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Background: Few observational studies have investigated the effect of 
micronutrients on osteomyelitis, and these findings are limited by confounding 
and conflicting results. Therefore, we  conducted Mendelian randomization 
(MR) analyses to evaluate the association between blood levels of eight 
micronutrients (copper, selenium, zinc, vitamin B12, vitamin C, and vitamin D, 
vitamin B6, vitamin E) and the risk of osteomyelitis.

Methods: We performed the two-sample and multivariable Mendelian 
randomization (MVMR) to investigate causation, where instrument variables 
for the predictor (micronutrients) were derived from the summary data of 
micronutrients from independent cohorts of European ancestry. The outcome 
instrumental variables were used from the summary data of European-ancestry 
individuals (n  =  486,484). The threshold of statistical significance was set at 
p  <  0.00625.

Results: We found a significant causal association that elevated zinc heightens 
the risk of developing osteomyelitis in European ancestry individuals OR  =  1.23 
[95% confidence interval (CI) [1.07, 1.43]; p  =  4.26E-03]. Similarly, vitamin B6 
showed a similar significant causal effect on osteomyelitis as a risk factor 
OR  =  2.78 (95% CI [1.34, 5.76]; p  =  6.04E-03; in the secondary analysis). Post-hoc 
analysis suggested this result (vitamin B6). However, the multivariable Mendelian 
randomization (MVMR) provides evidence against the causal association 
between zinc and osteomyelitis OR  =  0.98(95% CI [−0.11, 0.07]; p  =  7.20E-1). 
After searching in PhenoScanner, no SNP with confounding factors was found 
in the analysis of vitamin B6. There was no evidence of a reverse causal impact 
of osteomyelitis on zinc and vitamin B6.

Conclusion: This study supported a strong causal association between vitamin 
B6 and osteomyelitis while reporting a dubious causal association between zinc 
and osteomyelitis.
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1 Introduction

Osteomyelitis is an inflammatory process accompanied by bone 
destruction and caused by infections (1), which is a serious 
complication in orthopedic surgery. With reported infection rates of 
orthopedic trauma patients ranging from 5 to 10% (2, 3), orthopedic 
infections are associated with significantly increased patient morbidity 
(4, 5) and medical costs (6, 7). Multiple micronutrients have been 
shown to have important roles in the immune system. They are 
essential components of immune cell proliferation, maturation, 
cytokine release, and enzymes involved in immune cell activity for 
antioxidant host defense. Those deficiencies significantly impair host 
immunity and increase susceptibility to infection (8).

Observational studies have reported different results about the effect 
of vitamin D on osteoarticular infections. Signori et al. found that a high 
level of vitamin D was one of the negative prognostic factors for 
prosthetic joint infections (9). By contrast, Marschall et al. proposed that 
there was no association between vitamin D deficiency and negative 
clinical outcomes in osteoarticular infections (10). However, evidence 
from these observational studies was insufficient to demonstrate a causal 
relationship and was limited by not only sample selection bias but also 
confounding environmental factors. Apart from them, few studies 
reported the association between other micronutrients and osteomyelitis.

Mendelian randomization (MR) represents a novel form of 
evidence synthesis and causal inference that is becoming increasingly 
significant in epidemiological research (11). A significant benefit of 
this methodology, particularly pertinent to nutritional epidemiology, 
is the capacity to accurately ascertain genotypes and discern long-term 
exposure patterns (12). MR enables causal inference using genetic 
variants as proxies for risk factors and health outcomes susceptible to 
confounding factors (13). MR uses available genetic data with single 
nucleotide polymorphisms (SNPs) that are correlated with exposures 
(in this case micronutrients) as instrumental variables to evaluate the 
causal relationship between the exposure and the outcome of interest 
(in this case osteomyelitis) (14, 15). It can limit problems of reverse 
causation and unknown confounding factors typical of conventional 
observational epidemiology (15).

Multivariable Mendelian randomization (MVMR) represents a 
recent extension to Mendelian randomization (MR) that employs 
genetic variants associated with multiple, potentially related exposures 
to estimate the effect of each exposure on a single outcome. This 
approach preserves the advantages of employing genetic instruments 
for causal inference, such as circumventing bias due to confounding 
while allowing for the inclusion of multiple exposures in the model 
(16, 17). This enables the estimation and moderation of the direct 
causal relationship between each exposure and the outcome (18, 19).

