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Background: Hyperuricemia and non-alcoholic fatty pancreas disease (NAFPD) 
are prevalent metabolic diseases, but the relationship between them remains 
underexplored.

Methods: Eighteen Sprague–Dawley rats were randomly assigned to three 
groups: normal (CON), high-fat (PO), and high-fat high-uric acid (PH). After 
12 weeks, serum uric acid (SUA) and triacylglycerol levels were measured. 
Pathological changes in the pancreas were assessed using hematoxylin–eosin 
(HE) staining. Serum samples were analyzed using lipidomics technology, and 
multivariate statistical analysis was employed to identify differences in lipid 
metabolism.

Results: SUA levels in the PO group were not significantly different from those 
in the CON group (p > 0.05). However, from the 4th week onward, SUA levels 
in the PH group were significantly higher than those in both the PO and CON 
groups (p < 0.05). HE staining revealed that most rats in the CON group exhibited 
normal pancreatic islet and acinar cell morphology. The pathological NAFPD 
score in the PH group was higher than that in the PO group. Lipidomics analysis 
identified 34 potential serum biomarkers in the CON and PO groups, 38  in 
the CON and PH groups, and 32 in the PH and PO groups. These metabolites 
primarily included sphingolipids, cholesterol esters, fatty acids, triacylglycerols, 
phosphatidylcholines, lysophosphatidylcholine, phosphatidylethanolamine, and 
lysophosphatidylethanolamine.

Conclusion: Hyperlipidemia combined with hyperuricemia might exacerbates 
NAFPD. Glycerophospholipids may serve as key biomarkers in this process, potentially 
linked to a chronic inflammatory response mediated by glycerophospholipids.
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1 Introduction

The concept of “excessive pancreatic fat” was first introduced by 
Ogilvie in 1933. Non-alcoholic fatty pancreas disease (NAFPD) is 
primarily characterized by pancreatic fat infiltration, also known as 
pancreatic steatosis. Despite its recognition, the pathophysiology of 
NAFPD remains incompletely understood, and no unified standard 
diagnostic criteria or consensus has been established. The prevalence 
of NAFPD varies significantly, ranging from 12.9 to 16% in China (1), 
33% in New Zealand (2), and up to 61.4% in Korea (3). NAFPD is 
strongly associated with diabetes, atherosclerosis, acute and chronic 
pancreatitis, and pancreatic cancer (4). Given its high morbidity and 
link to various diseases, understanding the underlying mechanisms of 
NAFPD is crucial.

Hyperuricemia (HUA), a metabolic disorder defined by elevated 
serum uric acid (SUA) levels, has become increasingly prevalent due 
to changes in dietary habits. HUA is the primary cause of gout but may 
also act as an independent risk factor for metabolic diseases such as 
hypertension, non-alcoholic fatty liver disease (NAFLD), and diabetes 
(5, 6). NAFPD and NAFLD often occur together, suggesting shared 
pathophysiological mechanisms (7, 8). Moreover, HUA is common in 
patients with NAFLD (9), and uric acid (UA) levels correlate with the 
progression and severity of NAFLD (10–12). For instance, Choi et al. 
(13) demonstrated that UA stimulation promotes lipid accumulation 
in HepG2 cells and mouse liver cells, while studies on animal models 
have shown that UA-lowering treatments such as allopurinol and 
benzbromarone improve hepatic lipid deposition (14). However, 
research on the direct effect of HUA on NAFPD remains limited.

Since the mid-1990s, metabolomics has emerged as a pivotal field 
in biomedical research, complementing genomics, transcriptomics, 
and proteomics in elucidating biological processes (15). Metabolomics 
enables the extraction, separation, analysis, and identification of 
small-molecule endogenous metabolites—such as amino acids, lipids, 
and sugars—in biological samples such as blood, urine, cells, and 
tissues. These metabolites, often bioactive at low concentrations, 
provide critical insights into the body’s metabolic characteristics 
under various physiological and pathological conditions. They are also 
valuable as potential biomarkers for disease diagnosis and progression. 
Lipidomics, a specialized branch of metabolomics, focuses on the 
dynamic metabolic profiles of endogenous lipids in response to 
external stimuli (16, 17). Recent advances in lipidomics have deepened 
our understanding of diseases such as cardiovascular conditions, 
cancer, diabetes, neurodegenerative disorders, and liver diseases, while 
facilitating the discovery of novel biomarkers (18, 19). Lipid 
metabolites are increasingly recognized for their clinical potential, 
especially in the context of personalized healthcare and precision 
medicine (20). Loomba et al. demonstrated that polyunsaturated fatty 
acids could serve as non-invasive biomarkers for diagnosing 

non-alcoholic steatohepatitis using the liquid chromatography–mass 
spectrometry (LC–MS) platform (21). In a rat model, Zeng et al. (22) 
identified the creatine-to-betaine ratio as a potential diagnostic 
marker for early liver cancer. Additionally, Meikle et al. highlighted 
the strong association between plasma phospholipids, sphingolipids, 
and other lipid metabolites with cardiovascular event risk, suggesting 
lipid biomarkers for monitoring interventions such as statin therapy 
to assess cardiovascular disease risk (23). However, no definitive 
serum markers for NAFPD have been established. Although 
pathological diagnosis remains the gold standard for NAFPD, 
pancreatic biopsy is challenging due to the pancreas’s deep location 
and the procedure’s high risk. Consequently, non-invasive serum 
markers with simple testing procedures have significant practical value.

This study aimed to preliminarily explore the relationship between 
HUA and NAFPD through animal experiments. A classic NAFPD 
model was established using a high-fat diet and a high-fat, high-uric 
acid model with a high-fat, high-yeast diet combined with potassium 
oxonate. Using these models, SUA and triacylglycerol (TAG) levels 
were measured, pancreatic changes were evaluated using light 
microscopy after HE  staining, and serum lipid metabolites were 
analyzed using lipidomics technology based on high-performance 
liquid chromatography-triple quadrupole mass spectrometry (HPLC-
QqQ-MS). This study intends to identify potential biomarkers and 
provide a theoretical foundation for further NAFPD research.

