected to slow the 
progression of CKD by regulating the balance of intestinal flora (15). 
Probiotics, consisting of active microorganisms, colonize the human 
intestinal tract to improve the microbiological balance and benefit 
human health (16). Recent studies indicated that probiotics could 
potentially offer advantages to individuals with chronic kidney disease 
(17–19). The current definition of synbiotic has been updated to “a 
mixture of live microorganisms and substrates selectively utilized by 
host microorganisms to provide health benefits to the host” (20). 
There have been a number of studies aimed at evaluating the role of 
synbiotic supplementation in patients with CKD (21–24). Currently, 
non-food probiotics and synbiotic supplements are becoming 
increasingly available in the United States (25).

The use of probiotics has shown potential as a nutritional strategy 
for the prevention and/or treatment of CKD. In some animal studies, 
Lactobacillus supplementation has been shown to slow the progression 
of chronic kidney disease and delay renal failure by altering short-
chain fatty acid and nicotinamide metabolism (26). In addition, an 
exploratory clinical study found that serum levels of tumor necrosis 
factor-α (TNF-α), Interleukin (IL)-6, IL-18, and endotoxin were 
significantly reduced in patients with CKD after probiotics 
administration (27). Despite growing interest in the potential role of 
probiotics in improving chronic kidney disease, there is a lack of 
extensive cross-sectional studies to comprehensively assess the effect 
of probiotics/synbiotics on the general condition of CKD patients in 
the population. In addition, although there have been previous meta-
analyses of the relationship between probiotics and CKD, the outcome 
indicators of these analyses have focused on one of many metrics, such 
as kidney function or metabolism (28, 29). Therefore, a systematic 
review and meta-analysis incorporated latest RCT studies was 
designed to comprehensively investigate the effects of probiotics/
synbiotics supplementation on renal function, lipid metabolism, 
inflammation, uremic toxin levels and electrolyte levels in dialysis/
non-dialysis CKD patients.

2 Methods

2.1 Search strategy

The review program was established by two investigators (LC) and 
(WW) prior to the start of the study and registered with the PROSPERO 
International Prospective Registry of Systematic Reviews (registration 
number CRD42024526836). This study was conducted according to the 
Cochrane Manual and the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) (30). Two independent reviewers 
(LC and YLT) searched PubMed, Embase, Web of Science and Cochrane 
Library from inception until December 2023. We searched the databases 
using the following terms: “probiotics,” “probiotic,” “synbiotics,” 
“synbiotic,” “renal insufficiency, chronic,” “chronic renal insufficiencies,” 
“renal insufficiencies, chronic,” “chronic renal insufficiency,” “kidney 
insufficiency, chronic,” “chronic kidney insufficiencies,” “kidney 
insufficiencies, chronic,” “chronic kidney diseases,” “chronic 
kidney disease” “disease, chronic kidney,” “diseases, chronic kidney,” 
“kidney disease, chronic,” “kidney diseases, chronic,” “chronic renal 
diseases,” “chronic renal disease,” “disease, chronic renal,” “diseases, 
chronic renal,” “renal disease, chronic,” “renal diseases, chronic” and 
“chronic kidney insufficiency.” Two researchers independently searched 
and evaluated the included studies, and any disagreements in the 
literature search were resolved by conferring with a third researcher 
(WW). Specific search strategies are shown in Supplementary Table 1.

2.2 Eligible criteria

The study met all of the following criteria (1) study design: 
randomized controlled study; (2) study participants: patients with a 
confirmed diagnosis of chronic kidney disease; (3) intervention: the 
intervention group should receive any dose of probiotic or synbiotic 
supplementation; (4) comparison regimen/control group: participants 
in the control group may receive a placebo or other medication and if 
other medications are used in the treatment group, they also control 
group must be used in the same way; (6) language: articles published 
in English.

Studies were excluded for the following reasons: (1) they were 
reviews, meta-analyses, case reports, conference abstracts, and 
guidelines; (2) the study was animal-based; (3) the study was published 
in a language other than English.

2.3 Research screening

After excluding duplicate records, two researchers independently 
screened the titles and abstracts of all identified records to remove 
irrelevant documents. A full-text review was then conducted to 
determine eligibility for inclusion. Any disagreements regarding study 
selection could be resolved through discussion with a third researcher 
(LC, YLT, and WW). The study selection process is shown in Figure 1.

2.4 Data extraction

The following data were extracted from the included studies: (a) 
The basic information, including first author, publication year, region, 
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data source, study design, and enrollment period; (b) Characteristics 
of the participants, including sample size, sex ratio (male), median 
age, median Body Mass Index (BMI) and hemodialysis time; (c) 
Interventions: probiotics/synbiotics types, dosage, frequency, 
intervention time; (d) Disease-related indicators: creatinine, BUN, 
eGFR, hemoglobin, uric acid, potassium, total cholesterol, 
HDL-cholesterol, LDL-cholesterol, indoxyl sulfate, p-cresyl sulfate, 
indole-3-acetic acid, CRP, IL-6, triglycerides, blood sodium, blood 
calcium and blood phosphorus. When continuous variables in the 
study were reported as median with range or interquartile range, 
we calculated the mean ± standard deviation through the validated 
mathematical method. When data were missing or not reported in the 

study, we contacted the corresponding authors to obtain completed 
data if available.

2.5 Quality assessment

Quality assessment of eligible RCTs was performed according to 
the Cochrane Handbook for Systematic Reviews of Interventions 
5.1.0, based on seven terms: randomized sequence generation, 
allocation concealment, participant and personnel blinding, blinding 
of outcome assessment, incomplete outcome data, selective reporting 
and other biases sources (31). Three outcomes were assessed for each 

FIGURE 1

Flowchart of the employed literature search.
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study, including low risk, high risk, and unclear risk. Studies with 
more “low risk” of bias assessment were considered superior.