However, MR is susceptible to some important limitations. These 
include the lack of high-quality data, violations of three basic 
assumptions, limited biological understanding of gene-exposure 
associations, trait heterogeneity, and so on (12).

Since the relationship between micronutrients and osteomyelitis has 
not been explored by any genetic instruments, we hypothesized there 
was a causative association of osteomyelitis with micronutrients. 
Therefore, we set out to use two-sample and MVMR methods to estimate 
the causal relationship between genetically predicted blood levels of 
micronutrients and the genetically predicted risk of osteomyelitis. 
We identified eight micronutrients of interest that have been associated 
with the risk of infection and for which there are available genetic 

instruments—copper, selenium, zinc, vitamin B12, vitamin C, vitamin 
B6, vitamin E, and vitamin D—and assessed the risk of osteomyelitis.

2 Methods

2.1 Study design

We conducted a two-sample MR and MVMR study using publicly 
available summary statistics. To reduce bias from population 
stratification (20), both the exposure and outcome cohorts were 
restricted to subjects of European ancestry. Figure  1 provides a 
schematic summary of the study design.

2.2 GWAS data sources

We selected genetic instruments from 8 publicly available GWAS 
summary statistics of all individuals of European ancestry as exposures 
from the GWAS catalog, IEU OpenGWAS, and PubMed, including 
copper (21), selenium (21), zinc (21), vitamin B6, vitamin B12 (22), 
vitamin C (23), vitamin D (24), and vitamin E (details showed in 
Supplementary Table S1). Genetic instruments for osteomyelitis were 
obtained from a summary statistic based on 4,836 cases of 
osteomyelitis and 481,648 controls (25), all of whom were of European 
ancestry. More relevant information is shown in 
Supplementary Table S9 and Table 1. Osteomyelitis cases were defined 
by M00, M01, M46, and M86 in ICD-10 codes, and controls were 
defined by the absence of the above ICD codes.

2.3 Two-sample Mendelian randomization

After genetic instrument selection and harmonization, the inverse-
weighted variance (IVW) method was used to perform the two-sample 
MR analysis. In the absence of exposure-outcome heterogeneity and 
directional pleiotropy, this method has been reported to provide 
reasonably accurate estimates (26). We use the MR-Egger regression 
to check for the potential existence of horizontal pleiotropy between 
instrumental variables (27). The MR-Egger intercept value deviates 
significantly from zero with a p < 0.05 as the evidence of horizontal 
pleiotropy (26, 28). In the first post-hoc analysis for the micronutrients 
with significant associations, we removed the SNPs with p < 0.05 in the 
leave-one-out test. For the explanation of variance<0.5%, we adopted 
a wider limit of threshold (p < 1E-05, LD < 0.001, clump at a 10,000 KB 
window) in the secondary post-hoc analysis.

2.4 Multivariable Mendelian randomization

The Multivariable Mendelian Randomization method can 
distinguish the role of multiple phenotypes associated with SNPs in 
causality association (18). Therefore, for the micronutrients with a 
significant result in the two-sample MR, we  searched phenotypes 
associated with SNPs on PhenoScanner and applied MVMR to verify 
whether any of the identified phenotypes may interfere with the effect 
of micronutrients on osteomyelitis. We included three phenotypes in 
the MVMR analysis of zinc: mean corpuscular volume (GWAS 
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identifier: ukb-d-30040), mean corpuscular hemoglobin concentration 
(GWAS identifier: ukb-d-30060), reticulocyte count (GWAS identifier: 
ukb-d-30250) after searching on PhenoScanner. And no phenotype 
related to vitamin B6 was found.

