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Background: The relationship between dietary selenium intake and sarcopenia

remains poorly understood. Therefore, this study investigates the associations

between dietary selenium intake and sarcopenia among American adults.

Methods: This cross-sectional study analyzed data from 19,696 participants in

the National Health and Nutrition Examination Survey (NHANES) for the periods

1999–2006 and 2011–2018. Appendicular muscle mass, assessed using dual-

energy x-ray absorptiometry and adjusted for body mass index, was used as

a marker for sarcopenia. Dietary selenium intake was evaluated using the 24-

h dietary recall system, and the study accounted for the complex sampling

methodology and incorporated dietary sample weights in the analysis.

Results: Among the 19,696 participants, the prevalence of sarcopenia was found

to be 8.46%. When compared to the lowest quintile of dietary selenium intake

(Q1, <80.10 µg/day), the odds ratios for sarcopenia in the second quintile (Q2,

80.10–124.61 µg/day) and the third quintile (Q3, >124.61 µg/day) were 0.80

[95% confidence interval (CI): 0.70–0.92, p = 0.002] and 0.61 (95% CI: 0.51–

0.73, p < 0.001), respectively. A negative relationship was observed between

dietary selenium intake and sarcopenia (non-linear: p = 0.285). Furthermore,

sensitivity analyses revealed a robust association between selenium intake and

the prevalence of sarcopenia after further adjusting for blood selenium levels.

Conclusion: The results suggest an inverse association between dietary

selenium intake and the prevalence of sarcopenia among American adults.

KEYWORDS

dietary selenium intake, sarcopenia,musclemass, cross-sectional study, NationalHealth

and Nutrition Examination Survey

Introduction

Sarcopenia, a prevalent age-related condition, is characterized by a progressive loss of
skeletal muscle mass and function. This decline in muscle physiology leads to diminished
physical performance, decreased quality of life, and increased mortality risk (1, 2). The
etiology of sarcopenia is multifaceted and not entirely understood, but it is commonly
attributed to a combination of factors, including physical inactivity, the aging process, and
hormonal imbalances (3). Moreover, nutritional intake plays a crucial role in preserving
muscle mass and function throughout life (1).

Selenium, an essential trace element, is vital for normal human body function
(4, 5). In mammals, selenium is incorporated into 25 specific selenoproteins
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as selenocysteine (Sec) (6). Dietary selenium exists in several forms,
including selenomethionine, selenocysteine, selenite, and selenate,
all of which are efficiently absorbed and have high bioavailability
(7). The recommended dietary allowance for selenium in American
adults is 55 µg per day (8).

Selenium plays a key role in the synthesis of selenoprotein,
a complex process that involves the intracellular recycling of
selenium, which is facilitated by selenocysteine metabolism
through the action of selenocysteine lyase (9). The synthesis
of selenoproteins involves incorporating Sec at UGA stop
codons, a process mediated by the Selenocysteine Insertion
Sequence (SECIS) located in the mRNA’s 3′ untranslated region
and SECIS-binding protein 2 (SBP2) (10). Selenophosphate
synthetase converts selenide into monoselenophosphate, which is
crucial for synthesizing Sec-tRNA [Ser]Sec, ensuring the accurate
incorporation of Sec into the growing polypeptide chain (7).

These selenoproteins function as oxidoreductase enzymes
and are involved in various metabolic processes (11), including
scavenging of free radicals, maintaining intracellular redox balance,
and repairing oxidized lipids and methionines. Research indicates
that selenoproteins are vital for their musculoskeletal function and
may help mitigate the effects of reactive oxygen species, such as
hydrogen peroxide (12, 13).

Plasma selenium is a key biomarker for assessing the human
selenium status. Although other biofluids such as hair, toenails,
and urine can also be analyzed for selenium, plasma testing
is most commonly used due to its diagnostic preference (7).
Low serum selenium levels have been associated with worse
sarcopenic outcomes (14). While dietary intake is the primary
source of selenium, research on the association between dietary
selenium consumption and adult sarcopenia is limited. Prolonged
parenteral nutrition, which can lead to selenium deficiency, has
been linked to symptoms such as muscle pain and weakness,
which have been resolved with selenium supplementation (15, 16).
We hypothesize an inverse association between dietary selenium
intake and sarcopenia. To test this hypothesis, we conducted a
cross-sectional study to examine the relationship between dietary
selenium intake and sarcopenia in American adults.