2.6 Statistical analysis

Evidence synthesis was performed in Review Manager 5.4 version 
(Cochrane Collaboration, Oxford, United Kingdom). The SMD was 
applied for the comparison of continuous variables. All metrics were 
reported with mean ± SD. The heterogeneity in studies was assessed 
through the inconsistency index (I2). I2 > 50% were considered as 
significant heterogeneity. A random-effect model was used to estimate 
the combined SMD when significant heterogeneity was detected 
(I2 > 50%). Otherwise, the fixed-effect model was applied. In addition, 
we performed one-way sensitivity analyses to evaluate the effect of 
included studies on the combined results for outcomes with significant 
heterogeneity. Subgroup analyses were used to explore sources of 
heterogeneity. The subgroup analysis has not been conducted for 
indicators which were few included in literatures. Because the limited 
number of literatures may lead to a significant discrepancy between 
subgroups, which could impact the accuracy of the results. Publication 
bias was evaluated visually by creating funnel plots via Review 
Manager 5.4 version (Cochrane Collaboration, Oxford, 
United Kingdom), as well as by conducting Egger’s regression tests 
using Stata 15.0 version (Stata Corp, College Station, TX, 
United States) for outcomes with 5 or more included studies. p-value 
< 0.05 was considered as statistically significant publication bias.

3 Results

3.1 Literature search

The initial search was completed on 1 December 2023. We have 
identified 310 potentially relevant publications from PubMed, 434 
from Embase, 103 from The Cochrane library, 540 from Web of 
science and 2 from manual retrieval. Endnote was used to eliminate 
duplicate publications, resulting in 791 records for review. After 
excluding publications that did not meet the inclusion criteria, 
we included 21 studies for systematic review and meta-analysis. A flow 
diagram illustrating the exclusion of articles with specific reasons is 
shown in Figure 1 (PRISMA flowchart).

3.2 Study characteristics

We conducted a systematic review and meta-analysis of 869 
patients with chronic kidney disease involved in 21 RCT studies (17–
19, 21, 22, 32–47). The sample size ranged between 11 and 80, and the 
mean age of the patients was recorded ranged from a minimum of 
45 years old to a maximum of 76 years old. The majority of the patients 
were from Asia. The articles were studied from 2013 to 2023 (Table 1).

3.3 Risk of bias assessment

The risk of bias assessment is presented in 
Supplementary Figures S1, S2. Most of the included studies were 

considered to have a low or unclear risk of bias. Two papers had 
significant baseline imbalance (17, 36). The main source of bias in two 
pieces of literatures was the failure to implement double blinding (21, 
44). Six literatures were at high risk because of poor completeness of 
data results (19, 32–34, 44, 46).

3.4 Renal function parameters

3.4.1 Change in blood urea nitrogen
Twelve studies (17, 19, 32, 33, 36, 37, 40–42, 45–47) including 527 

patients (271 probiotics/synbiotics; 256 controls) were included in the 
evaluation of blood urea nitrogen (BUN). Pooled analysis showed that 
the reduction of BUN in patients treated with probiotics/synbiotics 
was significantly better than in the control group (SMD: −0.23; 95% 
CI: −0.41, −0.04; p = 0.02; Figure  2A). No evidence of significant 
heterogeneity (I2 = 10%, p = 0.34) and statistical (Egger’s test, p = 0.452) 
or visual (Figure 3A) publication bias was detected.

Based on a range of subgroup analyses, we did not observe an 
effect of probiotic/synbiotics supplementation on BUN in American 
patients (k = 3, SMD: −0.13, 95% CI: −0.59, 0.33, I2 = 0%, p = 0.57). 
However, we found a significant decrease in BUN following probiotic/
synbiotics supplementation in Asian individuals (k = 8, SMD: −0.28, 
95% CI: −0.48, −0.09, I2 = 22%, p = 0.004). In addition, probiotic/
synbiotics supplementation significantly reduced BUN in the long-
term treatment (≥3 months; k = 10, SMD: −0.23, 95% CI: −0.44, 
−0.01, I2 = 21%, p = 0.04), but not in the short term (<3 months; k = 3, 
SMD: −0.19, 95% CI: −0.60, 0.22, I2 = 0%, p = 0.35). In addition, 
probiotics/synbiotics did not change BUN level in the HD patients 
(k = 7, SMD: −0.15, 95% CI: −0.4, 0.1, I2 = 0%, p = 0.23). However, 
probiotics/synbiotics significantly decreased the BUN level in non-HD 
patients (k = 6, SMD: −0.31, 95% CI: −0.54, −0.07, I2 = 45%, p = 0.01). 
And probiotics/synbiotics did not change BUN level in patients ≥60 
years (k = 4, SMD: 0.01, 95% CI: −0.35, 0.38, I2 = 0%, p = 0.95) and 
patients <6 0 y (k = 8, SMD: −0.21, 95% CI: −0.43, 0.00, I2 = 0%, 
p = 0.05; Table 2).

3.4.2 Change in serum creatinine
Eleven articles (17, 19, 21, 22, 32, 33, 40, 42, 45–47) were included 

in the analysis of serum creatinine levels involving 423 patients (218 
probiotics/synbiotics; 205 controls). The evidence synthesis showed 
similar changes of serum creatinine in patients in the probiotic/
synbiotics group and the placebo group (SMD: −0.24; 95% CI: −0.52, 
0.04; p = 0.09) without significant heterogeneity (I2 = 47%, p = 0.04; 
Figure  2B). No publication bias was detected by the funnel plot 
(Figure 3B) or Egger’s test (p = 0.097).

