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Mendelian randomization 
analyses explore the effects of 
micronutrients on different 
kidney diseases
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Background: The impact of micronutrients, including vitamins and minerals, 
on different kidney diseases has been reported in some observational studies; 
however, their causal relationship remains uncertain. We  aimed to ascertain 
the causal genetic relationships between micronutrients and different kidney 
diseases using the Mendelian randomization (MR) method.

Methods: Instrumental variables (IVs) for genetically predicting calcium (Ca), iron 
(Ir), Zinc (Zn), selenium (Se), copper (Cu), vitamin D (Vit D), and vitamin C (Vit C) 
levels in humans were obtained, and a bidirectional two-sample MR was used to 
examine potential associations between the levels of these seven micronutrients 
and the risk of seven different kidney diseases including hypertensive renal 
disease, diabetic nephropathy, IgA nephropathy, membranous nephropathy, 
cystic nephropathy, chronic kidney disease (CKD), and chronic tubulo-interstitial 
nephritis. Five different MR analyses were conducted, with the main method 
being the inverse variance-weighted (IVW) method. Moreover, sensitivity 
analyses were performed to assess heterogeneity and potential pleiotropy.

Results: The IVW method revealed that Ca levels were associated with a decreased 
risk of hypertensive renal disease (OR  =  0.61, 95% CI: 0.40–0.93, p-value  =  0.022), 
and Se levels were associated with a decreased risk of hypertensive renal disease 
(OR  =  0.72, 95% CI: 0.53–0.99, p-value  =  0.040), diabetic nephropathy (OR  =  0.83, 
95% CI: 0.73–0.93, p-value  =  0.002), and CKD (OR  =  0.87, 95% CI: 0.77–0.99, p-
value  =  0.028). Conversely, Vit D levels were associated with an increased risk 
of polycystic kidney disease (OR  =  1.76, 95% CI: 1.15–2.69, p-value  =  0.0095). In 
addition, no potential causal relationship was found between vitamin C levels, 
iron levels, zinc levels, and copper levels and different kidney diseases. Meanwhile, 
inverse Mendelian randomization showed no potential causal relationship 
between different chronic kidney diseases and micronutrients. The Cochrane’s 
Q test, MR-Egger regression, and MR-PRESSO did not suggest heterogeneity and 
pleiotropy, providing evidence of the validity of the MR estimates.

Conclusion: Our results indicate a cause-and-effect connection between 
micronutrients and certain kidney diseases, but additional study is required to 
provide more conclusive evidence. This research has the potential to assist clinicians 
in managing the consumption of specific micronutrients among individuals with 
chronic kidney diseases, as well as in promoting disease prevention among both 
healthy populations and those who are susceptible to chronic underlying conditions.
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Introduction

Kidney diseases are a general term that encompasses a variety 
of disease types with numerous classification criteria, including 
primary glomerular diseases (such as membranous nephropathy, 
IgA nephropathy, glomerulonephritis), acute kidney failure, 
chronic tubulointerstitial nephritis, diabetic nephropathy, 
hypertensive renal disease, polycystic kidney disease, and chronic 
kidney disease (CKD), among others (1). According to the 
International Society of Nephrology, at least 850 million people 
worldwide suffer from kidney diseases. In addition, The global 
prevalence of CKD varies between 8 and 16%, as reported by the 
International Society of Nephrology. In 2010, CKD ranked 18th 
among all causes of death worldwide, with an annual mortality 
rate of 16.3 deaths per 100,000 individuals. This rate is rising, 
presenting a significant challenge to the global public health 
system (2, 3). The pathogenic mechanisms of different kidney 
diseases are complex and not entirely understood due to their 
numerous origins and consequences. In the absence of appropriate 
intervention and therapy, the condition has the potential to 
rapidly advance towards end-stage renal failure.