2 Materials and methods

2.1 Materials

All solvents used were of LC–MS grade. Acetonitrile, isopropanol, 
methanol, and water for mass spectrometry were purchased from 
Merck (United States), and methyl tert-butyl ether was obtained from 
Sigma (Germany). The internal standard mix was subscribed from the 
Internal Standards Kit for Lipidyzer™ Platform (SCIEX, MA, 
United States).

2.2 Establishment of hyperuricemic rat 
model

Male Sprague–Dawley rats (250–300 g) were sourced from 
Shanghai Slake Experimental Animal Co. Ltd. and housed at the 
Animal Experimental Center of Quanzhou Medical College (China). 
The experiment was approved by the Ethics Committee of the Second 
Affiliated Hospital of Fujian Medical University (No. 2019–125).

Animal models were established using a modified version of the 
Mazzali method (24, 25). Eighteen Sprague–Dawley rats were 
randomly assigned to three groups: a control group (CON), a high-fat 
group (PO), and a high-fat, high-uric acid group (PH). The groups 
were fed diets tailored to each model: the CON group received a 
standard diet, the PO group was given a high-fat diet (45% fat by 
calories), and the PH group was provided with a high-fat, high-uric 
acid diet containing 3% potassium oxonate and 20% yeast powder 
(45% fat by calories). All rats were housed in a controlled environment 
(temperature: 18–20°C, humidity: 50–60%) for 12 weeks. Blood 
samples (approximately 1 mL) were collected from the tail at weeks 4 
and 8 for analysis of serum uric acid and triglyceride levels. At week 
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discrimination analysis; TAG, triacylglycerol; CE, cholesterol esters; SM, 

sphingolipids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, 
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12, the rats were anesthetized with 2% sodium pentobarbital (40 mg/
kg) through intraperitoneal injection. The amount of sodium 
pentobarbital could be increased appropriately, making sure that the 
rats did not respond to pain. Once unresponsive to pain, the rats 
underwent laparotomy, and approximately 3 mL of blood was drawn 
from the heart. The pancreas was then quickly excised. Rats did not 
survive after cardiac blood sampling.

2.3 Measuring of serum biochemical 
indicators

After standing at room temperature for 30 min, whole-blood 
samples were centrifuged twice at 4,000 rpm for 5 min, and the 
supernatant was collected. Serum uric acid and triglyceride levels were 
measured using commercial assay kits from Nanjing Jiancheng 
Biological Engineering Co. Ltd.

2.4 Pathological manifestations in the 
pancreas

Pancreatic tissues were fixed in 4% paraformaldehyde, and 
pathological changes were evaluated under a light microscope 
following hematoxylin and eosin (HE) staining. The study extended 
the work of van Geenen et al. (26), assessing four indicators: pancreatic 
islet cell vacuoles, pancreatic acinar vacuoles, interstitial fat 
infiltration, and interstitial inflammatory cell infiltration. Each index 
was rated as normal (1 point), mild (2 points), or moderate (3 points) 
based on the extent of fat infiltration. Scores for each indicator were 
summed to yield a final pathological score.

2.5 Serum lipidomics analysis

2.5.1 Lipid extraction
For lipidomics analysis, serum samples were prepared using the 

isopropanol method as described by Sarafian et al. (27). The process 
involved the following steps: (i) precooling isopropyl alcohol and 
other organic reagents at −20°C; (ii) thawing 20 μL of serum at 80°C 
and transferring it to an EP tube; (iii) adding 400 μL of isopropyl 
alcohol and thoroughly mixing the samples for 3–5 min with a vortex 
mixer; (iv) allowing the mixture to stand at room temperature for 
10 min, then overnight at −20°C; (v) centrifuging at 4°C, 14,000 rpm 
for 20 min the following day; (vi) carefully transferring 150 μL of the 
supernatant into a bottle for mass spectrometry analysis; and (vii) 
preparing quality control (QC) samples by mixing 10 μL from each 
sample for instrument stability assessment. Samples were stored at 
−20°C before analysis.

2.5.2 Identification process of lipidomics
Before lipid extraction, a Lipidyzer™ Internal Standard Mix 

containing 10 major lipid classes and 13 lipid subclasses was added to 
each sample (AB SCIEX, 5040156). Lipid samples were transferred to 
the AB SCIEX QTRAP 4500 LC–MS/MS system for analysis. Samples 
were analyzed on the SCIEX Lipidyzer™ platform, and the multiple 
response monitoring (MRM) technique was used to target and 
quantitatively measure 1,100 lipids in 13 subclasses (28, 29). MS data 

was collected by Analyst (version 1.7, AB SCIEX, MA, United States), 
and pre-processed by SCIEX OS (version 1.4, AB SCIEX, CA, 
United States), including peak query, standard curve viewing and so 
on. The content of lipid metabolites was quantified by the internal 
standard using the following formula: IS concentration* (sample area/
IS area).

2.5.3 Chromatography and mass spectrometry
HPLC-QqQ-MS analytical chromatography was performed under 

the following conditions: Waters Acquity UPLC BEH HILIC column 
(100 mm × 2.1 mm; 1.7 μm; Waters, Milford, MA, United States) was 
used as the stationary phase at 35°C. The mobile phase A contained 
10 mmol/L ammonium acetate in 95% acetonitrile solution, and the 
mobile phase B contained 10 mmol/L ammonium acetate in 50% 
acetonitrile. The mobile phase gradient consisted of an increase in the 
concentration of mobile phase B from 0.1 to 20% within 10 min, 
followed by an increase in mobile phase B to 98% between 10 min and 
11 min, which was maintained at 98% for 2 min, and then decreased 
to 0.1% at 13.1 min. The analysis was terminated at 16 min, and the 
flow rate was 0.5 mL/min.

Mass spectrometry was conducted with a positive ion mode 
injection volume of 1 μL and a negative ion mode injection volume 
of 10 μL. The air curtain gas pressure was set to 35 psi, the 
atomizer pressure was set to 50 psi, the auxiliary gas pressure was 
set to 60 psi, and the heating temperature was 500°C. The positive 
and negative ion mode ion spray voltages were −5,500 V and 
5,500 V, the positive and negative ion mode optimized declustering 
voltages were 80 V and −80 V, the injection voltages were 10 V 
and −10 V, and the collision chamber injection voltages were 15 V 
and −15 V.