Based on a series of subgroup analyses (Table  2), we  did not 
observe any changes in serum creatinine following probiotic/
synbiotics supplementation in individuals on hemodialysis (k = 5, 
SMD: −0.06, 95% CI: −0.37, 0.26, I2 = 0%, p = 0.72) and 
non-hemodialysis individuals (k = 6, SMD: −0.36, 95% CI: −0.8, 0.09, 
I 2 = 66%, p = 0.11). Based on geographical location, we observed no 
significant change of serum creatinine in countries located in America 
(k = 2; SMD: −0.03, 95% CI: −0.56, 0.5, I2 = 61%, p = 0.03), Asia (k = 6, 
SMD: −0.36, 95% CI: −0.76, 0.04, I2 = 67%, p = 0.07) and Europe (k = 2; 
SMD: 0.15, 95% CI: −0.53, 0.83, I2 = 0%, p = 0.67). In addition, 
probiotics/synbiotics did not change the serum creatinine in the short 
term (<3 months; k = 4, SMD: −0.05, 95% CI: −0.43, 0.33, I2 = 0%, 
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TABLE 1 Baseline characteristics of include studies and methodological assessment.

Authors Study 
period

Country Study 
design

Patients (n) male (n) Intervention Median 
follow-up 
(months)

Comparator Average age 
(years)

Mean BMI (kg/m2)

Intervention/
control

Intervention/
control

Intervention/
control

Intervention/
control

Carmela 

Cosola et al. 

(21)

2021 Italy RCT 13/10 7/7

Synbiotic (Lactobacillus casei LC4P1 

2.4 × 109, Bifidobacterium animalis BLC1 

2.4 × 109), prebiotics (fructoligosaccharides 

2.5 g and inulin 2.5 g) and natural 

antioxidants (a mix of quercetin 0.064 g, 

resveratrol 0.023 g and proanthocyanidins 

0.013 g) (2 bags/day)

2 Placebo 51.0/51.5 27.2/25.8

Maria Teresa 

Rocchetti 

et al. (22)

2020 Italy RCT 6/5 5/4

Synbiotic consisted of probiotics 

(Lactobacillus casei LC4P1 3.2 × 109, 

Lactobacillus bulgaricus SP5 3.2 × 109, and 

Bifidobacterium animalis BLC1 3.2 × 109), 

prebiotics (fructoligosaccharides 5 g and 

inulin 5 g), natural antioxidants (a mix of 

quercetin 0.13 g, resveratrol 46 μg, and 

proanthocyanidins 25 μg)

2 Placebo 56.0/52.0 −/−

Banos, 

Amanda de 

Faria et al. 

(32)

2018 Brazil RCT 12/10 6/5

Streptococcus thermophilus, Lactobacillus 

acidophilus, and Bifidobacteria longum 

(total 90 billion CFU/day)

3 Placebo 64.7/63.6 26.7/27.2

Borges et al. 

(33)
2017 Brazil RCT 16/17 11/10

Streptococcus thermophilus, Lactobacillus 

acidophilus, and Bifidobacteria longum 

(total 90 billion CFU/day)

3 Placebo 53.6/50.3 25.3/25.2

Farzad Eidi 

et al. (34)
2018 Iran RCT 21/21 15/17 Lactobacillus rhamnosus (1.6*107 CFU/day) 1 Placebo 57.0/59.6 24.1/24.7

Guida et al. 

(35)
2014 Italy RCT 18/12 14/12

5*109 Lactobacillus plantarum, 2*109 

Lactobacillus casei subsp. Rhamnosus, 2*109 

Lactobacillus gasseri, 1*109 Bifidobacterium 

infantis, 1*109 Bifidobacterium longum, 

1*109 Lactobacillus acidophilus, 1*109 

Lactobacillus salivarius, 1*109 Lactobacillus 

sporogenes, 5*109 Streptococcus 

thermophilus (5 g/day)

1 Placebo 57.0/63.2 26.4/28.4

(Continued)

https://doi.org/10.3389/fnut.2024.1434613
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Liu
 et al. 

10
.3

3
8

9
/fn

u
t.2

0
24

.14
3

4
6

13

Fro
n

tie
rs in

 N
u

tritio
n

0
6

fro
n

tie
rsin

.o
rg

TABLE 1 (Continued)

Authors Study 
period

Country Study 
design

Patients (n) male (n) Intervention Median 
follow-up 
(months)

Comparator Average age 
(years)

Mean BMI (kg/m2)

Intervention/
control

Intervention/
control

Intervention/
control

Intervention/
control

Neda 

Haghighat 

et al. (36)

2018 Iran RCT 23/19 12/10

probiotics powder containing Lactobacillus 

acidophilus strain T16, Bifidobacterium 

bifidum strain BIA-6, Bifidobacterium lactis 

strain BIA-6, and Bifidobacterium longum 

strain LAF-5 (2.7 × 107 CFU/g each) (5 g/day)

3 Placebo 48.0/45.4 23.8/23.3

Michael 

Laffin et al. 

(37)

2019 Canada RCT 9/11 6/7
HAM-RS2 (the first month: 20 g/d, the 

second month: 25 g/d)
2 Placebo 46.2/45.4 −/−

Priya 

Lakshmi 

et al. (19)

2020 India RCT 40/40 −/− Lobun Probiotics (twice/day) 3 Placebo −/− −/−

Paik Seong 

Lim et al. 

(17)

2021 China RCT 25/25 10/10

Lactococcus lactis subsp. Lactis LL358, 

Lactobaccillus salivarius LS159, 

Lactobaccillus pentosus LPE588 (1 * 

1011CFU/day)

6 Placebo 53.8/57.6 24.2/24.8

Aida Lydia 

et al. (38)
2022 Indonesia RCT 27/30 10/11

Capsules containing synbiotics 

(Lactobacillus acidophilus and 

Bifdobacterium longum 5×109 CFU and 

60 mg of fructooligosaccharides; two 

capsules/day)

2 Placebo 51.2/52.3 22.5/24.2

Catherine 

McFarlane 

et al. (39)

2017–

2018
Australia RCT 35/33 23/22

high resistant starch fiber supplement (20 g/

day); probiotic component of nine different 

strains from three different genera 

(Bifidobacteria, Lactobacillus, and 

Streptococcus) (4.5 × 1011 CFU/day)