2.5 Sensitivity analyses

For the selection of SNPs, to avoid bias, only IVs that met the 
three assumptions of MR were used: the relevance assumption, 

exclusion restriction assumption and the independence assumption. 
The first assumption is that the SNPs used as instrumental variables 
should be  closely associated with exposure factors. The second 
assumption is that the candidate instrumental variables should not 
be associated with confounding factors. The third assumption is that 
the proposed genetic variants should only influence the risk of the 
health outcome via the exposure we have focused on. For the first 
assumption, all the instrumental variables applied in the main analyses 
were significantly correlated with the exposure for the two-sample MR 
at p < 5E-8. In the secondary analyses, we use variants at a more liberal 

FIGURE 1

A schematic summary of the study design.
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threshold p < 1E-06. Furthermore, we  validated the second MR 
assumption by selecting only IVs with L.D < 0.001 after clumping in a 
10,000 kb window. These instruments that met the first two MR 
assumptions were then subjected to the downstream 
sensitivity analyses.

We also used the systematic leave-one-out method to detect 
potential pleiotropy per SNP to test compliance with the exclusion 
restriction assumption for the micronutrients containing >2 SNPs. 
The robust penalized IVW estimate was used to assess the causality 
effect. Then we evaluated the change before and after the removal of 
each SNP. Heterogeneity between instrumental variables was tested 
using Q-statistics with p < 0.05. We evaluate our instrument strength 
using the proportion of variance interpreted (R2) and the F-statistic 
(29, 30). Only instrument variables with F ≥ 10 can be selected to 
perform MR. We  further checked the adherence to the exclusion 
restriction assumption of MR by using the MR-Egger regression 
through its intercept terms.

2.6 Statistical analysis

Statistical analysis was performed using the inverse-variance 
weighted (IVW) method to estimate the causal effects for 
instruments that satisfied the instrumental variable assumptions 
(13). To exclude the false causal effect due to horizontal pleiotropy, 
we  conducted an MVMR including traits searched on 
PhenoScanner using instrumental variables involved in 
Two-sample MR at p < 5E-08. We  further tested for reverse 
causality by performing an MR analysis considering osteomyelitis 
as exposure and micronutrients as an outcome. Two MR analyses 
were conducted in this study (main analysis and secondary 
analysis). The main analyses were applied using all the 
instrumental variables selected as those significantly correlated 
with the exposure at p < 5E-8. In the secondary analyses, we used 
exposure instrumental variables at a more liberal threshold 
p ≤ 1E-06. Statistical significance for causal relationships was set 
at p < 0.05. In multiple tests, the p-value adjusted by Bonferroni 
correction to p < 0.05/8 = 0.00625 was believed statistically 
significant. All analyses were conducted using TwoSampleMR and 
Mendelian Randomization R package in Rstudio (version 

2023.9.1.494).1 A schematic summary of the study design was 
provided in Figure 1.

3 Results

The MR analysis was conducted as shown in Figure 2. Further 
details can be found in Supplementary materials.

3.1 Associations between micronutrients 
and osteomyelitis

After correction for multiple tests, we only found a statistically 
significant causal association between blood levels of zinc and 
osteomyelitis in the main analysis (OR = 1.23, 95%CI = 1.07 to 1.43; 
p = 0.0043). We observed little evidence that the blood levels of Cu, 
vitamin B12, vitamin C, and vitamin D were associated with the risk 
of osteomyelitis in the main analysis (Figure 2, details shown in the 
Supplementary materials). Because fewer than two SNPs were 
selected, analyses of selenium vitamin B6 and vitamin E 
were inconclusive.

In the secondary analysis, we found a nominally significant causal 
association between zinc and osteomyelitis (OR = 1.13, 95%CI = 1.02 
to 1.27; p = 0.0252) and a strong causal association between vitamin 
B6 and osteomyelitis in the secondary analysis (OR = 2.78, OR 
95%CI = 1.34 to 5.76; p = 0.0060). There was no significant association 
between other micronutrients and osteomyelitis in the 
secondary analysis.

3.2 Sensitivity analysis

Only data with more than two instrument variables selected were 
conducted horizontal pleiotropy tests and heterogeneity tests using 
MR-Egger. Additionally, we  performed leave-one-out analyses for 

1 www.rstudio.com

TABLE 1 Source of exposure genome-wide association study summary data.