2.5.4 Methodological verification
Based on the chemical properties and ionization efficiency of 

lipids, the positive ion mode is more appropriate for the detection of 
non-polar or moderately polar lipids, such as triacylglycerols (TAGs). 
In contrast, the negative ion mode is better suited for the detection 
of polar lipids, such as free fatty acids (FFAs) and 
glycerophospholipids (30, 31). Therefore, in this study, the samples 
were scanned twice in positive and negative ions to improve the 
sensitivity and accuracy of the detection. Instrument reproducibility 
was assessed by evaluating retention time, peak count, and 
preliminary detection of major lipid classes, based on the total ion 
current (TIC) chromatogram of the QC sample. System stability was 
confirmed with a QC sample relative standard deviation (RSD) of 
<30% and a feature yield of >80%.

2.5.5 Multivariate data analysis
Pre-processed data were exported, and variables with excessive 

missing values (based on the 80% rule) were excluded. Multivariate 
statistical analysis was performed using SIMCA-P 14.1 (Umetrics AB, 
Umea, Sweden). Firstly, principal component analysis (PCA) was 
performed. Secondly, orthogonal partial least square discriminant 
analysis (OPLS-DA) was used to establish the model separately 
(CON vs. PO, CON vs. PH, PO vs. PH). Then, permutation testing 
(n = 200) was used to determine whether the OPLS-DA model was 
overfitted. After the OPLS-DA model is successfully verified, an 
S-plot plot is constructed on the basis of the OPLS-DA model. The 
lipid molecules were arranged according to the Variable Importance 
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in Projection (VIP) value, and the metabolites with VIP > 1.5 were 
selected as significant differences. Subsequently, Student’s t-test was 
performed on the selected variables, that is, metabolites having 
VIP > 1.5 and p  < 0.05 were considered as potential biomarkers. 
Additionally, the fold change (FC) and p[1] score (derived from the 
s-plot graph) were utilized to evaluate the variations in 
compound levels.

2.6 Statistical analysis

Statistical analysis was performed using SPSS (version 19.0; SPSS). 
Data are presented as mean ± SD. One-way ANOVA was used for 
multiple-group comparisons, and LSD t-tests were used for pairwise 
comparisons. p < 0.05 was considered statistically significant.

3 Results

3.1 Changes in the biochemical indexes of 
rats

The SUA levels in the PO group were not significantly different 
from those in the CON group (p > 0.05). However, from the 4th 
week onward, SUA levels in the PH group were significantly 
higher than those in both the PO and CON groups (p < 0.05). The 
TAG levels in the PO group gradually increased, becoming 
significantly higher than those in both the PO and CON groups 
starting from the 4th week (p < 0.05). In the PH group, TAG levels 
showed no significant difference early on, but were significantly 
higher than in the CON group from the 8th week onwards 
(p < 0.05) (Table 1).

3.2 Pathological changes

The morphology and structure of the pancreatic islets and acinar 
cells in most rats in the CON group were normal, with a pathological 
score of 4.33 ± 0.16. In the PO group, the pancreatic islet and acinar 
cells of most rats exhibited minor to moderate fatty changes, with a 
small amount of adipocyte infiltration in the interstitium and a 
pathological score of 8.00 ± 0.91. In the PH group, the pancreatic islet 
and acinar cells of most rats exhibited moderate steatosis in a medium 
volume, with some fusion generating more marked fatty steatosis, 
some pancreatic islet cells atrophy, and a small amount of adipocyte 

infiltration in the interstitium. The pathology score was 10.33 ± 0.69 
(Figure 1).

In addition, the pathological scores of the three groups were 
compared in pairs, and the differences were statistically significant 
(CON vs. PO, CON vs. PO, PO vs. PH, p < 0.05).

3.3 Mass spectrometry results

3.3.1 Methodological verification
Samples were analyzed by high-resolution mass spectrometry in 

both positive and negative ion modes. The RSD of QC samples was 
<30%, ensuring data quality control, and feature yield was >80%. The 
original total ion flow (TIC) indicates a high concentration in the TIC 
diagram of the QC samples. The system stability and reliability of the 
data were confirmed (Figure 2).

3.3.2 Identification of lipid molecules
A total of 884 distinct lipid molecules were identified in both 

ionization modes. In the positive ion mode, a total of 430 lipids were 
identified, including 392 TAGs, 12 sphingolipids (SMs), 16 cholesterol 
esters (CEs), and 10 ceramides (CERs). In the negative ion mode, a total 
of 454 lipids were identified, including 69 phosphatidylcholines (PCs), 
16 lysophosphatidylcholines (LPCs), 105 phosphatidylethanolamines 
(PEs), 14 lysophosphatidylethanolamines (LPEs), 69 phosphatidylinositol 
(PIs), 13 lysophosphatidylinositol (LPIs), 66 phosphatidylserines (PS), 
16 lysophosphatidylserine (LPSs), 59 phosphatidylglycerols (PGs), 10 
lysophosphatidylglycerols (LPGs), and 17 FFAs.

3.3.3 PCA score plots in positive and negative ion 
mode

Data were initially analyzed using unsupervised PCA, which can 
detect the natural grouping of samples without adding any grouping 
information. PCA analysis showed that QC samples were clustered, 
indicating that the instrument ran stably during the whole testing 
process. At the same time, in the positive and negative ion mode, the 
metabolic profiles of the three groups of samples were significantly 
different, with R2X  = 0.704  in the positive ion mode and 
R2X = 0.614 in the negative ion mode, suggesting that the PCA model 
could better explain the metabolic differences among the samples 
(Figure 3).