12 Placebo 71.2/65.8 −/−

Soheila 

Mirzaeian 

et al. (40)

2015–

2016
Iran RCT 21/21 14/16

Capsules containing 500 mg symbiotic: 

Lactobacillus casei (3.5 * 109 CFU), L. 

acidophilus (1.5*109 CFU), L. rhamnosus (3 

*109 CFU), L. bulgaricus (3.5* 108 CFU), 

Bifidobacterium breve (5 * 109 CFU), B. 

longum (1 * 1010 CFU), and Streptococcus 

thermophiles (3.5*108 CFU) (two capsules/

day)

2 Placebo 58.3/69.7 24.8/24.6

(Continued)
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Authors Study 
period

Country Study 
design

Patients (n) male (n) Intervention Median 
follow-up 
(months)

Comparator Average age 
(years)

Mean BMI (kg/m2)

Intervention/
control

Intervention/
control

Intervention/
control

Intervention/
control

Milos 

Mitrovic, 

MD et al. 

(41)

2019–

2020
Serbia RCT 17/17 9/9

Pills containing 16 billion colonies of 

Lactobacillus acidophilus CBT LA1 (4 * 109), 

Lactobacillus casei CBT LC5 (4 * 109), and 

Bifidobacterium lactis CBT BL3 (8 * 109) (2 

pills/day); 1.6 g of inulin

3 Placebo 69/69 26.5/25.5

Anita 

Saxena et al. 

(42)

2019 Multicenter RCT 29/21 −/−

Pills containing probiotics 

(Lactobacillusacidophillus 100 mg, 

Bifidobacteriumlongumm 100 mg, 

Streptococcus thermophilus 50 mg), 

prebiotics (FOS 100 mg), and proteolytic 

enzymes (150 mg with an activity 

355,000 IU) (three times/day)

3 Placebo 54/49 21.6/26.0

Zahra 

Shariaty 

et al. (18)

2014 Iran RCT 17/17 10/10

L. acidophilus (3 × 1010 CFU/g), Lactobacillus 

casei (3 × 109 CFU/g), Lactobacillus 

rhamnosus (7 × 109 CFU/g), Lactobacillus 

bulgaricus (5 × 108 CFU/g), Bifidobacterium 

breve (2 × 1010 CFU/g), Bifidobacterium 

longum (1 × 109 CFU/g), S. thermophilus 

(3 × 108 CFU/g) (total 500 mg/day)

3 Placebo 54.1/61.5 −/−

Alireza 

Soleimani 

et al. (43)

2017–

2018
Iran RCT 30/30 21/21

Synbiotic capsule containing Lactobacillus 

acidophilus, Lactobacillus casei, and 

Bifidobacterium bifidum (2 × 109 CFU/day 

each); 0.8 g/day of inulin

3 Placebo 62.8/62.8 26.4/26.9

Rita de 

Cássia 

Stampini 

Oliveira 

Lopes et al. 

(44)

2018 Brazil RCT 29/29 17/21

100 mL of probiotic dairy drink and 40 g of 

extruded sorghum flakes, probiotic 

bacterium Bifidobacterium longum BL-G301 

(7.4 × 108 ± 5.4 × 108 CFU/100 mL)

1.75 Placebo 63.1/63.0 −/−

Hamid 

Tayebi-

Khosroshahi 

et al. (45)

2016 Iran RCT 16/16 9/5 30 mm lactulose syrup (three times/ day) 2 Placebo 59.3/56.8 −/−

(Continued)

TABLE 1 (Continued)
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p = 0.79) and the long term (≥3 months; k = 7, SMD: −0.32, 95% CI: 
−0.7, 0.06, I2 = 63%, p = 0.1) or in older patients ≥ 60 years (k = 3, SMD: 
−0.08, 95% CI: −0.51, 0.34, I2 = 0%, p = 0.7) and younger patients < 60 
years (k = 7, SMD: −0.28, 95% CI: −0.64, 0.08, I2 = 60%, p = 0.13).

3.4.3 Change in uric acid
Six studies (17, 19, 32, 37, 42, 46) including 242 patients (125 

probiotics/synbiotics; 117 controls) were included in the analysis of 
uric acid. Pooled analysis showed similar levels of alteration of uric 
acid in the probiotic/synbiotics group and the control group (SMD: 
−0.21; 95% CI: −0.47, 0.04; p = 0.11; Figure  2C). No significant 
heterogeneity (I2 = 0%, p = 0.55) and no evidence of statistical (Egger’s 
test, p = 0.799) or visual (Figure 3C) publication bias was observed.

3.4.4 Change in eGFR
Four articles (21, 32, 39, 41) reported data on eGFR levels between 

the two groups of 147 cases (77 probiotics/synbiotics; 70 controls). 
Evidence synthesis observed similar changes in eGFR levels in patients 
with probiotics/synbiotics and placebo (SMD: −0.16; 95% CI: −0.61, 
0.29; p = 0.48), with significant heterogeneity (I2 = 42%, p = 0.16; 
Figure  2D). No evidence of visual publication bias was observed 
(Figure 3D).

3.5 Inflammation indicators and uremic 
toxins

3.5.1 Change in C-reactive protein
Ten studies (17, 18, 21, 22, 32, 40, 41, 43, 46, 47) with a total of 356 

patients (181 probiotics/synbiotics patients; 175 control patients) were 
included in the analysis of CRP. Pooled analysis showed that the 
probiotic/synbiotics group was significantly more effective in reducing 
CRP than the control group (SMD: −0.34; 95% CI: −0.62, −0.07; 
p = 0.01; Figure  4A). No significant heterogeneity was observed 
(I2 = 37%, p = 0.12) and no evidence of statistical (Egger’s test, p = 0.288) 
or visual (Figure 3E) publication bias was observed.