Micronutrients, which encompass minerals and vitamins, 
typically comprise non-metallic or metallic components, including 
calcium (Ca), iron (Ir), Zinc (Zn), selenium (Se), copper (Cu), as 
well as both fat-soluble and water-soluble vitamins. These nutrients 
are necessary for normal growth, development, and physiological 
activities, even if they are required in smaller amounts (4). 
However, the available data indicates that almost 30% of the global 
population experiences at least one kind of trace nutrient 
deficiency, which primarily affects children and pregnant women 
(5). Furthermore, observational studies have revealed the 
correlation between micronutrients and different kidney diseases. 
A prospective study conducted by Chen CY et al. found a positive 
correlation between serum Se and Zn levels and renal function, as 
well as improved kidney outcomes. Specifically, higher Zn 
concentrations were found to independently predict better kidney 
survival (6). In addition, cohort research conducted over a period 
of 12 years demonstrated correlations between inadequate 
consumption of phosphorus, vitamin B2, and folate in one’s diet 
and elevated consumption of vitamin B6 and vitamin C in one’s 
diet, with an elevated susceptibility to CKD stage 3B and higher 
(7). Additionally, vitamin D and its metabolites play an important 
role in regulating calcium-phosphorus balance as well as bone 
formation and calcification. They are associated with the risk of 
various diseases and complications. A meta-analysis of 
observational studies showed that CKD patients treated with 
vitamin D had a lower mortality rate compared to those who did 
not receive treatment (8).

Mendelian randomization (MR) analysis is an effective 
epidemiological method that uses genetic variation as instrumental 
variables (IVs) to analyze causal relationships between exposure 
factors and outcomes (9). Mendel’s law of inheritance posits that 
genetic differences are predetermined and independent of postnatal 
conditions, significantly mitigating the impact of common 
confounding variables and the potential for reverse causation (10, 
11). In this study, MR analyses were conducted to investigate the 
causal relationships between trace nutrients and different 
kidney diseases.

Materials and methods

Study design

The STROBE-MR (Strengthening Reporting of Observational 
Studies in Epidemiology Using Mendelian Randomization) statement 
was followed in the conduct of our study (12). In this study, serum 
levels of Cu, Ir, Zn, Ca, Se, Vitamin C (Vit C), and Vitamin D (Vit D) 
were considered as exposures to seven different kidney diseases, 
including hypertensive renal disease, diabetic kidney disease, IgA 
nephropathy, membranous nephropathy, polycystic kidney disease, 
different kidney disease (CKD), and chronic tubulointerstitial 
nephritis as outcomes. The screening of MR is contingent upon the 
rigorous adherence to three fundamental assumptions (1): a robust 
correlation exists between the chosen IVs and the factors of exposure 
(2); The IVs do not exhibit any associations with confounding factors 
that could potentially influence the outcome (3); The IVs can solely 
impact outcomes via the exposure factor route, and there is no direct 
association between IVs and outcomes (13). The data analysis in this 
study relied solely on publicly accessible data, obviating the need for 
ethical approval from an ethics commission (Figure 1).

GWAS statistics source

The micronutrient data utilized in this work were obtained from 
the IEU OpenGWAS program and are accessible at the following 
website: https://gwas.mrcieu.ac.uk/. The FinnGen Consortium 
(website: https://www.finngen.fi/en) provides Genome-wide 
association studies (GWAS) for seven different kidney diseases. The 
study included exclusively European populations as participants, and 
there was no overlap in the samples between exposures and outcomes. 
This approach significantly minimized mistakes caused by 
confounding factors. In cases where multiple independent GWAS 
were accessible, the study with a greater number of participants was 
chosen. Pooled GWAS data were chosen for the analysis of five 
important minerals and two vitamins (14, 15). The detailed 
information of GWAS on exposures and outcomes used in this MR is 
shown in Table 1.

Selection of the IVs

Typically, we set the threshold at p < 5 × 10−8 in order to identify 
single Nucleotide Polymorphisms (SNPs) that are substantially 
associated with exposures. Nevertheless, certain summarized GWAS 
datasets exhibited a restricted number of SNPs that achieved genome-
wide significance. Consequently, we choose to lower the criterion for 
certain datasets. The association thresholds for Ca and Vit D were 
established at p < 5 × 10−8, whereas for Cu, Ir, Zn, Se, and VitC, the 
association thresholds were set at p < 5 × 10−6. The implementation of 
various thresholds was employed in earlier MR research with the 
objective of achieving a higher number of compatible SNPs (16, 17). 
In order to minimize bias, we then eliminated linkage disequilibrium 
(LD) and established a threshold of r2 < 0.001, with kb = 10,000. In 
addition, in order to minimize bias, we  eliminated palindromic 
variants of incompatible alleles and evaluated the potency of the 
chosen SNPs by computing the F statistic with the following formula:
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where N denotes the sample size, and R2 indicates the extent to 
which IVs explain the exposure. And we would eliminate the SNPs with 
F < 10 (18, 19). Then, we conducted the Steiger test before each MR 
analysis to avoid reverse causality and included SNPs with TRUE 
results. Furthermore, we  manually screened these SNPs using 
PhenoScanner1 and excluded any SNPs associated with confounding 
factors, such as smoking and alcohol, which could potentially affect the 
study results. Additionally, this study conducted a reverse Mendelian 
randomization analysis to reduce the potential impact of chronic kidney 
diseases on micronutrient levels. Since a threshold of p < 5 × 10−8 did not 
yield enough SNPs, we also set a threshold of p < 5 × 10−6 for selecting 
instrumental variables and proceeded with subsequent analyses.