Methods

Survey description and study population

This cross-sectional study utilized data from the National
Health and Nutrition Examination Survey (NHANES), covering
the periods 1999–2006 and 2011–2018, as managed by the Centers
for Disease Control and Prevention (CDC). NHANES aims to
assess the health and nutritional status of non-institutionalized
Americans. Participants were selected using a stratified probability
sampling design involving a multistage process (17). The
NHANES dataset encompasses various health metrics, including
demographic characteristics, physical examination results,
laboratory findings, and dietary habits. Data collection was
overseen by the National Center for Health Statistics (NCHS)
and adhered to rigorous ethical standards, with informed consent
obtained from all participants. The dataset is publicly available

through the NHANES website (http://www.cdc.gov/nchs/nhanes.
htm). This study included individuals aged 20 years and older
who completed the survey. Pregnant women and individuals with
incomplete data on dual-energy x-ray absorptiometry (DXA), body
mass index (BMI), dietary selenium intake, covariates, or sample
weights were excluded from the analysis.

Assessment of sarcopenia

DXA is highly regarded for measuring body composition due
to its speed, ease of use, and minimal radiation exposure (18, 19).
From 1999 to 2006, whole-body DXA scans were performed using
the Hologic QDR 4500A fan-beam densitometer (Hologic, Inc.,
Bedford, Massachusetts, USA). From 2011 to 2018, scans were
conducted using the Hologic Discovery model A densitometers
(Hologic, Inc., Bedford, Massachusetts, USA) with software version
Apex 3.2.

Appendicular skeletal muscle mass (ASM) is a critical metric
derived from DXA scans, representing the total lean mass of the
extremities, including both arms and legs. This measurement is
obtained by summing the lean mass, excluding the bone mineral
content, provided by DXA scans for these regions. This study
assessed sarcopenia using the sarcopenia index, calculated as ASM
adjusted by BMI (ASM/BMI). According to the criteria set by
the Foundation for the National Institutes of Health (FNIH)
Sarcopenia Project (20), men were classified as having sarcopenia
if their sarcopenia index was <0.789 and women were classified
as having sarcopenia if their sarcopenia index was <0.512. These
criteria have been employed in recent research (21, 22).

Assessment of dietary selenium intake

Dietary intake was assessed over 2 separate days in the
NHANES study: the initial session was conducted in person,
followed by a subsequent session via telephone. Due to significant
data gaps encountered during the second round of interviews,
our analysis relied solely on the dietary information collected
during the initial session. Estimations of dietary selenium and
other nutrients were based on data from the Food and Nutrient
Database for Dietary Studies (http://www.ars.usda.gov/ba/bhnrc/
fsrg), a comprehensive resource provided by the United States
Department of Agriculture (23).

Covariates

A variety of potential covariates were assessed according to the
literature (24–32), including age, sex, marital status, race/ethnicity,
education level, poverty income ratio (PIR), smoking status,
hypertension, diabetes, cardiovascular diseases (CVDs), cancer,
physical activity, healthy eating index-2015 (HEI-2015), dietary
supplements taken, albumin, estimated glomerular filtration rate
(eGFR), uric acid, and total cholesterol. Race/ethnicity was
categorized as Non-Hispanic White, Non-Hispanic Black, Mexican

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2024.1449980
http://www.cdc.gov/nchs/nhanes.htm
http://www.cdc.gov/nchs/nhanes.htm
http://www.ars.usda.gov/ba/bhnrc/fsrg
http://www.ars.usda.gov/ba/bhnrc/fsrg
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1449980

FIGURE 1

Flow diagram of the screening and enrollment of study participants.

American, or other races (26). Marital status was classified into two
groups: those who were either married or living with a partner
and those who were living alone (26). The educational level was
categorized into three groups: less than high school, high school or
equivalent, and above high school (27). Family income was divided
into three categories based on the PIR: PIR ≤ 1.30, PIR 1.31–3.50,
and PIR > 3.50 (27). Smoking status was categorized as never
smokers (smoked <100 cigarettes), current smokers, and former
smokers (quit smoking after smoking more than 100 cigarettes)
(29). Drinking status was self-reported and categorized as never
(had <12 drinks in a lifetime), former (had ≥12 drinks in 1 year
and did not drink last year, or did not drink last year but drank
≥12 drinks in a lifetime), mild (female drinking ≤1 and male
drinking ≤2 per day), moderate (female drinking ≤2 and male
drinking ≤3 per day), or heavy (female drinking ≥3 and male
drinking ≥4 per day) (27). The definition of hypertension was self-
reported diagnosis, use of antihypertensive drugs, systolic blood
pressure ≥140 mmHg, or diastolic blood pressure ≥90 mmHg
(24). The definition of diabetes was self-reported diagnosis, use of
insulin or oral hypoglycemic agents, fasting glucose ≥7 mmol/L,
or HbA1c ≥ 6.5% (31). The CVD history was self-reported as