Subgroup analysis based on patient population suggested no 
changes in CRP following probiotics/synbiotics supplementation in 
individuals on hemodialysis (k = 5, SMD: −0.16, 95% CI: −0.49, 0.17, 
I2 = 29%, p = 0.34; Table 2). Furthermore, probiotics/synbiotics did 
not change CRP level in American individuals (k = 5, SMD: −0.33, 
95% CI: −0.76, 0.11, I2 = 65%, p = 0.14), older individuals (k = 5, SMD: 
−0.36, 95% CI: −0.76,0.03, I2 = 39%, p = 0.07), younger individuals 
(k = 5, SMD: −0.31, 95% CI: −0.75, 0.12, I2 = 48%, p = 0.16) and 
individuals treated for a shorter period of time (k = 4, SMD: −0.02, 
95% CI: −0.40, 0.36, I2 = 0%, p = 0.92). However, we  found a 
significant decrease in CRP following probiotics/synbiotics 
supplementation in non-hemodialysis individuals (k = 5, SMD: 
−0.67, 95% CI: −1.02, −0.33, I2 = 0%, p = 0.0001), individuals treated 
for a longer period of time (k = 4, SMD: −0.51, 95% CI: −0.83, −0.19, 
I2 = 33%, p = 0.002) and European individuals (k = 3, SMD: −0.56, 
95% CI: −1.05, −0.07, I2 = 0%, p = 0.03).

3.5.2 Change in IL-6
Five studies (17, 32, 33, 37, 41) were included in the analysis of 

IL-6, comprising a total of 159 patients (79 probiotics/synbiotics 
patients; 80 control patients). Pooled analysis suggested no statistically 
significant difference in the change of IL-6 levels between the two T
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groups (SMD: −0.01; 95% CI: −0.36, 0.33; p = 0.93; Figure 4B). No 
significant heterogeneity was observed (I2 = 17%, p = 0.31). Nor was 
evidence of publication bias observed statistically Egger’s test, 
(p = 0.626) or visually (Figure 3F).

3.5.3 Change in indoxyl sulfate
Three hundred and seventeen patients from 8 studies (17, 22, 32, 

33, 38–41) were included in the analysis of indoxyl sulfate (159 

probiotics/synbiotics patients; 158 control patients). No statistically 
significant differences were found in the results of the pooled analysis 
between the two groups (SMD: 0.06; 95% CI: −0.16, 0.28; p = 0.58; 
Figure  4C). No significant heterogeneity was observed (I2 = 0%, 
p = 0.54) as well as evidence of statistical (Egger’s test, p = 0.507) or 
visual (Figure 3G) publication bias.

Subgroup analysis based on patient population revealed no 
changes in indoxyl sulfate level after evaluation with either 

FIGURE 2

Forest plots of kidney function outcomes: (A) BUN, (B) serum creatinine, (C) uric acid, (D) eGFR.
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hemodialysis patients (k = 4, SMD: 0.03, 95% CI: −0.29, 0.34, 
I2 = 0%, p = 0.87) or non-hemodialysis patients (k = 4, SMD: 0.10, 
95% CI: −0.21, 0.42, I2 = 0%, p = 0.53; Table  2). Furthermore, 
probiotics did not change the indoxyl sulfate level in the short 
term (<3 months; k = 3, SMD: 0.20, 95% CI: −0.18, 0.58, I2 = 0%, 
p = 0.30) and the long term (≥3 months; k = 5, SMD: −0.02, 95% 
CI: −0.33, 0.29, I2 = 19%, p = 0.90) or in older patients (≥60 years; 
k = 4, SMD: 0.11, 95% CI: −0.20, 0.41, I2 = 10%, p = 0.50) and 
younger patients (<60 years; k = 4, SMD: 0.02, 95% CI: −0.31, 
0.34, I2 = 0%, p = 0.93). Besides, probiotics did not change the 
indoxyl sulfate level in Asia individuals (k = 4, SMD: 0.03, 95% 
CI: −0.36, 0.42, I2 = 31%, p = 0.86), America individuals (k = 2, 

SMD: 0.17, 95% CI: −0.37, 0.70, I2 = 0%, p = 0.54) and European 
individuals (k = 2, SMD: −0.32, 95% CI: −0.91, 0.27, I2 = 0%, 
p = 0.29).

3.5.4 Change in p-cresyl sulfate
A total of 211 patients from 6 studies (17, 32–35, 41) were 

included in the analysis of p-cresyl sulfate (109 probiotics/
synbiotics patients; 102 control patients). No significant statistical 
differences were found in the results of the pooled analyses 
between the probiotics/synbiotics group and the control group 
(SMD: −0.22; 95% CI: −0.5, 0.06; p = 0.12; Figure  4D). No 
significant heterogeneity (I2 = 5%, p = 0.38) was observed as well 

FIGURE 3

Funnel plots of (A) BUN, (B) serum creatinine, (C) uric acid, (D) eGFR, (E) CRP, (F) IL-6, (G) indoxyl sulfate (H) p-cresyl sulfate.
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TABLE 2 Subgroup analyses.

Subgroup

Change in BUN Change in serum creatinine Change in indoxyl sulfate Change in CRP Change of blood phosphorus

Study
SMD 

[95%CI]
P-

value
I2 Study

SMD 
[95%CI]

P-
value

I2 Study
SMD 

[95%CI]
P-

value
I2 Study

SMD 
[95%CI]

P-
value

I2 Study
SMD 

[95%CI]
P-

value
I2

Total 13

−0.23 

[−0.41, 

−0.04]

0.02 10% 11
−0.24 [−0.52, 

0.04]
0.09 47% 8

0.06 [−0.16, 

0.28]
0.58 0% 10

−0.34 

[−0.62, 

−0.07]