MR analyses and sensitivity analyses

Five different methods of MR, including MR Egger, weighted 
median, inverse variance weighted (IVW), simple mode, and weighted 

1 http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner

mode, were utilized to investigate the causal effects between 
micronutrients and chronic kidney diseases. The basic statistical 
model employed in this study was IVW estimation, while the 
remaining four methods were utilized to enhance their robustness. A 
significance level of less than 0.05 was deemed to be  statistically 
significant. The Cochran’s Q test was employed to evaluate the 
heterogeneity of results, and a p-value of less than 0.05 was utilized to 
indicate the presence of heterogeneity (20). The assessment and 
correction of horizontal pleiotropy were conducted using MR-Egger 
regression and MR-PRESSO, and p-value of less than 0.05 was 
obtained, confirming the presence of horizontal pleiotropy (21). 
Furthermore, a leave-one-out analysis was conducted to evaluate the 
potential impact of aberrant SNPs on the obtained results. Funnel 
plots were employed to evaluate potential directional pleiotropy. The 
statistical analyses were conducted using R software version 4.3.2, 
specifically utilizing the TwoSampleMR R package (v0.5.7) and 
MR-PRESSO (v1.0; Figure 2).

Results

After strictly following the IVs screening process, we  finally 
obtained SNPs for this MR Study (Supplementary Table 1). Figures 3, 4 
show the positive results of this two-sample MR analysis of 
micronutrients and seven chronic kidney diseases using the IVW 

FIGURE 1

Flowchart of the MR investigating the causal relationship between serum micronutrients and different kidney diseases. SNPs, Single nucleotide 
polymorphisms; LD, linkage disequilibrium; MR, Mendelian randomization.
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approach. The IVW analysis revealed that Ca was associated with a 
decreased risk of hypertensive renal disease (OR = 0.61, 95% CI: 0.40–
0.93, p-value = 0.022), and Se was associated with a decreased risk of 
hypertensive kidney disease (OR = 0.72, 95% CI: 0.53–0.99, 
p-value = 0.040), diabetic nephropathy (OR = 0.83, 95% CI: 0.73–0.93, 
p-value = 0.002), and chronic kidney disease (OR = 0.87, 95% CI: 0.77–
0.99, p-value = 0.028). Conversely, vitamin D levels were associated with 
an increased risk of polycystic kidney disease (OR = 1.76, 95% CI: 1.15–
2.69, p-value = 0.0095). In addition, no potential causal relationship was 
found between vitamin C levels, iron levels, zinc levels, and copper levels 
and different kidney diseases (Supplementary Tables 4–7). Meanwhile, 
the results of reverse Mendelian randomization showed no potential 
causal association between different chronic kidney diseases and 
micronutrients (p > 0.05; Supplementary Table 9). The scatterplot in 
Figure 4 illustrates the positive outcomes obtained through the IVW 
method, with a p-value < 0.05. The results of the MR analysis for the 
other exposures and outcomes are presented in 
Supplementary Tables 2–8. The Cochran’s Q test, which incorporates the 
IVW and MR-Egger methods, did not indicate any significant 
heterogeneity, as shown by a p-value > 0.05. Additionally, the 
MR-PRESSO and MR-Egger regressions did not reveal any horizontal 
pleiotropy with p-value > 0.05 (Table  2). Furthermore, the Leave-
One-Out analysis yielded no SNPs exhibiting significant bias effects, and 
the funnel plots demonstrated minimal directional pleiotropy, as 
depicted in Supplementary Figures 1–5. All these sensitivity analysis 
results provided evidence of the validity of the MR estimates.