having previously been diagnosed with heart failure, coronary heart
disease, angina, heart attack, or stroke (27). The cancer history was
self-reported as having been diagnosed with cancer or malignancy.
The Healthy Eating Index (HEI) is a robust metric for evaluating
the overall quality of an individual’s diet, explicitly gauging the
alignment of dietary habits with the established Dietary Guidelines
for Americans (30). HEI-2015 scores range from 0 to 100, with
higher values signifying better diet quality. The Healthy Eating
Index (HEI) comprises 13 components that assess compliance with
dietary guidelines, including the consumption of the recommended
food groups and the limitation of less healthy options. We
calculated the HEI scores based on total nutrient intakes from the
initial day of dietary assessment, capturing participants’ adherence
to HEI-2015 standards, which emphasize aspects such as fruit and
vegetable intake, whole grains, and reductions in added sugars
and saturated fats (30). Dietary supplements were determined by
the question regarding nutritional supplements and medications
consumed during the past month (29). Furthermore, we quantified
the level of physical activity by employing the metabolic equivalent
of task (MET), measured in minutes per week (32). Additionally,
the eGFR was determined using the Chronic Kidney Disease
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TABLE 1 Baseline characteristics by dietary selenium intake level.

Characteristics Dietary selenium intake (µg/day) P-value

Total Q1 (<80.10) Q2 (80.10-124.61) Q3 (>124.61)

n = 19,696 n = 6,559 n = 6,569 n = 6,568

Age, mean (SD), years 43.54 (14.86) 45.58 (15.92) 43.83 (14.96) 41.42 (13.41) <0.001

Sex, n (%) <0.001

Male 9,830 (49.31) 2,194 (30.95) 3,143 (45.85) 4,493 (69.29)

Female 9,866 (50.69) 4,365 (69.05) 3,426 (54.15) 2,075 (30.71)

Race/ethnicity, n (%)a 0.001

Non-Hispanic White 9,167 (69.74) 2,980 (68.94) 3,136 (70.90) 3,051 (69.36)

Non-Hispanic Black 3,877 (10.24) 1,442 (11.76) 1,252 (9.93) 1,183 (9.17)

Mexican American 3,715 (8.15) 1,256 (7.47) 1,236 (7.81) 1,223 (9.09)

Other Hispanic 1,221 (5.36) 393 (5.54) 406 (5.20) 422 (5.36)

Othersb 1,716 (6.50) 488 (6.28) 539 (6.17) 689 (7.02)

Education level, n (%) <0.001

Less than high school 4,700 (14.87) 1,920 (18.68) 1,454 (13.21) 1,326 (12.99)

High school or equivalent 4,500 (24.02) 1,521 (25.23) 1,512 (24.34) 1,467 (22.62)

Above high school 10,496 (61.11) 3,118 (56.09) 3,603 (62.45) 3,775 (64.39)

Marital status, n (%) 0.002

Married or living with a partner 12,261 (64.05) 3,839 (61.48) 4,140 (64.83) 4,282 (64.39)

Living alone 7,435 (35.95) 2,720 (38.52) 2,429 (35.17) 2,286 (34.37)

PIR, n (%) <0.001

≤1.3 5,554 (20.82) 2,118 (24.80) 1,755 (19.65) 1,681 (18.31)

>1.3–3.5 7,428 (34.97) 2,483 (35.65) 2,522 (35.10) 2,423 (34.24)

>3.5 6,714 (44.21) 1,958 (39.56) 2,292 (45.25) 2464 (47.45)

BMI, mean (SD), kg/m2 28.48 (6.50) 28.30 (6.68) 28.45 (6.41) 28.68 (6.41) 0.062

Smoking status, n (%) 0.004

Never 10,766 (53.83) 3,645 (53.59) 3,588 (54.11) 3,533 (53.80)

Former 4,532 (23.11) 1,424 (21.22) 1,597 (23.96) 1,511 (24.02)

Now 4,398 (23.05) 1,490 (25.19) 1,384 (21.93) 1,524 (22.19)

Drinking status, n (%) <0.001

Never 2,606 (11.11) 1,146 (14.67) 828 (10.77) 632 (8.21)