0.01 37% 10
−0.08 [−0.28, 

0.11]
0.41 0%

Patient population

Hemodialysis 7
−0.15 

[−0.40, 0.10]
0.23 0% 5

−0.06 [−0.37, 

0.26]
0.72 0% 4

0.03 [−0.29, 

0.34]
0.87 0% 5

−0.16 

[−0.49, 0.17]
0.34 29% 7

−0.05 [−0.29, 

0.20]
0.72 0%

Non-

hemodialysis
6

−0.31 

[−0.54, 

−0.07]

0.01 45% 6
−0.36 [−0.80, 

0.09]
0.11 66% 4

0.10 [−0.21, 

0.42]
0.53 0% 5

−0.67 

[−1.02, 

−0.33]

0.0001 0% 3
−0.14 [−0.46, 

0.18]
0.38 0%

Region

Asia 8

−0.28 

[−0.48, 

−0.09]

0.004 22% 6
−0.36 [−0.76, 

0.04]
0.07 67% 4

0.03 [−0.36, 

0.42]
0.86 31% 5

−0.33 

[−0.76, 0.11]
0.14 65% 8

−0.08 [−0.29, 

0.14]
0.48 0%

Europe 1
0.14 [−0.53, 

0.81]
0.69 NA 2

0.15 [−0.53, 

0.83]
0.67 0% 2

−0.32 

[−0.91, 0.27]
0.29 0% 3

−0.56[−1.05, 

−0.07]
0.03 0% 1

0.00 [−0.82, 

0.82]
1 0%

America 3
−0.13 

[−0.59, 0.33]
0.57 0% 2

−0.03[−0.56, 

0.5]
0.03 61% 2

0.17[−0.37, 

0.70]
0.54 0% 1

−0.15 

[−0.99, 0.69]
0.73 NA 1

0.07 [−0.81, 

0.96]
0.87 NA

Treatment time

≥3 months 10
−0.23[−0.44, 

−0.01]
0.04 21% 7

−0.32[−0.7, 

0.06]
0.1 63% 5

−0.02[−0.33, 

0.29]
0.90 19% 6

−0.51[−0.83, 

−0.19]
0.002 33% 6

−0.16[−0.39, 

0.08]
0.19 0%

<3 months 3
−0.19[−0.60, 

0.22]
0.35 0% 4

−0.05[−0.43, 

0.33]
0.79 0% 3

0.20 [−0.18, 

0.58]
0.30 0% 4

−0.02[−0.40, 

0.36]
0.92 0% 4

0.09[−0.26, 

0.44]
0.62 0%

Mean/median age

≥60 years 4
0.01[−0.35, 

0.38]
0.95 0% 3

−0.08[−0.51, 

0.34]
0.70 0% 4

0.11[−0.20, 

0.41]
0.50 10% 5

−0.36[−0.76, 

0.03]
0.07 39% 2

−0.04[−0.57, 

0.48]
0.87 7%

<60 years 8
−0.21[−0.43, 

0.00]
0.05 0% 7

−0.28[−0.64, 

0.08]
0.13 60% 4

0.02[−0.31, 

0.34]
0.93 0% 5

−0.31[−0.75, 

0.12]
0.16 48% 7

−0.03[−0.27, 

0.22]
0.84 0%

OR, odds ratio; CI, confidence interval.
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as statistical (Egger’s test, p = 0.947) or visual (Figure 3H) evidence 
of publication bias.

3.6 Lipid metabolism-related indicators

3.6.1 Change in total cholesterol
A total of six articles (17, 32, 39, 43, 46, 47) involving 280 patients 

were included to analyze total cholesterol levels (142 probiotics/
synbiotics patients; 138 control patients). Pooled analysis showed that 
the changes in total cholesterol levels were similar in the probiotics/
synbiotics group and the control group (SMD: −0.16; 95% CI: −0.39, 
0.08; p = 0.19) with no significant heterogeneity (I2 = 0%, p  = 0.8; 
Figure 5A). Neither the funnel plot (Figure 6A) nor the Egger test 
(p = 0.544) revealed publication bias.

3.6.2 Change in high density lipoprotein
Five studies (32, 39, 43, 46, 47) were included in the analysis 

of high density lipoprotein (HDL), involving 230 patients (117 
probiotics/synbiotics patients; 113 control patients). No 
significant statistical differences were found in the results of the 
pooled analyses between the probiotics/synbiotics group and the 
control group (SMD: 0.28; 95% CI: −0.31, 0.87; p = 0.35; 
Figure  5B). Significant heterogeneity (I2 = 78%, p = 0.001) was 
observed. There was no statistical (Egger’s test, p = 0.874) or 
visual (Figure 6B) evidence of publication bias.

3.6.3 Change in low density lipoprotein
Six articles (32, 39, 42, 43, 46, 47) were included in the analysis for 

low density lipoprotein (LDL), involving 280 patients (146 probiotics/
synbiotics group patients; 134 control patients). Evidence synthesis 

FIGURE 4

Forest plots of inflammation and uremic toxins outcomes: (A) CRP, (B) IL-6, (C) Indoxyl sulfate, (D) p-cresyl sulfate.
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showed that probiotics/synbiotics group had a similar change in LDL 
level with the control group (SMD: −0.04; 95% CI: −0.28, 0.19; p = 0.71) 
with no significant heterogeneity (I 2 = 0%, p = 0.57; Figure 5C). Both 
funnel plot (Figure  6C) and Egger’s test (p = 0.936) did not detect 
publication bias.

3.6.4 Change in triglyceride
Analysis of triglyceride levels in 308 patients (159 probiotic/

synbiotics patients; 149 control patients) from six publications 
(17, 39, 42, 43, 46, 47) showed that there was no statistically 
significant difference (SMD: −0.28; 95% CI: −0.6, 0.04; p = 0.08) 
or significant heterogeneity (I 2 = 47%, p = 0.09) in the change of 
triglyceride levels in the probiotics/synbiotics group compared 
with the control group (Figure 5D). No publication bias was found 
after both funnel plot (Figure  6D) and Egger’s test (p = 0.26) 
evaluation.