Exposure Main analysis Secondary analysis Population 
ancestry

Data source

Number of 
SNPs

% of variance 
explained

Number of 
SNPs

% of variance 
explained

Cu 2 4.60 2 4.60 European (21)

Se 1 1.93 QIMR 3 3.86 European (21)

1 2.89 ALSPAC 3 4.78 European

Zn 2 4.59 5 7.57 European (21)

Vitamin B6 1 0.05 4 0.17 European Ieu: ukb-b-7864

Vitamin B12 6 1.85 9 2.23 European (22)

Vitamin C 11 1.78 17 2.09 European (23)

Vitamin D 105 2.70 164 2.93 European (24)

Vitamin E 0 – 6 0.23 European Ieu: ukb-b-6888

https://doi.org/10.3389/fnut.2024.1443539
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://www.rstudio.com


Zhang et al. 10.3389/fnut.2024.1443539

Frontiers in Nutrition 05 frontiersin.org

micronutrients containing >2 SNPs. Because only 2 significant 
instruments were selected for the main analysis of zinc, the horizontal 
pleiotropy test was not conducted. For zinc, the heterogeneity test was 
conducted by IVW and MR-Egger in the secondary analysis and IVW 
in the main analysis, and no evidence of heterogeneity in the 
instruments. In the secondary analysis, we  found no evidence of 
horizontal pleiotropy between IVs using the MR-Egger regression 
intercept analysis. We further performed a leave-one-out analysis to 
estimate any horizontal pleiotropy and found all instrument variables 
with p < 0.05 except rs1532423 and rs2120019 (5 SNPs in total). 

We tested for weak instruments by calculating the F-statistics and all 
instruments with F > 10, and we  found no evidence of horizontal 
pleiotropy and heterogeneity for the reverse analysis.

In the analyses of vitamin B6, we only perform sensitivity analysis 
for the secondary analysis because of no MR result for the main 
analysis. In the secondary analysis, we found no evidence of horizontal 
pleiotropy using the MR-Egger regression intercept analysis, and 
heterogeneity using IVW and MR-Egger between IVs. We further 
performed a leave-one-out analysis to estimate any horizontal 
pleiotropy and found rs155599 and rs3772928 with a p < 0.05 (4 SNPs 

FIGURE 2

Mendelian randomization analyses of circulating micronutrient levels on osteomyelitis risk. Forest plot of inverse-variance weighted Mendelian 
randomization analyses. The x-axis represents the results expressed per standard deviation increase in genetically proxied levels of exposure. Cu, 
copper; Fe, Zn, zinc; Se, selenium.
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in total). We tested for weak instruments by calculating the F-statistics 
and all instruments with F > 10. For the reverse analysis, we found no 
evidence of horizontal pleiotropy and heterogeneity (details shown in 
the Supplementary materials).

In the main and secondary analyses, Cu, Se, vitamin D, and 
vitamin C showed no evidence of horizontal pleiotropy and 
heterogeneity. Vitamin B12 showed a significant heterogeneity test 
result in the main and secondary analyses. We did not conduct a 
sensitivity analysis for vitamin E in the main analysis, because no SNP 
was selected in the main analysis for vitamin E. No evidence of 
horizontal pleiotropy and heterogeneity was observed in the 
secondary analysis of vitamin E. We test the strength of instrument 
variables using an F-statistic and all the instrument variables selected 
with an F > 10. Leave-one-out analysis results were displayed in the 
Supplementary materials.

3.3 Post-hoc analysis

There was no evidence of reverse causality between osteomyelitis 
and zinc or vitamin B6, as displayed in Supplementary Table S8. The 
MVMR analysis showed no statistically significant causal associations 
for genetically predicted zinc on osteomyelitis (OR = 0.98, 
95%CI = 0.90 to 1.08, p = 0.7204). For zinc, we removed all the SNPs 
with a p < 0.05 in the leave-one-out test and found the SNPs left were 
the same as the SNPs contained in the main analysis. Therefore, the 
result of post-hoc analyses was also the same as the main analysis.