Former 3,187 (13.48) 1,248 (15.22) 1,089 (13.94) 850 (11.48)

Mild 6,491 (34.37) 1,955 (31.16) 2,228 (35.93) 2,308 (35.80)

Moderate 3,177 (18.26) 1,010 (18.15) 1,133 (18.89) 1,034 (17.31)

Heavy 4,235 (22.77) 1,200 (20.31) 1,291 (20.47) 1,744 (27.20)

Hypertension, n (%) 7,199 (32.77) 2,653 (35.03) 2,433 (31.86) 2,113 (31.58) 0.005

Diabetes, n (%) 2,404 (8.93) 870 (9.66) 856 (9.13) 678 (8.08) 0.039

CVD history, n (%) 1,580 (6.37) 672 (7.77) 530 (6.67) 378 (4.81) <0.001

Cancer history, n (%) 1,307 (7.02) 526 (8.28) 472 (7.96) 309 (4.99) <0.001

Physical activity MET, mean (SD),
min/week

2,187.82 (4,519.00) 1,783.69 (3,941.14) 2,028.26 (4,227.69) 2,706.68 (5,181.76) <0.001

HEI-2015, mean (SD) 51.92 (13.21) 51.77 (13.64) 52.06 (13.03) 51.92 (12.99) 0.662

Dietary supplements taken, n (%) 9,524 (52.16) 3,144 (51.98) 3,255 (54.04) 3,125 (50.53) 0.023

(Continued)
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TABLE 1 (Continued)

Characteristics Dietary selenium intake (µg/day) P-value

Total Q1 (<80.10) Q2 (80.10-124.61) Q3 (>124.61)

n = 19,696 n = 6,559 n = 6,569 n = 6,568

ALT, mean (SD), U/L 26.33 (25.24) 23.76 (18.30) 25.70 (21.88) 29.27 (32.37) <0.001

AST, mean (SD), U/L 25.27 (17.03) 24.45 (15.83) 25.05 (18.79) 26.22 (16.25) <0.001

Albumin, mean (SD), g/dL 4.33 (0.33) 4.29 (0.33) 4.33 (0.33) 4.38 (0.32) <0.001

Creatinine, mean (SD), mg/dL 0.87 (0.34) 0.85 (0.39) 0.86 (0.34) 0.90 (0.28) <0.001

Uric acid, mean (SD), mg/dL 5.38 (1.40) 5.17 (1.40) 5.32 (1.39) 5.62 (1.36) <0.001

Total cholesterol, mean (SD), mg/dL 198.20 (41.46) 199.94 (42.54) 198.59 (40.60) 196.24 (41.20) 0.002

eGFR, mean (SD), mL/(min·1.73 m2) 99.38 (19.38) 97.56 (20.88) 99.46 (19.28) 100.96 (17.85) <0.001

Sarcopenia, n (%) 2,340 (8.46) 987 (10.81) 812 (8.44) 541 (6.35) <0.001

Q, quartiles; SD, standard deviation; PIR, poverty income ratio; BMI, body mass index; CVD, cardiovascular disease; MET, metabolic equivalent of task; HEI-2015, healthy eating index-2015;

AST, aspartate aminotransferase; ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate.

Data are presented as unweighted numbers (weighted percentages) for categorical variables, and all means and SDs for continuous variables were weighted.
aRace and ethnicity were self-reported.
bIncludes multiracial participants. NHANES does not provide a detailed list of all races and ethnicities. A p-value of < 0.05 was set as the threshold of statistical significance.

Epidemiology Collaboration (CKD-EPI) formula, a reliablemethod
for evaluating kidney function.

Statistical analysis

Our analysis accounted for the complex sampling design
and dietary sample weights. For the combined NHANES 1999–
2000 and 2001–2002 datasets, we used the 4-year dietary weight
(WTDR4YR). We applied the dietary day-one sample weight for
the datasets from 2003 to 2004, 2005 to 2006, 2011 to 2012,
2013 to 2014, 2015 to 2016, and 2017 to 2018 (WTDRD1).
Sampling weights were calculated as follows: for the 1999–2002
period, weights were set at 1/4 × WTDR4YR, and for other
years, they were set at 1/8 × WTDRD1. Categorical data are
presented as unweighted counts with weighted percentages, while
continuous data are reported as means± standard deviations (SD).
Differences between groups were assessed using one-way analyses
of variance for continuous variables and chi-square tests for
categorical variables. A multivariate logistic regression analysis was
employed to determine the association between dietary selenium
intake and sarcopenia, with results expressed as odds ratios (ORs)
and 95% confidence intervals (CIs).