3.7 Electrolytes

3.7.1 Change in blood calcium
Six publications (19, 21, 34, 37, 40, 46) involving 227 patients (114 

probiotics/synbiotics patients; 113 control patients) were included in 
the analysis regarding blood calcium levels, and the results suggested 
that there were no statistically significant differences (SMD: 0.21; 95% 
CI: −0.05, 0.47; p = 0.11) and no significant heterogeneity (I 2 = 0%, 
p = 0.84) in the change of blood calcium levels in patients in the 
probiotics/synbiotics group compared with the control group 
(Figure  7A). It is worth noting that funnel plots (Figure  6E) and 
Egger’s test revealed significant publication bias (p = 0.049).

3.7.2 Change in blood potassium
Two hundred and sixteen patients (110 probiotics/synbiotics 

patients; 106 control patients) originating from seven publications 

FIGURE 5

Forest plots of lipid metabolism evaluation outcomes: (A) total cholesterol, (B) HDL, (C) LDL, (D) triglyceride.
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(21, 32–34, 40, 41, 46) were included in the analysis regarding blood 
potassium levels. And the results suggested that there were no 
statistically significant differences (SMD: −0.1; 95% CI: −0.38, 0.18; 
p = 0.48) and no significant heterogeneity (I 2 = 8%, p = 0.36) in the 

change of blood potassium levels of the patients in the probiotics/
synbiotics group compared with the control group (Figure 7B). Funnel 
plot (Figure 6F) and Egger’s test did not reveal significant publication 
bias (p = 0.426).

FIGURE 6

Funnel plots of (A) total cholesterol, (B) HDL, (C) LDL, (D) triglyceride, (E) blood calcium, (F) blood potassium, (G) blood phosphorus.

FIGURE 7

Forest plots of electrolytic outcomes: (A) blood calcium, (B) blood potassium, (C) blood phosphorus.
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3.7.3 Change in blood phosphorus
Nine publications (17, 19, 21, 34, 36, 37, 40, 42, 46) analyzed blood 

phosphorus levels in 411 patients (214 probiotics/synbiotics patients; 
197 control patients). After comprehensive analysis, there was no 
statistically significant difference (SMD: −0.08; 95% CI: −0.28, 0.11; 
p = 0.41) or heterogeneity (I 2 = 0%, p = 0.96) in the change of blood 
phosphorus levels of the patients in the probiotics/synbiotics group 
compared with the control group (Figure  7C). Funnel plots 
(Figure 6G) and Egger’s test did not reveal significant publication bias 
(p = 0.503).

Based on an array of subgroup analyses, we did not observe an 
effect of probiotics/ synbiotics supplementation on blood phosphorus 
in hemodialysis individuals (k = 7, SMD: −0.05, 95% CI: −0.29, 0.2, 
I2 = 0%, p = 0.72) or non-hemodialysis individuals (k = 3, SMD: −0.14, 
95% CI: −0.46, 0.18, I2 = 0%, p = 0.38). Based on geographical location, 
we observed no significant change of blood phosphorus in patients 
from countries located in Asia (k = 7; SMD: −0.08, 95% CI: −0.29, 
0.14, I2 = 0%, p = 0.48). In terms of treatment time, we observed no 
significant change of blood phosphorus in both long term (k = 6; SMD: 
−0.16, 95% CI: −0.39, 0.08, I2 = 0%, p = 0.19) and short term (k = 4, 
SMD: 0.09, 95% CI: −0.26, 0.44, I2 = 0%, p = 0.62). In addition, no 
significant changes in blood phosphorus were observed with 
probiotics/synbiotics supplementation in individuals above and below 
60 years of age (≥60 years, k = 2, SMD: −0.04, 95% CI: −0.57, 0.48, 
I2 = 7%, p = 0.87), (<60 years, k = 7, SMD: −0.03, 95% CI: −0.27, 0.22, 
I2 = 0%, p = 0.84; Table 2).

3.8 Sensitivity analysis

Because the comprehensive analysis of HDL showed significant 
heterogeneity, we  conducted one-way sensitivity analyses for 
comparison of HDL to evaluate the influence of each individual 

study on the combined SMD through removing the individual 
study one by one. Sensitivity analyses revealed that the new 
combined SMD remained constant after exclusion of any individual 
study for HDL (Figure 8).

4 Discussion

4.1 Findings from meta-analysis

The gut microbiota consists of more than 100 trillion bacteria and 
plays an important role in normal body functions, particularly in 
immune and metabolic homeostasis. There is growing evidence that 
alterations in the gut microbiota can affect multiple organ systems and 
lead to many chronic diseases such as CKD (48). CKD is a serious and 
steadily growing health problem worldwide. As a progressive disease, 
the majority of CKD patients are referred to dialysis treatment, and 
effective pharmacological treatments are still being explored (49). One 
of the promising drug candidates is the modification of dysbiotic gut 
flora through probiotics/synbiotics supplementation to reduce levels 
of gut-derived uremic toxins and reduce chronic microinflammation 
thereby improving renal function (50). Due to the small number of 
published studies, it is still highly controversial whether this 
probiotics/synbiotics intervention affects renal function, uremic 
toxicity, and inflammation levels in patients with CKD. In this study, 
we systematically compiled and analyzed the clinical evidence of RCT 
on probiotics/synbiotics for the treatment of CKD to provide better 
guidance for clinical practice.

Our results showed that probiotic/synbiotics supplementation of 
CKD patients can decreased BUN in CKD patients, and no significant 
heterogeneity was found in the analysis results, which to a certain extent 
reflects the effect of probiotic/synbiotics to improve renal function in 
CKD patients. However, the use of probiotic/synbiotics had no effect on 

FIGURE 8

Sensitivity analysis of HDL.
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eGFR and serum creatinine, indicators of renal function. And the 
analysis results of eGFR and serum creatinine did not show apparent 
heterogeneity. This result may be due to the fact that eGFR and serum 
creatinine is strongly influenced by ethnicity, gender and age. And the 
baseline could not be standardized across studies. In addition to this, 
the use of probiotics/synbiotics can reduce CRP expression levels and 
improve inflammatory status in CKD patients. However, probiotic/
synbiotic supplementation did not significantly alter blood electrolyte 
levels and lipid metabolism-related markers in CKD patients compared 
with placebo. No significant publication bias was detected by Egger’s test 
and funnel plot for all indicators except blood calcium.