For vitamin B6, considering the leave-one-out analysis, 
we removed two SNPs (rs155599 and rs3772928) from the SNPs and 
performed a two-sample MR in the first post-hoc analysis. However, 
the analysis was limited by an insufficient number of SNPs included, 
leading to an undesirably low proportion of variance explained and 
an excessively wide 95%CI for OR. Then we conducted a two-sample 
MR using a more liberal threshold with removal of the SNPs with a 
p < 0.05  in the leave-one-out analysis for the secondary post-hoc 
analysis. The first post-hoc analysis of vitamin B6 showed a strong 
causal effect between vitamin B6 and osteomyelitis (OR = 5.92, OR 
95%CI = 1.98 to 17.69; p = 0.0015). And the secondary post-hoc 
analysis of vitamin B6 reported a consistent result (OR = 2.22, 
95%CI = 1.54 to 3.20; p = 0.00002) with the first post-hoc analysis.

4 Discussion

In this European-ancestry MR study, we investigated the causal 
associations of genetically predicted micronutrients on osteomyelitis 
using a two-sample and multivariable MR method. We found evidence 
of a significant causal association between blood levels of zinc and 
vitamin B6  in this European population. The results of zinc and 
vitamin B6 exceeded our predictions. Additionally, the reverse 
MR-IVW analysis showed a non-significant causal effect between 
osteomyelitis and either of the genetically predicted zinc and vitamin 
B6. However, there are parts of these results that do not support a 
causal relationship between osteomyelitis and zinc and need to 
be discussed in more detail.

We conducted both univariable and MVMR for the effect of the 
blood levels of zinc on osteomyelitis and showed contradictory results. 
In the main analysis, we found a significant association. However, in 

the secondary analysis, the result did not reach our adjusted threshold 
(p = 0.0252). After the removal of all SNPs with a p < 0.05 in the leave-
one-out analysis, the results were the same as the main analysis. It 
indicated that the non-significant results of the secondary analysis 
were mainly influenced by these SNPs.

The result showed no evidence of the association between zinc 
and osteomyelitis after conditioning in the MVMR analysis. 
Noteworthy, due to limitations in data quality, only one SNP 
(rs12544332) strongly associated with zinc was included in the 
MVMR lower than the covariates we included in the MVMR. Thus, 
we calculated the F-statistic of zinc in MVMR, and the result was just 
1.33, much lower than 10. We suspected it was a false negative result 
(16, 17). However, as no significant results were obtained in the second 
analysis or MVMR, this conclusion should be  treated with 
more caution.

Zinc plays a key role in the development and function of the 
immune system (31, 32). A study showed that zinc supplementation 
could decrease the incidence of infections in the elderly (33), which 
contradicts our findings. Interestingly, zinc was also found to play a 
vital role in the bacteria (34). Another study found virtually no 
detectable zinc in tissue abscesses caused by Staphylococcus aureus, in 
contrast to the high levels of zinc found in the surrounding healthy 
tissue (35). Staphylococcus aureus is the main pathogen responsible for 
osteomyelitis (1). Due to the importance of zinc in the bacteria (34), 
vertebrates sequestering zinc from these abscesses could be seen as a 
nutritional immunity (36) strategy exploiting Staphylococcus aureus’s 
requirement for zinc to control infection. Although the mechanisms 
and function are not yet clear, it is evident that shortages in available 
zinc possibly disrupt several bacterial processes that are crucial to 
infection (37). This may indicate that a high blood level of zinc might 
damage the zinc sequestration by the host and promote the 
development of osteomyelitis. However, the available evidence does 
not provide sufficient support to make a robust conclusion that a high 
blood level of zinc is a risk factor for osteomyelitis. More powerful 
studies between zinc supplementation and osteomyelitis should 
be conducted.