Model 1 adjusted for demographic variables, including
age, gender, marital status, race/ethnicity, PIR, and education
level. Model 2 further accounted for smoking status, alcohol
consumption, hypertension, diabetes, CVD history, cancer history,
physical activity, HEI-2015, and use of dietary supplements. Model
3 included additional adjustments for albumin, eGFR, uric acid,
and total cholesterol.

To evaluate the dose-response relationship between dietary
selenium intake and sarcopenia, we employed a restricted cubic
spline (RCS) regression model with three knots positioned at the
10th, 50th, and 90th percentiles of dietary selenium intake. This
approach allowed us to assess linearity and explore the relationship
after adjusting for the covariates in Model 3.

We also performed interaction and subgroup analyses using
logistic regression models stratified by age, sex, race/ethnicity,
marital status, PIR, smoking status, alcohol consumption,
hypertension, diabetes, CVD history, cancer history, and eGFR.

Two sensitivity analyses were conducted to ensure the
robustness of our results. Initially, the primary analysis did not
include serum selenium due to substantial missing serum selenium
data and potential collinearity with dietary selenium. To address
whether dietary selenium remains associated with sarcopenia after
adjusting for serum selenium, we conducted a sensitivity analysis
excluding participants without serum selenium data, followed by
a multivariate logistic regression analysis that included serum
selenium along with the covariates from Model 3. Multiple
imputations with five replications were also used to handle missing
covariate data.

Although no prior statistical power calculations were
conducted, the large sample size of 19,696 participants provided
substantial analytical power. To verify this, we subsequently
used G∗Power software to assess the power of our analyses,
which indicated a power of 1. All statistical analyses were
performed using R Statistical Software (Version 4.2.2, http://
www.R-project.org, The R Foundation) and the Free Statistics
analysis platform (Version 1.9.2, Beijing, China, http://www.
clinicalscientists.cn/freestatistics). Descriptive statistics were
computed for all participants, and statistical significance
was evaluated using a two-tailed test with a threshold of
p of < 0.05.

Result

Study population

This study utilized data from eight NHANES cycles: 1999–
2000, 2001–2002, 2003–2004, 2005–2006, 2011–2012, 2013–2014,
2015–2016, and 2017–2018. A total of 42,928 participants
aged 20 years and older completed the survey. We excluded
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TABLE 2 Association of covariates and sarcopenia.

Covariates OR (95% CI) P-value

Age (years) 1.05 (1.04–1.05) <0.001

Sex

Female (vs. male) 0.86 (0.75–0.97) 0.018

Race/ethnicity (vs. Non-Hispanic White)

Non-Hispanic Black 0.33 (0.26–0.41) <0.001

Mexican American 2.89 (2.48–3.37) <0.001

Other Hispanic 1.96 (1.56–2.47) <0.001

Others 1.19 (0.91–1.54) 0.195

Education level (vs. less than high school)

High school or equivalent 0.58 (0.50–0.67) <0.001

Above high school 0.33 (0.28–0.38) <0.001

Marital status (vs. married or living with a partner)

Living alone 0.88 (0.77–1.02) 0.084

PIR (vs. ≤1.3)

>1.3–3.5 0.82 (0.68–0.97) 0.024

>3.5 0.43 (0.37–0.52) <0.001

Hypertension (yes vs. no) 2.79 (2.42–3.21) <0.001

Diabetes (yes vs. no) 3.82 (3.26–4.48) <0.001

CVD history (yes vs. no) 3.66 (3.08–4.35) <0.001

Cancer history (yes vs. no) 1.47 (1.15–1.87) 0.002

Smoking status (vs. never)

Former 1.36 (1.16–1.59) <0.001

Now 0.79 (0.68–0.93) 0.006

Drinking status (vs. never)

Former 1.15 (0.92–1.44) 0.218

Mild 0.5 (0.40–0.63) <0.001

Moderate 0.38 (0.29–0.49) <0.001

Heavy 0.48 (0.37–0.62) <0.001

Physical activity MET,
min/week

1 (1.00–1.00) <0.001

HEI-2015 1 (0.99–1.00) 0.163

Dietary supplements taken (yes
vs. no)