Discussion

This study employed MR to examine the potential causal associations 
between serum levels of micronutrients and the occurrence of different 
kidney diseases. The study revealed that increased Vit D levels were 
associated with an elevated risk of cystic nephropathy. Additionally, 
elevated levels of calcium and selenium were identified as protective 
factors against Hypertensive renal disease, while selenium levels were 

found to decrease the risk of diabetic nephropathy and CKD. Nevertheless, 
our study is subject to several limitations. Firstly, the levels of Ir, Cu, Zn, 
Se, and Vit C did not produce a sufficient number of single nucleotide 
polymorphisms (SNPs) for the analysis of MR at a significance level of 
5 × 10−8. As a result, we  changed the threshold criterion to 5 × 10−6. 
However, this adjustment would have reduced the overall significance of 
our study. It is worth noting that this approach has been commonly used 
in numerous studies and does not inherently impact the outcomes. 
Secondly, it is important to note that our study was limited to participants 
of European descent, potentially impacting the applicability of the 
findings to other populations. Thirdly, the levels of micronutrients may 
exert varying degrees of influence on different kidney diseases patients of 
different genders or ages. However, due to the lack of individual-level 
information in GWAS data, stratified studies cannot be  conducted. 
Finally, in addition to exploring causal relationships, the quantitative 
relationship between exposure and outcome is also crucial, as it can 
provide better clinical guidance. Nevertheless, due to the lack of 
quantitative data on micronutrients and kidney diseases in the GWAS 
Catalog, this study cannot further investigate the dose–response 
relationship between exposure and outcome at this time. It is hoped that 
specific datasets in this area will be  available for further study in 
the future.

Potential causal relationship between Ca 
and hypertensive renal disease

Hypertensive renal disease (Hypertensive Nephropathy, HTN) is a 
chronic disease characterized by elevated blood pressure and chronic 
kidney disease, including the presence of protein in the urine and reduced 
glomerular filtration rate. HTN is believed to arise from prolonged and 
unregulated hypertension, and it ranks as the second most prevalent factor 
contributing to the advancement of end-stage renal disease following 
diabetic nephropathy (22). The primary pathogenic processes of 
Hypertensive nephropathy involve changes in renal hemodynamics and 
remodeling of the renal vasculature. Furthermore, previous studies have 

TABLE 1 The detailed information of GWAS on exposures and outcomes incorporated in this MR.

GWAS ID Population Trait Consortium Sample 
size

Number of 
SNPs

ebi-a-GCST90025990 European Calcium levels NA 400,792 4,218,949

ebi-a-GCST90025967 European Vitamin D levels NA 418,691 4,225,238

ieu-a-1073 European Copper NA 2,603 2,543,646

ieu-a-1049 European Iron GIS 23,986 2,096,457

ieu-a-1077 European Selenium NA 2,603 2,543,617

ieu-a-1079 European Zinc NA 2,603 2,543,610

met-a-348 European Ascorbate (Vitamin C) NA 2,085 2,545,101

finn-b-I9_HYPTENSRD European Hypertensive renal disease FinnGen_r5 163,305 16,380,163

finn-b-DM_NEPHROPATHY_EXMORE European Diabetic nephropathy FinnGen_r5 184,987 16,380,336

finn-b-N14_CHRONTUBULOINTNEPHRITIS European Chronic tubulointerstitial nephritis FinnGen_r5 201,648 16,380,412

ebi-a-GCST010005 European Membranous nephropathy NA 7,979 5,327,688

ebi-a-GCST90018866 European IgA nephropathy NA 477,784 24,182,646

finn-b-Q17_CYSTIC_KIDNEY_DISEA European Cystic kidney disease FinnGen_r5 218,448 16,380,465