For the post-hoc analysis of vitamin B6, we  removed two 
questionable SNPs with p < 0.05 using leave-one-out analysis, thus 
avoiding the two SNPs influencing the analysis result and giving a false 
positive result. Furthermore, considering the low explanation of 
variance and too large OR 95%CI, we  removed the SNPs with a 
p < 0.05 in the leave-one-out analysis and contained move SNPs at a 
p<1e-5 to report a more robust result (38). In the secondary analysis, 
vitamin B6 exhibited borderline statistical significance (OR = 2.78, 
95%CI = 1.34 to 5.76; p = 0.0060), which potentially undermines the 
robustness of our conclusion. However, we performed the post-hoc 
analysis and found a significant result (OR = 5.92, OR 95%CI = 1.98 to 
17.69; p = 0.0015) when we removed two SNPs with p < 0.05 in the 
leave-one-out analysis. Furthermore, we perform another post-hoc 
analysis with a wider threshold (SNPs with p < 1E-5, removal of SNPs 
with p < 0.05 in the leave-one-out analysis). It reported a result further 
away from the borderline (OR = 2.22, 95%CI = 1.54 to 3.20; 
p = 0.00002). Two post-hoc analyses reached the same conclusion and 
were far from the borderline, which enhanced the credibility of our 
conclusion. And the sensitive analyses of them showed negative 
results. The absence of an impact from the strict threshold on the 
outcome suggests that the result is relatively robust. The result showed 
vitamin B6 may be a potential risk factor for osteomyelitis. The reverse 
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analysis ruled out the reverse causal association. Previous studies have 
suggested that vitamin B6 may have a protective effect against 
inflammation (39, 40). However, several studies challenged this 
conclusion. Davis et al. reported that controlled dietary vitamin B6 
restriction did not correlate with the CRP levels. Another study 
showed that in people with stable angina pectoris, levels of 
inflammatory markers did not improve after supplying high-dose 
(40 mg/d) PN alone or in combination with folic acid and vitamin B12 
(41). Notably, multiple studies have shown that plasma serine and 
glycine (with an anti-inflammatory effect) were increased after a 
period of vitamin B6 deficiency (42–44) due to reduced glycine 
decarboxylase (GDC, a PLP-dependent enzyme) (44). This may 
indicate that a high level of vitamin B6 plays a negative effect on the 
accumulation of glycine and its anti-inflammatory effects contributing 
to osteomyelitis.

Pyridoxal 5’-phosphate (PLP) is a major present form of vitamin 
B6 in vivo and plays an important role as a co-factor in the KYNU 
enzyme in the tryptophan pathway (45). The increase of KYNU 
produced significant direct inflammatory effects, and its tryptophan 
pathway downstream metabolites had significant direct inflammatory 
effects on a variety of cells such as keratinocytes, T cells, and ECs. 
Subsequent studies have confirmed that KYNU expression is 
significantly higher than IDO and TDO in a variety of inflammatory 
diseases (46). Increased PLP promoted an increase in the downstream 
products catalyzed by KYNU, which may be the reason why vitamin 
B6 induced osteomyelitis in our results.

Steven et.al found the rates of homocysteine remethylation or 
synthesis remained unaltered in a dietary vitamin B6 restriction (< 
0.5 mg/d) for 4 weeks (42). This may be considered as a reference for 
a vitamin B6 restriction diet in the clinical trials of osteomyelitis. It is 
imperative to underscore the glaring absence of sufficient clinical trials 
that directly demonstrate the effects of dietary vitamin B6 restriction 
on individuals suffering from osteomyelitis. Therefore, dietary vitamin 
B6 restriction should be  approached with the utmost prudence. 
Detailed clinical suggestions still need more clinical trials of dietary 
vitamin B6 restriction or supplements in the future.

Therefore, we further suggested future studies to conduct more 
powerful experiments to find the direct association and mechanism 
between vitamin B6 and osteomyelitis.

We found no relationship between genetically predicted 
circulating Cu, Se, vitamin D, vitamin B12, vitamin E, and vitamin 
C and the risk of osteomyelitis. Systematic reviews of RCTs have 
found limited evidence of the association between vitamin C, Se 
supplementation, and infections but have also highlighted the 
limitations of studies (47, 48). Padhani ZA et al. found low-quality 
evidence for vitamin C supplementation in the protection of 
pneumonia (47). The other review also found no strong evidence 
in favor of selenium supplementation for the development of 
infections and the incidence of new infections (48) in critically ill 
patients. Another retrospective cohort study showed that baseline 
hypovitaminosis D is not associated with poor clinical outcomes 
in osteoarticular infections (10). A similar Mendelian-
Randomization study found an association between blood level of 
copper and gastrointestinal infections but had no evidence of the 
effect of vitamin B12 on gastrointestinal infections, pneumonia, 
and urinary tract infections. However, only two SNPs were 
contained for copper in their study (49). We did not find any other 
robust studies supporting the association between copper and 

osteomyelitis. A double-blind, placebo-controlled trial found the 
effect of one-year supplementation with 200 IU/day vitamin E is a 
protective factor for respiratory infections (50). However, no 
evidence of an association between vitamin E and osteomyelitis 
was found.