0.95 (0.82–1.09) 0.456

ALT, U/L 1 (1.00–1.00) 0.135

AST, U/L 1 (1.00–1.01) 0.156

Albumin, g/dL 0.26 (0.22–0.31) <0.001

Creatinine, mg/dL 0.87 (0.66–1.15) 0.324

Uric acid, mg/dL 1.2 (1.15–1.26) <0.001

Total cholesterol, mg/dL 1 (1.00–1.00) <0.001

eGFR, mL/(min·1.73 m2) 0.99 (0.99–0.99) <0.001

Dietary selenium intake,
µg/day

1 (0.99–1.00) <0.001

(Continued)

TABLE 2 (Continued)

Covariates OR (95% CI) P-value

Dietary selenium intake (vs. Q1 <80.10 µg/day)

Q2 (80.10–124.61 µg/day) 0.76 (0.67–0.87) <0.001

Q3 (>124.61 µg/day) 0.56 (0.48–0.66) <0.001

Q, quartiles; PIR, poverty income ratio; CVD, cardiovascular disease; MET, metabolic

equivalent of task; HEI−2015, healthy eating index-2015; AST, aspartate aminotransferase;

ALT, alanine aminotransferase; eGFR, estimated glomerular filtration rate; CI, confidence

interval; OR, odds ratio.

The unit for continuous variables and the reference group for categorical variables

are provided next to the variables. A p-value of < 0.05 was set as the threshold of

statistical significance.

pregnant women (n = 1,421) and participants with missing
data on DXA (n = 13,974), BMI (n = 213), and dietary
selenium intake (n = 1,340). Participants without data on sample
weights (n = 13) and covariates (n = 6,271) were excluded.
Consequently, the final sample consisted of 19,696 participants
(Figure 1).

Baseline characteristics

The baseline characteristics of the 19,696 participants with
available data for analysis are summarized in Table 1. These
participants represent ∼124.60 million American adults aged
20 years and older. The mean age was 43.54 (14.68) years,
with 9,830 (49.31%) being male. The overall prevalence of
sarcopenia was 8.46%. Higher dietary selenium intake was
generally observed among younger participants, men, those
with a PIR of > 3.5, married or cohabiting individuals,
mild alcohol consumers, non-smokers, and those with
higher educational attainment. Additionally, higher selenium
intake was associated with greater physical activity, higher
levels of albumin, uric acid, and eGFR, a lower incidence
of hypertension, diabetes, CVD, cancer, and lower total
cholesterol levels.

Relationship between dietary selenium
intake and sarcopenia

The univariable analysis showed that age, sex,
race/ethnicity, education level, PIR, smoking status, alcohol
consumption, hypertension, diabetes, CVD, cancer, physical
activity, albumin, uric acid, total cholesterol, eGFR,
and dietary selenium intake were linked to sarcopenia
(Table 2).

An inverse association between dietary selenium
consumption and sarcopenia was observed after adjusting
for potential confounders (Table 3). Compared to the lowest
dietary selenium intake quintile (Q1, <80.10 µg/day), the
adjusted ORs for sarcopenia in Q2 (80.10–124.61 µg/day)
and Q3 (>124.61 µg/day) were 0.80 (95% CI: 0.70–0.92,
p = 0.002) and 0.61 (95% CI: 0.51–0.73, p < 0.001),
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TABLE 3 Association between dietary selenium intake and sarcopenia.

Crude Model 1 Model 2 Model 3

OR
(95% CI)

P-value OR
(95% CI)

P-value OR
(95% CI)

P-value OR
(95% CI)

P-value

Dietary selenium intake

Q1 (<80.10 µg/day) 1 (Reference) 1 (Reference) 1 (Reference) 1 (Reference)

Q2 (80.10–124.61 µg/day) 0.76
(0.67–0.87)

<0.001 0.82
(0.72–0.94)

0.004 0.83
(0.72–0.95)

0.006 0.8 (0.70–0.92) 0.002

Q3 (>124.61 µg/day) 0.56
(0.48–0.66)

<0.001 0.64
(0.53–0.76)

<0.001 0.64
(0.54–0.77)

<0.001 0.61
(0.51–0.73)

<0.001

P for trend <0.001 <0.001 <0.001 <0.001

Model 1: adjusted for age, sex, poverty income ratio, race/ethnicity, education level, and marital status.

Model 2: adjusted for model 1+ smoking status, alcohol drinking status, hypertension, diabetes, cardiovascular disease history, cancer history, physical activity, healthy eating index-2015, and

dietary supplements taken.

Model 3: adjusted for model 2+ albumin, estimated glomerular filtration rate, uric acid, and total cholesterol.

Q, quartiles; CI, confidence interval; OR, odds ratio.

A p-value of < 0.05 was set as the threshold of statistical significance.