finn-b-N14_CHRONKIDNEYDIS European Chronic kidney disease FinnGen_r5 216,743 16,380,459
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demonstrated the significance of podocyte damage, epithelial-
mesenchymal transition (EMT), and tubulointerstitial fibrosis as 
pathogenic mechanisms in HTN (23, 24). The present amount of research 
on the association between calcium levels and hypertensive nephropathy 
is currently minimal. A meta-analysis of cohort studies revealed a 
significant association between calcium consumption and a decreased 
likelihood of HTN. Specifically, for every incremental increase of 500 mg/
day in dietary calcium intake, there was an approximate 7% reduction in 
the risk of HTN (25). Several studies have indicated that a deficiency in 
calcium levels can induce the secretion of parathyroid hormone (PTH). 
The type-1 parathyroid hormone receptor (PTHR1)/ Galpha(s)/3′,5′-
cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) 
pathway is activated by parathyroid hormone to raise the concentration of 
calcium in vascular smooth muscle cells. This, in turn, leads to an increase 
in vascular reactivity and an elevation in blood pressure. Furthermore, 
parathyroid hormone (PTH) stimulates the production of cyclic adenosine 
monophosphate (cAMP) and the release of renin by PTHR-1, thereby 
facilitating the synthesis of angiotensin II (Ang II) and aldosterone (26, 
27). Increased synthesis of Ang II and aldosterone affects blood pressure 
regulation. Prolonged elevation of these hormones leads to changes in 
renal hemodynamics, causing renal arteriole narrowing, increased 
vascular resistance, and reduced blood circulation. This, in turn, induces 
vascular remodeling in the kidneys, manifested as thickening of the renal 
arteriole intima, reduced local renal blood flow, and compensatory 
hypertrophy of adjacent renal units. Meanwhile, Ang II causes podocyte 

damage and, as a potent vasoconstrictor in the RAS, it plays a crucial role 
by inducing various cytokines involved in inflammation, cell proliferation, 
and tubulointerstitial fibrosis (23, 28). In summary, the sequence of events 
described leads to the development of microalbuminuria, a reduction in 
glomerular filtration rate, and ultimately promotes the development  
of HTN.

Relationship between Se and hypertensive 
renal disease and chronic kidney disease

Se is a non-metal element that plays a crucial role in the human body 
due to its antioxidant properties. It and its amino acid derivatives are 
involved in various physiological and pathological processes, including 
oxidative stress and immune-inflammatory responses. The role of 
selenium in certain kidney diseases has been mentioned in several 
observational studies (29). A research examining the correlation between 
selenium consumption and CKD among middle-aged and elderly 
individuals in China, utilizing data from the Chinese National Health 
Service (CHNS), indicates that sufficient se intake could potentially exert 
a beneficial influence on CKD (30). Lifu Lei et al. constructed a rat model 
with a lack of Se and observed that Se deficiency leads to an increase in 
the production of hydrogen peroxide by reducing the expression of renal 
glutathione peroxidase 1. Additionally, it enhances the activity of nuclear 
factor kappa-B(NF-κB), which in turn increases the expression of renal 

FIGURE 2

Bubble plots of MR results between micronutrients and seven chronic kidney diseases derived using the IVW method. MR, Mendelian randomization; 
IVW, inverse variance weighted.
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Angiotensin II type-1 receptor (AT1R), resulting in sodium retention 
and elevated blood pressure (31). In addition, a study conducted by Liu 
et al. has revealed that a deficiency in selenium may contribute to the 
inflammation of renal fibrosis. This deficiency has been observed to 
facilitate the process of epithelial-mesenchymal transition (EMT) in 
renal fibrosis, hence promoting the deposition of extracellular matrix 
(ECM) in this particular condition. The mechanism may involve 
selenium deficiency activating the PI3K/Akt signaling pathway, leading 
to the promotion of fibroblast proliferation and collagen synthesis. This 
activation subsequently regulates the proliferation and survival of 
epithelial cells, impacts protein synthesis and the cell cycle in renal 
interstitial cells, and ultimately contributes to the development and 
advancement of renal fibrosis. In summary, Se plays a crucial role in 
oxidative stress, EMT, and the renal fibrosis process within the body. It is 
noteworthy that renal oxidative stress contributes to the development 
and progression of CKD, and EMT and renal fibrosis are significant 
pathological processes in the progression of HTN (32, 33). Therefore, 
consistent with the findings of most observational studies, Se levels are 
associated with a reduced risk of HTN and CKD.