3.3.4 Pair-wise comparison of OPLS-DA score 
plots, permutation testing plots and S-plots

Next, orthogonal partial least squares discriminant analysis 
(OPLS-DA) was employed to construct the model based on group 
comparisons. The R2Y value was used to evaluate the model’s fit, and 
Q2 assessed its predictive ability. A model was considered well-
constructed when R2Y was close to 1 and Q2 > 0.5. To ensure the 
model was not overfitted, a permutation test (n = 200) was performed. 
When all blue Q2 values on the left were lower than the initial point 
on the right, and the Q2 regression line intersected the vertical axis at 
or below zero (Q2 < 0), it confirmed that the model was well-fitted. As 
shown in the figure, all models were well-fitted and not overfitted. An 
S-plot was generated based on the OPLS-DA model (CON vs. PO, 
CON vs. PH, PO vs. PH), and metabolites with VIP > 1.5 and Student’s 
t-test p < 0.05 were considered potential biomarkers (Table 2 and 
Figures 4, 5).

TABLE 1 The changes of biochemical indexes.

Group Week 4 Week 8 Week 12

SUA CON 113.17 ± 8.18 97.83 ± 13.11 101.00 ± 8.27

PO 105.00 ± 9.94 103.33 ± 10.75 111.17 ± 9.37

PH 320.67 ± 32.62ab 276.00 ± 33.83ab 263.33 ± 24.94ab

TAG CON 0.49 ± 0.13 0.57 ± 0.09 0.66 ± 0.19

PO 0.95 ± 0.23a 1.36 ± 0.14a 1.77 ± 0.2a

PH 0.72 ± 0.26b 1.06 ± 0.16ab 0.77 ± 0.12b

aCompared with CON group, P < 0.05; bcompared with PO group, p < 0.05.
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FIGURE 1

Pathology result plot. (A) CON group normal pancreatic pathology (×100). (B) PO group pancreatic acinar cells showed diffuse and moderate alveolar 
vacuole-like changes (×200). (C) PH group: some of the fusion into larger vacuoles Kind of change (Shown by the red arrow) (×200).

FIGURE 2

Total ion chromatography (TIC) of QC samples. (A) ESI+: positive ion mode. (B) ESI−: negative ion mode.

FIGURE 3

PCA score plots. (A) ESI+: positive ion mode. (B) ESI−: negative ion mode.
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FIGURE 4

Comparison of OPLS-DA score plots, permutation testing plots and S-plots in positive ion mode. OPLS-DA score plots (A1,B1,C1); S-plots (A2,B2,C2); 
permutation test plots (A3,B3,C3). As shown in the figure, the models in each group are well fitted, and no overfitting occurs. The lipid molecules 
labeled with red triangles in the S-plot were selected as potential biomarkers.

3.3.5 Identification of differential metabolites
In the CON and PO groups, 27 potential biomarkers were 

detected in the positive ion mode, consisting of 26 TAGs and 1 CE, 
and 7 in the negative ion mode, including 2 PCs, 1 LPC, 1 PE, 2 
LPEs, and 1 FFA (Table  3). In the CON and PH groups, 22 
biomarkers were identified in the positive ion mode, comprising 
17 TAGs, 1 SM, and 4 CEs, and 16  in the negative ion mode, 
including 8 PCs, 1 PE, 1 LPE, and 6 FFAs (Table 4). In the PH and 
PO groups, 18 biomarkers were observed in the positive ion mode, 
consisting of 12 TAGs, 3 SMs, and 3 CEs, and 14 in the negative 
ion mode, including 8 PCs and 6 FFAs (Table 5). Meanwhile, the 
conditions for metabolites were as follows: FC > 1, p[1] > 0, with 
an upward trend; conversely, FC < 1, p[1] < 0, with a downward  
trend.

4 Discussion

In this study, high-fat and high-fat and high-uric acid animal 
models of NAFPD were successfully established, and optimal serum 
biomarkers were identified using HPLC-QqQ-MS lipidomics. HUA 
modeling approaches include increasing uric acid production by 
injecting uric acid or hypoxanthine injections, adenine or yeast 
feeding, inhibiting uric acid excretion with adenine and ethambutol, 
blocking uric acid metabolism with potassium oxonate injections (32, 
33). Potassium oxonate, a urease inhibitor, is a classic HUA modeling 
agent, although its stability is limited when used alone, often requiring 
a combined approach. The yeast-induced HUA model mimics human 
purine metabolism disorder (34, 35). This study employed a combined 
yeast and potassium oxonate method. Yeast degradation produces 
large amounts of purine and pyrimidine, elevating uric acid levels, 
while potassium oxonate inhibits uric acid breakdown (24). In 
Sprague–Dawley rats, SUA levels increased and remained stable 
throughout the experiment. HE staining of pancreatic tissue revealed 
fatty changes in most islets and acinar cells in both the PO and PH 
groups, with the PH group showing more severe pathological 
NAFPD. These results confirm that both high-fat and high-fat-high-
uric acid models of NAFPD were successfully established.

Lipidomics is an interdisciplinary field that integrates lipid biology, 
technology, and medicine (16, 17). Compared with traditional LC–MS, 

TABLE 2 Evaluation parameters of OPLS-DA models.

Group ESI+ ESI−

R2X R2Y Q2 R2X R2Y Q2

CON vs. PO 0.98 1.0 0.813 0.933 0.998 0.903

CON vs. PH 0.937 0.999 0.871 0.988 1.0 0.935

PH vs. PO 0.994 1.0 0.819 0.971 1.0 0.938

ESI+: positive ion mode; ESI−: negative ion mode.
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HPLC-QqQ-MS offers superior separation, rapid analysis, and high 
sensitivity, making it ideal for the rapid identification of lipid 
compounds. The Lipidyzer™ platform incorporates MRM technology, 
which enables direct quantitative analysis of lipids by calculating their 
relative and absolute abundance from mass spectrometry data (28, 29). 
Lipid compounds are typically classified into eight categories (36): fatty 
acids, glycerides, glycerophospholipids, sphingolipids (SM), sterol 
lipids, pregnenolone lipids, glycolipids and polyethylenes. 
Glycerophospholipids are classified into distinct groups based on their 
substitution patterns: PC, PE, PI, PS, and PG. This study identified 
potential serum biomarkers across various groups, as detailed in 
Tables 3–5. Specifically, 34 potential biomarkers were identified in both 
the CON and PO groups, 38 in the CON and PH groups, and 32 in the 
PH and PO groups. These biomarkers primarily consisted of SM, CE, 
TAG, PC, LPC, PE, LPE and FFA. These findings demonstrate distinct 
lipid composition differences among the three animal models, with 
metabolic disorders evident in the PO and PH groups compared with 
the CON group. These differences may reflect the pathophysiological 
changes in these rat models.