FIGURE 2

Linear dose-response relationship between dietary selenium intake and sarcopenia. Adjusted for age, sex, poverty income ratio, race/ethnicity,

education level, marital status, smoking status, alcohol drinking status, hypertension, diabetes, cardiovascular disease history, cancer history, physical

activity, healthy eating index-2015, dietary supplements taken, albumin, estimated glomerular filtration, uric acid, and total cholesterol.

respectively. Evidence from the estimated dose-response
curve indicated a significant linear relationship between
dietary selenium intake and sarcopenia (Figure 2, p for
non-linearity= 0.285).

Subgroup analyses

In several subgroups, a stratified analysis was conducted
to assess potential effect modifications on the relationship
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FIGURE 3

The relation between dietary selenium intake and sarcopenia according to basic features. Except for the stratification component itself, each

stratification factor was adjusted for other variables (age, sex, poverty income ratio, race/ethnicity, education level, marital status, smoking status,

alcohol drinking status, hypertension, diabetes, cardiovascular disease history, cancer history, physical activity, healthy eating index-2015, dietary

supplements taken, albumin, estimated glomerular filtration, uric acid, and total cholesterol).
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TABLE 4 Sensitivity analyses 1.

Dietary selenium intake
(µg/day)

Unweighted events/
total, No.

Crude Adjustedb

OR (95% CI) P-value OR (95% CI) P-value

Totala 649/4,284

Q1 (<80.10) 273/1,482 1 (Reference) 1 (Reference)

Q2 (80.10–124.61) 244/1,470 0.92 (0.76–1.11) 0.378 0.87 (0.70–1.09) 0.219

Q3 (>124.61) 132/1,332 0.55 (0.38–0.79) 0.002 0.65 (0.43–0.97) 0.036

P for trend 0.001 0.031

aExcluding participants with unavailable serum selenium data.
bAdjusted for age, sex, poverty income ratio, race/ethnicity, education level, marital status, smoking status, alcohol drinking status, hypertension, diabetes, cardiovascular disease history, cancer

history, physical activity, healthy eating index-2015, dietary supplements taken, albumin, estimated glomerular filtration, uric acid, total cholesterol, and serum selenium.

Q, quartiles; CI, confidence interval; OR, odds ratio. A p-value of < 0.05 was set as the threshold of statistical significance.

TABLE 5 Sensitivity analyses 2.

Dietary selenium intake
(µg/day)

Unweighted events/
total, No.

Crude Adjustedb

OR (95% CI) P-value OR (95% CI) P-value

Totala 3,100/25,967

Q1 (<80.10) 1,346/8,842 1 (Reference) 1 (Reference)

Q2 (80.10–124.61) 1,038/8,509 0.75 (0.66–0.86) <0.001 0.77 (0.68–0.89) <0.001

Q3 (>124.61) 716/8,616 0.58 (0.49–0.68) <0.001 0.61 (0.51–0.73) <0.001

P for trend <0.001 <0.001

aMultiple imputations of missing data.
bAdjusted for age, sex, poverty income ratio, race/ethnicity, education level, marital status, smoking status, alcohol drinking status, hypertension, diabetes, cardiovascular disease history, cancer

history, physical activity, healthy eating index-2015, dietary supplements taken, albumin, estimated glomerular filtration, uric acid, and total cholesterol.

Q, quartiles; CI, confidence interval; OR, odds ratio. A p-value of < 0.05 was set as the threshold of statistical significance.

between dietary selenium intake and sarcopenia. Consistent
results were observed when the analysis was stratified by age,
sex, race/ethnicity, marital status, PIR, smoking status, alcohol
consumption, hypertension, diabetes, CVD, cancer, and eGFR
(Figure 3).

Sensitivity analysis

Initially, participants without serum selenium data were
excluded. After further adjusting for serum selenium, the adjusted
OR for dietary selenium intake and sarcopenia in Q3 (>124.61
µg/day) was 0.65 (95% CI: 0.43–0.97, p = 0.031) compared to the
lowest quintile (Q1: <80.10 µg/day; Table 4). Multiple imputations
with five replications were also conducted to address missing
covariate data. Out of the 25,980 participants, sample weight data
were not available for 13 of them. Multiple imputations were
performed for the remaining 25,967 participants. Compared to the
lowest quintile (Q1: <80.10 µg/day), the adjusted OR for dietary
selenium intake and sarcopenia in Q3 (>124.61 µg/day) was 0.61
(95% CI: 0.51–0.73, p < 0.001; Table 5).