Notably, although diagnostic criteria were consistent in the 
process of collecting osteomyelitis data, it still had biases for the 
differences in diagnosis criteria among different regions, centers, and 
people. It may affect the accuracy of our results. Furthermore, the 
utilization of single-time-point blood levels as proxies for long-term 
exposure may introduce biases, we  suggested using GWAS data 
derived from multiple blood samples or multiple biological samples 
in future studies.

Our study strengths were in the use of continental European-derived 
GWAS summary statistics to assess the causal association between 8 
micronutrients (copper, selenium, zinc, vitamin B6, vitamin B12, vitamin 
C, vitamin D, and vitamin E) and osteomyelitis and conduct further 
analyses for zinc and vitamin B6 including reverse MR, MVMR, and 
post-hoc analysis. Sensitivity analyses were also performed, including 
multi-variable MR-Egger and F-statistic, to verify the reliability of our 
instrumental variables, as detailed in the methods section.

4.1 Limitations

The study was limited by a lack of available separate GWAS data 
for vitamin B12, vitamin C, and vitamin D to decrease the risk of 
selection bias and the bias due to overlapping samples. The sample size 
of our study cohorts was insufficient to yield a more robust result. 
Furthermore, the weak instrument bias affects our MVMR result. 
We only included 2 SNPs for zinc and 1 SNPs for vitamin B6 in the 
primary analysis. Thus, we conducted secondary analysis and post-hoc 
analysis using more lenient p-value thresholds to include more SNPs. 
However, the lower p threshold applied in the secondary analysis and 
post-hoc analysis may introduce bias. Some demographic 
characteristics, environmental factors, or comorbidities have been 
considered in the original GWAS research. We regretted to fail to 
obtain the detailed data and consider them in our study. However, MR 
uses available genetic data with SNPs that are correlated with 
exposures (in this case micronutrients) as instrumental variables to 
evaluate the causal relationship between the exposure and the outcome 
of interest (in this case osteomyelitis). It may reduce the impact of 
environmental factors.

To minimize the risk of population stratification, we only contained 
European ancestry participants. However, this study still could 
be potential population stratification. And inclusion of only European 
populations affects the external validity of our findings to other ancestry 
groups. Analyses of micronutrients in other ethnic groups should 
be performed to increase the validation of generalizations.

Due to the unavailability of high-quality data, the analyses of 
other micronutrients with close associations with bone metabolism 
and immune regulation were excluded for further investigation. This 
may fail to identify potential causal links. The intention was to collect 
data about other micronutrients and to undertake a study examining 
the relationship between other micronutrients and osteomyelitis.

We regret that additional health economics analyses and cell and 
animal experiments were not conducted as part of this study. 
Nevertheless, we have decided to conduct a series of health economics 
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analyses and functional experiments to further investigate 
micronutrients and osteomyelitis.

5 Conclusion

Our study reported a significant result of the causal association 
between vitamin B6 and osteomyelitis and a dubious causal association 
between zinc and osteomyelitis. Furthermore, we found that there was 
no evidence of any link between Cu, Se, vitamin D, vitamin B12, 
vitamin E, and vitamin C and osteomyelitis. Nevertheless, there are 
some limitations in this study. More studies were required to 
substantiate our conclusions and to learn more about the potential 
underlying mechanisms. Our findings have several important 
implications. Firstly, the questionable link between zinc and 
osteomyelitis suggests that the nutritional immunology theory may 
be a key factor in the development of osteomyelitis. This required us 
to focus our attention on the mechanisms of zinc in the development 
of osteomyelitis. Second, we have uncovered that vitamin B6 may 
potentially emerge as a risk factor for osteomyelitis, a find that 
contradicts previous studies and suggests the need for reevaluating 
vitamin B6 supplementation strategies in the context of infectious 
diseases, potentially paving the way for a novel approach. Third, this 
study supports no association between Cu, Se, vitamin D, vitamin B12, 
vitamin E, and vitamin C and osteomyelitis, which may reduce 
unnecessary vitamin supplementation and lower healthcare costs.
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