Triacylglycerol, the most prevalent glycerolipid, showed an upward 
trend in both the PO and PH groups compared with that in the CON 
group. Specifically, TAG levels increased by 26% in the PO group and 
by 17% in the PH group. The PH group showed a 12% decrease relative 
to the PO group. These results suggest TAG metabolic disturbances in 

both the PH and PO groups, particularly in the PO group. These 
findings align with serum analysis, which showed a time-dependent 
increase in TAG levels, particularly in the PO group. Notably, TAG 
levels in the PH group were significantly higher than in the CON group 
after week 4 (p < 0.05). Although no significant differences in TAG 
levels were observed between the PH and CON groups early on, levels 
in the PH group increased significantly after week 8 (p < 0.05). The 
substantial accumulation of TAG in the pancreas is associated with 
ectopic lipid deposition, which may contribute to the development of 
NAFPD in the PO and PH groups (37, 38). HUA can promote lipid 
deposition (13). TAG may play a crucial role in the pathological 
progression of NAFPD. Excessive TAG accumulation induces lipid 
toxicity in pancreatic cells, placing them under continuous stress and 
causing structural and functional damage of cells through mechanisms 
such as endoplasmic reticulum stress and oxidative stress. This stress 
can lead to serious complications such as pancreatitis and pancreatic 
fibrosis (39, 40). Furthermore, TAG accumulation activates pancreatic 
inflammation, promoting macrophage infiltration and the release of 
inflammatory cytokines. This chronic inflammation not only damages 
pancreatic tissue but may also contribute to pancreatic fibrosis and 
cancer development (39, 41).

Additionally, studies have reported altered lipase and TAG 
synthetase activities in the pancreas of patients with NAFPD, resulting 
in lipid metabolism imbalances. Reduced lipase activity promotes 

FIGURE 5

Comparison of OPLS-DA score plots, permutation testing plots and S-plots in negative ion mode. OPLS-DA score plots (A1,B1,C1); S-plots (A2,B2,C2); 
permutation test plots (A3,B3,C3). As shown in the figure, the models in each group are well fitted, and no overfitting occurs. The lipid molecules 
labeled with red triangles in the S-plot were selected as potential biomarkers.
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TAG accumulation, while excessive TAG synthetase activation 
exacerbates this process, creating a vicious cycle that accelerates 
NAFPD progression (42). Abnormal TAG metabolism is also closely 
linked to insulin resistance in pancreatic cells. Insulin resistance, 
characterized by diminished insulin responsiveness and elevated 
blood glucose, exacerbates NAFPD pathology, creating a feedback 
loop (40).

Phospholipids are key components of biological cell membranes, 
with PC, PE, and PI being the most prominent types (43). These lipids 

can be  hydrolyzed by phospholipase A or lecithin-cholesterol 
acyltransferase to yield LPC, LPE, and fatty acids (44). Additionally, 
phospholipids, lysophospholipids, and fatty acids can interconvert 
through the Lands cycle, maintaining lipid metabolism homeostasis. 
Phospholipase also hydrolyzes arachidonic acid to produce PG, PS, PI, 
and PE, essential for membrane reconstruction (45). In this study, 
compared to the CON group, the PO and PH groups showed an 
overall increase in PC, PE, LPC, and LPE levels. These results suggest 
that both PO and PH diets induce glycerophospholipid metabolism 

TABLE 3 The list of differential metabolites in CON group and PO group.