Discussion

This cross-sectional study identified an inverse relationship
between dietary selenium intake and sarcopenia. Stratified and

sensitivity analyses further confirmed a robust association between
dietary selenium and sarcopenia in American adults. Extensive
research suggests that selenium may play a role in musculoskeletal
health, with recent studies linking reduced serum selenium levels
to exacerbated sarcopenic symptoms (33–37). Despite this finding,
evidence regarding the relationship between dietary selenium
intake and sarcopenia remains limited and inconsistent. For
example, the Newcastle 85+ Study (28) found that low selenium
intake was associated with diminished musculoskeletal function
in participants aged 85 years and older. Conversely, other studies
did not observe a significant relationship between dietary selenium
and musculoskeletal health (38–41). Our study contributes to
understanding this relationship by demonstrating an inverse
association between dietary selenium intake and sarcopenia in
American adults, highlighting the need for further prospective
research to clarify the effects of selenium on sarcopenia.

According to the dietary reference intakes established by
the Institute of Medicine, the recommended daily allowance for
selenium in adults is 55 µg (8). Selenium is sourced from various
dietary items, including meats, seafood, cereals, grains, dairy
products, fruits, and vegetables. Our study population, consisting
of individuals aged 20 years and older, generally exceeds this
recommended intake. Therefore, the current recommendation for
selenium intake might be insufficient. Some research suggests
that the existing recommended daily intake may not be adequate
(42). However, excessive selenium intake can lead to toxicity (43),
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although the World Health Organization considers up to 400
µg per day to be safe (44). Thus, further research is needed to
determine the optimal daily selenium intake.

Selenium is well-regarded for its role in enhancing muscle
function, particularly due to its antioxidant properties.
Selenoproteins, such as glutathione peroxidase (GPx), are
crucial for neutralizing reactive oxygen and nitrogen species, which
support muscle health (45–48). These antioxidants are essential
for countering oxidative stress, which typically increases with age
due to diminished antioxidant defenses (49, 50). The high oxygen
demand of skeletal muscle results in the substantial production of
reactive nitrogen species, which are associated with reduced muscle
strength and mass, often due to increased protein breakdown and
decreased muscle protein synthesis (51).

In addition to its antioxidant functions, selenium affects
muscle function through other mechanisms. Research indicates
that selenium can enhance mitochondrial biogenesis and improve
mitochondrial function in skeletal muscle. This effect is partly
due to its involvement with various selenoproteins beyond
GPx. For instance, selenoprotein H promotes mitochondrial
biogenesis, while selenoproteins N and W influence calcium
homeostasis in muscles, impacting mitochondrial function (52–
54). Additionally, the presence of selenoprotein O in mitochondria
suggests that it may facilitate selenium’s redox functions within
these organelles (55).

The relationship between selenium and muscle function
involves complex regulatory mechanisms, including mitochondrial
energetics and cellular signaling pathways (56). Given these diverse
roles, selenium is crucial for maintaining muscle function and
mitigating age-related declines often linked to oxidative damage
and impaired mitochondrial performance. Future longitudinal
studies are needed to elucidate the causal mechanisms underlying
selenium’s effects on muscle function.

The strength of our study lies in its use of a sophisticated
multistage probability sampling design combined with rigorous
covariate adjustment, which enhances the reliability and
representativeness of the findings. Nonetheless, several limitations
should be noted. First, the study was conducted exclusively
with American adults aged 20 years and older, which may limit
the generalizability of the results to other demographic groups.
Second, the accuracy and validity of the nutritional assessments
were constrained using the 24-h dietary recall method. While food
frequency questionnaires were not used due to their provision
of less detailed information on specific foods and quantities
consumed, their inclusion might have provided additional context
(57, 58). Finally, the cross-sectional design of the study prevents
concluding causality. Future research using prospective cohort
studies is essential to elucidate the cause-and-effect relationship
between dietary selenium intake and sarcopenia.

Conclusion

This study identified an inverse relationship between dietary
selenium intake and sarcopenia in the adult American population,
suggesting that selenium may be a crucial nutrient in influencing
the risk of sarcopenia. Based on these findings, we recommend that
public health nutritional guidelines incorporate recommendations

for adequate selenium intake as a potential strategy to mitigate the
risk of sarcopenia. Further longitudinal and interventional studies
are essential to establish a causal relationship between selenium
intake and sarcopenia and to elucidate the underlying mechanisms.
Additionally, research is needed to determine the optimal daily
selenium intake for maximizing health benefits.
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