Effect of Se levels on diabetic nephropathy

Diabetic kidney disease (DKD) is the primary cause of end-stage 
renal disease (ESRD), with about 40% of diabetic patients having varying 
degrees of impaired renal function, and DKD is mainly due to 
microvascular damage caused by prolonged uncontrolled glucose (34). 
DKD is characterized by several key pathological symptoms, including 
the thickening of the basement membranes of the glomeruli and tubules, 
the loss of podocytes, the dilation of the thylakoid membranes, and the 
localized degeneration of thylakoid cells and thylakoid stroma, among 
others (35). Furthermore, the pathophysiological processes responsible 
for the development of DKD predominantly encompass the production 
of reactive oxygen species (ROS), nutritional detection, recruitment of 
inflammatory cells, mitochondrial impairment, tubulointerstitial fibrosis, 
and various other mechanisms (34, 36, 37). Meanwhile, certain metabolic 
factors (oxidative stress) and hemodynamic factors (activation of the RAS 
system) may enhance the effects of common pathogenic mechanisms in 
the context of hyperglycemia, contributing to the development of DKD 
(38). Studies have demonstrated that selenium can decrease elevated 

FIGURE 3

Forest plot showing the causal relationship between micronutrients and chronic kidney disease with a P- value <0.05 calculated using the IVW method. 
IVW, inverse variance weighting method; OR, odds ratio; CI, confidence interval.
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levels of glucose in the blood and enhance the ability of rats to tolerate 
glucose. An RCT study conducted on humans demonstrated that 
administering Se supplements for a duration of 12 weeks had a positive 
impact on serum insulin levels in patients with DKD (39). A study 
conducted on rats revealed that a lack of selenium caused oxidative stress 
through the activation of TGF-β1 in both normal and diabetic rats. In 
both normal and diabetic rats, the presence of selenium deficiency 
resulted in an increase in albuminuria. Additionally, normal rats 

exhibited higher plasma glucose levels, whereas diabetic rats experienced 
worsened plasma glucose levels. These findings indicate that a lack of 
selenium can cause an increase in the expression of TGF-β1, impact the 
levels and management of glucose in the blood, enhance the body’s 
reaction to oxidative stress, and result in the presence of protein in the 
urine. Ultimately, these factors contribute to the onset and progression of 
DKD (40). Although the existing body of information on the association 
between selenium and kidney illness primarily relies on animal models, 

FIGURE 4

Scatterplot of positive results from MR analysis between exposure and outcome using IVW method. IVW, inverse variance weighted; MR, Mendelian 
randomization.
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it offers valuable insights into the underlying mechanisms in humans. 
However, additional study and exploration are necessary to understand 
this relationship fully.

Association between vitamin D and cystic 
kidney disease

Cystic kidney disease is categorized into congenital and acquired 
kidney diseases, including autosomal dominant polycystic kidney disease, 
autosomal recessive polycystic kidney disease, Meckel syndrome, and 
simple renal cysts. The latter is characterized by the presence of renal cysts 
of varying degrees (41). Currently, there are very few studies on the 
relationship between vitamin D levels and cystic kidney disease, and the 
connection between them remains unclear. Some scholars believe that 
fibroblast growth factor 23 (FGF23) plays a significant role in the 
development of cystic kidney disease. This hormone, primarily synthesized 
by osteoblasts and osteocytes in the bone, is crucial for maintaining normal 
kidney function. Phosphate, PTH, calcitriol, and calcium are the primary 
regulatory variables that influence its secretion (42). A study revealed that 
individuals with vitamin D deficiency rickets exhibited reduced serum 
FGF23 levels, which subsequently rose following vitamin D therapy (43). 
The comprehensive review and meta-analysis conducted by Charoenngam 
et al. yielded findings indicating that the administration of vitamin D3 
supplementation resulted in a considerable elevation of intact FGF23 levels 
in individuals diagnosed with vitamin D deficiency (44). The study 
conducted by Spichtig et  al. provided evidence of the production of 
FGF23 in the kidneys of rodents with polycystic kidneys. This production 
resulted in an elevation of FGF23 levels, which subsequently led to a 

deterioration in kidney function (45, 46). So, FGF23 might be a key point 
in the relationship between vitamin D levels and cystic kidney disease. 
However, further research is needed to elucidate the mechanisms of 
vitamin D’s effects on cystic kidney disease.

Conclusion

Our research provides initial findings on the genetic link between 
micronutrients and specific chronic kidney disorders. The results of this 
study have the potential to assist clinicians in managing the consumption 
of specific micronutrients among individuals with chronic kidney 
diseases, as well as in promoting disease prevention among both healthy 
populations and those who are susceptible to chronic underlying 
conditions. Nevertheless, further research is required in order to establish 
more definitive evidence.
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