NO. Ion mode m/z RT Compound p-value p[1] score FC Trend

1 ESI+ 668.6 0.55 CE(18:1) 0.0123 0.3481 5.17 ↑

2 ESI+ 874.8 0.60 TAG(52:3/FA16:0) 0.0001 0.2761 2.66 ↑

3 ESI+ 874.8 0.60 TAG(52:3/FA18:2) 0.0001 0.2686 2.91 ↑

4 ESI+ 876.8 0.60 TAG(52:2/FA16:0) 0.0000 0.2726 5.46 ↑

5 ESI+ 876.8 0.60 TAG(52:2/FA18:1) 0.0000 0.2333 5.71 ↑

6 ESI+ 874.8 0.60 TAG(52:3/FA18:1) 0.0001 0.2014 3.14 ↑

7 ESI+ 900.8 0.60 TAG(54:4/FA18:2) 0.0006 0.1910 3.98 ↑

8 ESI+ 898.8 0.60 TAG(54:5/FA18:2) 0.0031 0.1708 2.59 ↑

9 ESI+ 872.8 0.60 TAG(52:4/FA18:2) 0.0333 0.1512 1.56 ↑

10 ESI+ 900.8 0.60 TAG(54:4/FA18:1) 0.0001 0.1796 4.67 ↑

11 ESI+ 902.8 0.60 TAG(54:3/FA18:1) 0.0001 0.1770 7.57 ↑

12 ESI+ 898.8 0.60 TAG(54:5/FA18:1) 0.0038 0.1055 2.59 ↑

13 ESI+ 876.8 0.60 TAG(52:2/FA18:2) 0.0000 0.1104 3.46 ↑

14 ESI+ 850.8 0.60 TAG(50:1/FA16:0) 0.0001 0.1061 3.50 ↑

15 ESI+ 902.8 0.60 TAG(54:3/FA18:2) 0.0002 0.1025 3.99 ↑

16 ESI+ 898.8 0.60 TAG(54:5/FA20:4) 0.0020 0.0975 2.22 ↑

17 ESI+ 878.8 0.60 TAG(52:1/FA16:0) 0.0000 0.1042 5.43 ↑

18 ESI+ 902.8 0.60 TAG(54:3/FA18:0) 0.0003 0.0958 3.80 ↑

19 ESI+ 848.8 0.60 TAG(50:2/FA16:0) 0.0077 0.0864 2.02 ↑

20 ESI+ 904.8 0.60 TAG(54:2/FA18:1) 0.0001 0.0870 8.06 ↑

21 ESI+ 904.8 0.60 TAG(54:2/FA18:0) 0.0000 0.0881 6.01 ↑

22 ESI+ 924.8 0.60 TAG(56:6/FA20:4) 0.0019 0.0798 2.65 ↑

23 ESI+ 878.8 0.60 TAG(52:1/FA18:0) 0.0001 0.0839 5.72 ↑

24 ESI+ 878.8 0.60 TAG(52:1/FA18:1) 0.0000 0.0867 6.65 ↑

25 ESI+ 898.8 0.60 TAG(54:5/FA16:0) 0.0035 0.0764 2.23 ↑

26 ESI+ 876.8 0.60 TAG(52:2/FA18:0) 0.0002 0.0808 3.27 ↑

27 ESI+ 922.8 0.60 TAG(56:7/FA22:6) 0.0016 0.0763 1.82 ↑

1 ESI− 480.3 8.40 LPE(18:0) 0.0002 0.1880 1.88 ↑

2 ESI− 766.5 6.00 PE(18:0/20:4) 0.0012 0.1308 2.55 ↑

3 ESI− 818.6 8.00 PC(16:0/18:1) 0.0093 0.1248 1.57 ↑

4 ESI− 452.3 8.50 LPE(16:0) 0.0024 0.1179 1.52 ↑

5 ESI− 225.1 0.60 FFA(14:1) 0.0056 −0.3829 0.69 ↓

6 ESI− 608.4 10.4 LPC(20:1) 0.0013 −0.1100 0.53 ↓

7 ESI− 866.6 7.80 PC(18:1/20:4) 0.0010 −0.1057 0.61 ↓

ESI+: positive ion mode; ESI−: negative ion mode. The parameter represents the comparison between the two groups (PO vs. CON).
FC: fold change. p[1] score: derived from the s-plot graph. p-value: derived from the Student’s t-test. (↑): represents rising; (↓): represents falling. TAG, triacylglycerol; SM, sphingolipids; CE, 
cholesterol esters; PC, phosphatidylcholine; LPC, lysophosphatidylcholines; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; FFA, free fatty acid.
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disorders. Specifically, the PH group exhibited an eightfold increase 
compared with the PO group, implying that hyperlipidemia and HUA 
exacerbate glycerophospholipid metabolism dysregulation. This 
phenomenon may relate to cell membrane damage and reconstruction.

The PC serves as a crucial component of cell membranes. In the 
context of HUA, PC can be transformed into LPC, LPE, arachidonic 
acid, and other metabolites related to inflammation through the 
activity of phospholipase A (46). LPC and LPE are capable of 

TABLE 4 The list of differential metabolites in CON group and PH group.