We also stratified patients according to region, duration of 
treatment, age, and whether or not they were receiving dialysis 
treatment. Subgroups were analyzed for several important indicators: 
urea nitrogen, serum creatinine, CRP, indoxyl sulfate, and blood 
phosphorus. The results of subgroup analyses suggested that probiotics/
synbiotics were more effective in reducing BUN in non-hemodialysis 
CKD patients. This probably due to the fact that CKD in hemodialysis 
patients usually has progressed to the stage of end-stage renal disease, 
and the renal units are irreversibly damaged, which is difficult to 
be improved by drug treatment (51). The results of subgroup analysis 
also showed that probiotics/synbiotics had a better effect on CRP 
reduction in non-hemodialysis CKD patients, suggesting that 
probiotics/synbiotics had a better effect on the improvement of 
inflammation in non-hemodialysis patients. In CKD patients, increased 
inflammation is associated with several negative clinical outcomes such 
as increased oxidative stress, vascular dysfunction and increased risk of 
cardiovascular disease, as the ameliorative effect of probiotics/synbiotics 
on inflammation in non-hemodialysis patients is beneficial to patients 
(52, 53). And one of the goals of treatment for hemodialysis patients is 
to reduce inflammation, thus effectively improving the survival of these 
patients (54). Meanwhile, the results of the subgroup analysis stratified 
on the basis of the duration of probiotics/synbiotics treatment showed 
that there is a significant reduction in BUN and CRP levels in CKD 
patients when probiotics/synbiotics are applied for a longer period of 
time compared to the control group. This suggested that adherence to 
probiotics/synbiotics for a longer period of time is more favorable for 
CKD patients. Interestingly, when subgroup analyses were performed 
on a regional basis, we found that probiotics/synbiotics supplementation 
was more effective in reducing BUN in Asian patients and in reducing 
CRP in patients from the Europe. The number of studies that included 
patients from the Europe was small, so the related results need to 
be further verified.

4.2 Possible mechanisms

The relationship between probiotics/synbiotics and CKD has been 
recognized with the increasing understanding of the health effects of 
microbial balance on the host. Essentially, probiotics/synbiotics 
supplementation can modulate the imbalance of the gut microbiota 
for the biosynthesis of targeted compounds with bioactive properties 
in CKD patients (55). At the same time, probiotics improves the 
integrity of the intestinal epithelial barrier and reduces the production 
of uremic toxins to some extent (56, 57). With the fluctuation of gut 
bacteria, probiotics can modulate inflammation by establishing a 
balance between pro-inflammatory and anti-inflammatory cytokines 
in the body (58). In addition, metabolites from the gut microbiota also 

play an important role in maintaining homeostasis in the gut for the 
benefit of host health through fermentation of amino acids and dietary 
fiber, production of vitamins and neurotransmitters, and modification 
of bile acids (59). For example, Zhu et al. (60) showed that short-chain 
fatty acids (SCFAs) from a variety of bacteria reduced the expression 
of genes for inflammatory cytokines, chemokines, and pro-fibrotic 
proteins in diabetic kidneys, which, in turn, reduced proteinuria, 
glomerular hypertrophy, pedunculated cell injury, and interstitial 
fibrosis in mice with acute kidney injury and CKD. Indeed, probiotic 
or synbiotics supplementation may also reverse the expansion of 
harmful gut microbes that produce excess uremic toxins and attenuate 
the development of CKD (32, 61).

4.3 Strengths and limitations

4.3.1 Limitations
Firstly, most of the publications included in this meta-analysis 

were RCT cohort studies. The sample sizes of RCT studies are small, 
and potential bias from small samples is unavoidable. Secondly, the 
main population groups of the studies we included were from Asia, 
with fewer people from other states, and there may be  regional 
selectivity bias. Whether the results can be  generalized to other 
regions needs to be  confirmed by further studies. Thirdly, the 
heterogeneity of the studies included in the analysis of HDL was large, 
which may hinder the robustness of the results. In addition, the RCTs 
involved in the study did not report adverse events in patients, so 
adverse events were not included in the study.

4.3.2 Strengths
Firstly, this study is the latest meta-analysis of probiotics/

synbiotics for CKD with the largest sample size available. Secondly, 
the original studies included in this article were all RCTs, which were 
of high quality, with good study design and a balanced baseline. 
Thirdly, this study confirmed that probiotics/synbiotics had an 
ameliorative effect on renal function and inflammatory status in 
patients with CKD, which has been consistent with previous studies. 
Fourthly, compared with previous meta-analyses, our study included 
a wider range of outcome indicators and incorporated the most recent 
RCT studies, thus allowing for the most up-to-date evidence on 
probiotics/synbiotics supplementation in CKD treatment. What’s 
more, this study provides more options and guidance notes for clinical 
CKD treatment.

5 Conclusion

In conclusion, this is the latest systematic review and meta-
analysis demonstrating that probiotic/synbiotics interventions 
reduced BUN and CRP in patients with CKD, although there was 
insufficient evidence of a positive effect of probiotics/synbiotics on 
lipids and blood electrolytes. Regarding BUN and CRP, the results of 
our meta-analysis emphasize the positive effects of probiotic/
synbiotics supplementation using longer (≥3 months) treatment 
durations in Asian patients. This area deserves further research to 
elucidate the mechanism of probiotics/synbiotics for the possible 
treatment of CKD and to further assess the safety of different types of 
probiotics/synbiotics through randomized controlled trials.
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