No. Ion mode m/z RT Compound p-value p[1] score FC Trend

1 ESI+ 690.6 0.55 CE(20:4) 0.0470 0.4406 1.51 ↑

2 ESI+ 668.6 0.55 CE(18:1) 0.0007 0.3474 3.09 ↑

3 ESI+ 666.6 0.55 CE(18:2) 0.0261 0.3084 1.63 ↑

4 ESI+ 876.8 0.60 TAG(52:2/FA16:0) 0.0011 0.2433 3.52 ↑

5 ESI+ 876.8 0.60 TAG(52:2/FA18:1) 0.0023 0.2170 3.96 ↑

6 ESI+ 922.8 0.60 TAG(56:7/FA22:6) 0.0049 0.1484 3.01 ↑

7 ESI+ 898.8 0.60 TAG(54:5/FA20:4) 0.0012 0.1300 2.29 ↑

8 ESI+ 874.8 0.60 TAG(52:3/FA18:1) 0.0450 0.1290 1.80 ↑

9 ESI+ 878.8 0.60 TAG(52:1/FA16:0) 0.0000 0.1247 4.94 ↑

10 ESI+ 878.8 0.60 TAG(52:1/FA18:0) 0.0000 0.1180 6.33 ↑

11 ESI+ 850.8 0.60 TAG(50:1/FA16:0) 0.0046 0.1169 3.18 ↑

12 ESI+ 902.8 0.60 TAG(54:3/FA18:1) 0.0079 0.1160 3.11 ↑

13 ESI+ 703.6 9.85 SM(16:0) 0.0343 0.1066 1.51 ↑

14 ESI+ 924.8 0.60 TAG(56:6/FA22:5) 0.0010 0.1002 4.54 ↑

15 ESI+ 714.6 0.65 CE(22:6) 0.0151 0.0999 1.73 ↑

16 ESI+ 876.8 0.60 TAG(52:2/FA18:2) 0.0003 0.0998 2.32 ↑

17 ESI+ 878.8 0.60 TAG(52:1/FA18:1) 0.0002 0.0982 5.78 ↑

18 ESI+ 876.8 0.60 TAG(52:2/FA18:0) 0.0004 0.0962 3.02 ↑

19 ESI+ 904.8 0.60 TAG(54:2/FA18:0) 0.0001 0.0955 4.81 ↑

20 ESI+ 904.8 0.60 TAG(54:2/FA18:1) 0.0004 0.0846 5.28 ↑

21 ESI+ 898.8 0.60 TAG(54:5/FA16:0) 0.0108 0.0776 1.84 ↑

22 ESI+ 902.8 0.60 TAG(54:3/FA18:0) 0.0223 0.0770 2.46 ↑

1 ESI− 868.6 7.80 PC(18:0/20:4) 0.0008 0.2599 1.90 ↑

2 ESI− 840.6 7.91 PC(16:0/20:4) 0.0050 0.2142 1.76 ↑

3 ESI− 844.6 8.02 PC(18:0/18:2) 0.0002 0.2119 1.82 ↑

4 ESI− 818.6 8.00 PC(16:0/18:1) 0.0003 0.1507 3.28 ↑

5 ESI− 846.6 8.02 PC(18:0/18:1) 0.0000 0.1431 3.22 ↑

6 ESI− 307.2 0.55 FFA(20:2) 0.0196 0.1397 6.73 ↑

7 ESI− 816.6 8.00 PC(16:0/18:2) 0.0004 0.1364 1.62 ↑

8 ESI− 766.5 6.00 PE(18:0/20:4) 0.0000 0.1193 4.75 ↑

9 ESI− 480.3 8.40 LPE(18:0) 0.0006 0.1175 2.18 ↑

10 ESI− 892.6 7.75 PC(18:0/22:6) 0.0020 0.1173 2.18 ↑

11 ESI− 277.2 1.25 FFA(18:3) 0.0090 0.1043 2.58 ↑

12 ESI− 864.6 7.80 PC(16:0/22:6) 0.0028 0.0996 1.80 ↑

13 ESI− 279.2 1.10 FFA(18:2) 0.0000 −0.5544 0.47 ↓

14 ESI− 281.2 1.10 FFA(18:1) 0.0311 −0.2799 0.69 ↓

15 ESI− 303.2 1.00 FFA(20:4) 0.0048 −0.2398 0.53 ↓

16 ESI− 327.2 1.00 FFA(22:6) 0.0304 −0.1837 0.59 ↓

ESI+: positive ion mode; ESI−: negative ion mode. The parameter represents the comparison between the two groups (PH vs. CON).
FC, fold change. p[1] score: derived from the s-plot graph. p-value: derived from the Student’s t-test. (↑): represents rising; (↓): represents falling. TAG, triacylglycerol; SM, sphingolipids; CE, 
cholesterol esters; PC, phosphatidylcholine; LPC, lysophosphatidylcholines; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; FFA, free fatty acid.
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activating the Nuclear Factor-Kappa B (NF-κB) pathway, elevating the 
levels of Toll-like receptor 4 (TLR4) and phosphorylated Nuclear 
Factor-Kappa B (p-NF-κB), and resulting in an increased production 
of inflammatory factors such as Tumor Necrosis Factor-alpha (TNF-
α) and Interleukin-6 (IL-6), thereby intensifying inflammation and 
oxidative stress damage (47, 48). Moreover, LPC stimulate mitogen-
activated protein kinases (MAPKs), enhance the expression of 
inflammatory factors, and facilitate the migration and activation of 
inflammatory cells (49). Macrophages and other immune cells can 
induce the production of inflammatory cytokines under the influence 
of LPC, further amplifying the overall inflammatory response (50). 

Consequently, we hypothesize that the coexistence of hyperlipidemia 
and hyperuricemia exacerbates NAFPD via enhanced cellular 
membrane damage and remodeling, potentially mediated by the lipid-
induced inflammatory response and increased tissue injury.

The SM plays a crucial role in maintaining biofilm structure and 
is involved in key signaling processes, including cell growth, 
differentiation, senescence, and apoptosis (51). In this study, the PH 
group exhibited a onefold increase in SM compared with the CON 
group, and a threefold increase compared with the PO group, with no 
significant differences between the CON and PO groups. These 
findings suggest that hyperlipidemia-induced lipid metabolism 

TABLE 5 The list of differential metabolites in PH group and PO group.

No. Ion mode m/z RT Compound p-value p[1] score FC Trend

1 ESI+ 690.6 0.55 CE(20:4) 0.0069 0.4906 2.06 ↑

2 ESI+ 666.6 0.55 CE(18:2) 0.0012 0.3191 1.98 ↑

3 ESI+ 703.6 9.85 SM(16:0) 0.0005 0.1242 2.08 ↑

4 ESI+ 813.7 9.45 SM(24:1) 0.0012 0.1116 2.09 ↑

5 ESI+ 815.7 9.45 SM(24:0) 0.0013 0.1106 2.20 ↑

6 ESI+ 714.6 0.65 CE(22:6) 0.0006 0.1092 2.61 ↑

7 ESI+ 874.8 0.60 TAG(52:3/FA16:0) 0.0034 −0.2216 0.56 ↓

8 ESI+ 872.8 0.60 TAG(52:4/FA18:2) 0.0016 −0.2186 0.46 ↓

9 ESI+ 874.8 0.60 TAG(52:3/FA18:2) 0.0023 −0.2173 0.54 ↓

10 ESI+ 898.8 0.60 TAG(54:5/FA18:2) 0.0005 −0.1996 0.28 ↓

11 ESI+ 872.8 0.60 TAG(52:4/FA16:0) 0.0005 −0.1891 0.47 ↓

12 ESI+ 900.8 0.60 TAG(54:4/FA18:2) 0.0011 −0.1835 0.33 ↓

13 ESI+ 900.8 0.60 TAG(54:4/FA18:1) 0.0011 −0.1613 0.36 ↓

14 ESI+ 876.8 0.60 TAG(52:2/FA16:0) 0.0128 −0.1572 0.64 ↓

15 ESI+ 874.8 0.60 TAG(52:3/FA18:1) 0.0089 −0.1466 0.57 ↓

16 ESI+ 902.8 0.60 TAG(54:3/FA18:1) 0.0027 −0.1404 0.41 ↓

17 ESI+ 896.8 0.60 TAG(54:6/FA18:2) 0.0032 −0.1258 0.39 ↓

18 ESI+ 898.8 0.60 TAG(54:5/FA18:1) 0.0020 −0.1098 0.40 ↓

1 ESI− 868.6 7.80 PC(18:0/20:4) 0.0006 0.2596 1.91 ↑

2 ESI− 840.6 7.91 PC(16:0/20:4) 0.0006 0.2475 2.13 ↑

3 ESI− 225.1 0.60 FFA(14:1) 0.0116 0.2258 1.58 ↑

4 ESI− 844.6 8.02 PC(18:0/18:2) 0.0001 0.2164 1.88 ↑

5 ESI− 816.6 8.00 PC(16:0/18:2) 0.0000 0.1553 1.82 ↑

6 ESI− 307.2 0.55 FFA(20:2) 0.0171 0.1410 7.90 ↑

7 ESI− 846.6 8.02 PC(18:0/18:1) 0.0000 0.1308 2.49 ↑

8 ESI− 892.6 7.75 PC(18:0/22:6) 0.0009 0.1256 2.54 ↑

9 ESI− 818.6 8.00 PC(16:0/18:1) 0.0014 0.1245 2.09 ↑

10 ESI− 864.6 7.80 PC(16:0/22:6) 0.0010 0.1089 2.04 ↑

11 ESI− 279.2 1.10 FFA(18:2) 0.0004 −0.4509 0.55 ↓

12 ESI− 281.2 1.10 FFA(18:1) 0.0033 −0.3985 0.57 ↓

13 ESI− 283.2 1.10 FFA(18:0) 0.0006 −0.2808 0.80 ↓

14 ESI− 303.2 1.00 FFA(20:4) 0.0038 −0.1913 0.63 ↓

ESI+: positive ion mode; ESI−: negative ion mode. The parameter represents the comparison between the two groups (PH vs. PO).
FC, fold change. p[1] score: derived from the s-plot graph. p-value: derived from the Student’s t-test. (↑): represents rising; (↓): represents falling. TAG, triacylglycerol; SM, sphingolipids; CE, 
cholesterol esters; PC, phosphatidylcholine; LPC, lysophosphatidylcholines; PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; FFA, free fatty acid.
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disorders are specifically linked to dysregulated SM metabolism. 
Previous research has highlighted a close relationship between 
abnormal sphingomyelin metabolism and fat deposition, as well as 
inflammation in NAFLD (52). SM are closely associated with 
inflammatory mediators, and SM metabolites, such as CEs, possess 
the capacity to induce inflammatory responses while inhibiting 
superoxide dismutase (SOD) activity. In conditions like neurological 
diseases and chronic obstructive pulmonary disease, disturbances in 
sphingosine metabolism may lead to heightened inflammation and 
oxidative stress, thereby contributing to the progression of these 
diseases (53, 54).

The HUA is associated with several metabolic disorders, including 
inflammation, gout, and diabetes (5, 6). Elevated uric acid levels can 
alter serum lipid composition. Liu et al. (55) first demonstrated that a 
combination of TAG 18:1–20:0–22:1 and TAG14:0–16:0–16:1 could 
distinguish asymptomatic patients with HUA from those with gout. 
Kang et al. (56) found that metabolic disorders of glycerolipids (GLs) 
and glycerophospholipids were linked to HUA risk. LPC and PC are 
considered to be  important biomarkers for the treatment and 
prognosis of gouty arthritis (57). Clinical studies have shown that 
TAGs, SM, and glycerophospholipids (PC, LPC, PG, and LPE) were 
significantly elevated in plasma lipid profiles in individuals with HUA 
and gout, particularly among younger patients (58).

High uric acid levels may contribute to lipid metabolism disorders 
through various mechanisms, including inhibition of Adenosine 
5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling 
and activation of Sterol Regulatory Element Binding Protein 1c 
(SREBP-1c), which promotes fat synthesis (59, 60). HUA could also 
induce an inflammatory state by activating the Transforming Growth 
Factor-β (TGF-β) signaling pathway and suppressing the Mammalian 
Target of Rapamycin (mTOR) signaling pathway, resulting in 
increased levels of inflammatory factors such as oxidative stress and 
IL-6 (61). These inflammatory effects can impact lipid metabolism and 
lead to fat accumulation (62). Additionally, inflammation may disrupt 
glycerophospholipid metabolism, further exacerbating the 
inflammatory response and tissue damage. Therefore, it is 
hypothesized that chronic inflammation, mediated by HUA and lipid 
metabolites, plays a significant role in the pathophysiology of NAFPD 
exacerbated by hyperlipidemia combined with HUA.

In summary, NAFPD and HUA are closely linked to lipid 
metabolism. A 2017 meta-analysis suggested that TAGs could serve 
as a key serological marker for NAFPD (2). In the present study, the 
pathological NAFPD score in the PH group was significantly higher 
than in the PO group. Additionally, our findings implicate 
glycerophospholipids—PC, LPC, PE, and LPE—as potential serum 
biomarkers for HUA, which exacerbates NAFPD. These results 
suggest that glycerophospholipid metabolism plays a crucial role in 
NAFPD pathophysiology. Furthermore, SM may serve as specific 
markers indicating the effect of hyperuric acid on NAFPD. The 
preliminary conclusion of the study suggests that the combination 
of hyperlipidemia and HUA exacerbates NAFPD, potentially due to 
disturbances in glycerophospholipid metabolism. This may 
be  attributed to an intensified lipid-mediated inflammatory 
response, leading to increased tissue injury and further deterioration 
of cell membrane damage and remodeling. This study offers a novel 
perspective and theoretical foundation for future extensive clinical 
and animal experimental investigations. Moreover, it implies the 

need for heightened focus on lipid metabolism in patients with 
metabolic disorders like NAFLD, NAFPD and HUA during future 
clinical practice.

However, there are several limitations to this study. The 
sample size of animals was relatively small, which limits the 
ability to fully capture the changes in lipid metabolism profiles. 
Previous research has indicated that alterations in lipid 
metabolism during various stages of severe acute pancreatitis 
may be  linked to inflammation and reparative processes (63), 
while changes in lipid composition as individuals age have been 
associated with the onset of Alzheimer’s disease (64). Moreover, 
only serum samples from the final experimental animal were 
analyzed, failing to account for the dynamic changes in lipid 
profiles throughout the study. To further validate the relationship 
between lipid biomarkers and NAFPD, larger sample sizes and 
large-scale clinical prospective studies are needed.

5 Conclusion

In conclusion, hyperlipidemia combined with HUA significantly 
exacerbates NAFPD. Glycerophospholipids may serve as key biomarkers 
in this process, potentially linked to a chronic inflammatory response 
mediated by glycerophospholipids. However, this study has notable 
limitations. The small sample size restricts the ability to fully capture 
variations in lipid metabolism profiles. Additionally, the analysis was 
limited to serum samples from the final experimental animal, 
preventing the assessment of dynamic lipid profile changes throughout 
the study. Future research should include larger sample sizes and 
longitudinal clinical studies to validate the relationship between 
potential lipid biomarkers and NAFPD.
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