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Background: Hypoalbuminemia is a common complication in patients with 
chronic kidney disease (CKD) and is associated with various adverse clinical 
events. Currently, there are few studies focused on identifying risk factors and 
constructing models for hypoalbuminemia in patients with CKD stages 3 and 
4. This study aims to identify independent risk factors for hypoalbuminemia in 
patients with CKD stages 3 and 4 and construct a nomogram for predicting the 
risk of hypoalbuminemia in these patients.

Methods: A total of 237 patients with CKD stages 3 and 4 treated at Anning First 
People’s Hospital from January to December 2023 were included. Univariate 
and bidirectional stepwise multivariate logistic regression analyses were used to 
identify independent risk factors for hypoalbuminemia in these patients. Based 
on the results of logistic regression analyses, a nomogram was constructed. 
The model performance was assessed using area under the receiver operator 
characteristic curve, calibration curves, and decision curve analysis.

Results: Hemoglobin, red blood cells, serum sodium, and serum calcium were 
identified as independent risk factors for hypoalbuminemia in these patients. 
The contributions of each independent risk factor to hypoalbuminemia were 
visualized in a nomogram. The area under the receiver operator characteristic 
curve of the model was 0.819, indicating good discrimination. The calibration 
curves showed good agreement between predicted and observed outcomes. 
The decision curve analysis also verified that the model had the good clinical 
utility.

Conclusion: Hemoglobin, red blood cells, serum sodium, and serum calcium 
were identified as independent risk factors of hypoalbuminemia in patients with 
CKD stages 3 and 4. The nomogram exhibits good discrimination, calibration, 
and clinical utility, offering a reliable tool for the early prediction and identification 
of hypoalbuminemia in these patients.
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1 Introduction

Hypoalbuminemia is a common complication among patients 
with chronic kidney disease (CKD), characterized by plasma total 
protein levels below 60 g/L or albumin levels below 35 g/L. The 
mechanisms underlying hypoalbuminemia in patients with CKD are 
not fully understood, and multiple factors such as inadequate protein 
intake, protein synthesis disorders, excessive protein loss, inflammatory 
responses, and protein loss during dialysis contribute to its occurrence 
(1–3). Hypoalbuminemia is not only closely associated with 
malnutrition, chronic inflammation, cardiovascular diseases, and 
infections in patients with CKD (1, 4–6), but is also considered a 
predictor for the initiation of hemodialysis in patients with CKD (7). 
Additionally, hypoalbuminemia is recognized as a strong predictor of 
all-cause mortality in these patients (8). Furthermore, 
hypoalbuminemia and its accompanying proinflammatory state play 
significant roles in various diseases, not merely confined to CKD. In 
recent years, with the deepening of medical research, an increasing 
amount of evidence has emerged indicating that hypoalbuminemia 
and its associated proinflammatory state extensively participate in and 
influence the occurrence, development, and outcome of multiple 
diseases (9, 10). For instance, in oncology, factors such as the levels of 
inflammatory markers (including albumin and fibrinogen) have been 
confirmed as independent predictors of poor prognosis in cancer 
patients (9). Therefore, prediction of hypoalbuminemia in patients 
with CKD stages 3 and 4 can help clinicians identify and intervene in 
the early occurrence of hypoalbuminemia, reduce the incidence of 
related complications, improve the quality of life, lower the readmission 
rate and mortality, and delay the progression to end-stage renal disease.

In the process of establishing prediction models, most current 
studies typically discuss hypoalbuminemia only as a disease marker or 
a risk factor, such as a marker of intrinsic liver function deterioration or 
a strong predictor of early mortality after infective endocarditis surgery 
(11, 12). However, few studies have investigated hypoalbuminemia as 
an independent predictive outcome. Additionally, due to the complexity 
of clinically predicting hypoalbuminemia, there are no effective 
predictive tools for accurately, intuitively, and conveniently predicting 
hypoalbuminemia in patients with CKD stages 3 and 4.

Based on the above, we identified risk factors that may influence the 
occurrence of from commonly accessible hospital data. Through binary 
logistic regression analysis, we screened for independent risk factors 
that contribute to hypoalbuminemia in patients with CKD stages 3 and 
4. Subsequently, we  visualized the results of the logistic regression 
analysis to construct a nomogram for predicting hypoalbuminemia risk 
in these patients, providing a reliable, convenient and universally 
applicable tool for clinical prediction, identification and intervention.

Nomogram is a predictive tool that visualize the results of binary 
logistic regression models, graphically representing the probability of 
clinical events. Recently, nomograms have been widely used for predicting 
the occurrence, development, prognosis, and survival of diseases (13).

2 Materials and methods

2.1 Study design and participants

A retrospective analysis was conducted on clinical data of patients 
with CKD stages 3 and 4 admitted to Anning First People’s Hospital 

from January 2023 to December 2023. The inclusion criteria were: 
age > 18 years, diagnosis of CKD stages 3 and 4 according to the 
Kidney Disease: Improving Global Outcomes 2024 Clinical Practice 
Guidelines for the Evaluation and Management of Chronic Kidney 
Disease (14) and complete clinical data. The exclusion criteria were: 
incomplete clinical data, pregnancy, severe infections, severe acid–
base imbalance or electrolyte disturbances and concomitant malignant 
tumors or other severe diseases. Based on these criteria, a total of 237 
patients were included in the study. This study is a retrospective 
analysis focusing on patients with CKD stages 3 and 4. All information 
was collected from the electronic medical record system of Anning 
First People’s Hospital. Any data obtained about the study participants 
will be de-identified and kept strictly confidential, and it will be used 
solely for the purposes of this study. Public reports regarding the 
results of this research will not disclose any personal identifying 
information. This study has been approved by the Medical Ethics 
Committee of Anning First People’s Hospital (approval number: 2024-
040). Due to the non-invasive and anonymous nature of retrospective 
studies, the authors have signed a waiver of informed consent.

2.2 Demographic and laboratory 
measurements

Demographic and clinical data collected included: age, sex, body 
mass index, chronic kidney disease staging (stages 3 and 4), 
hypertension, diabetes, cardiovascular disease, cerebrovascular 
disease, smoking, and drinking status. Laboratory biochemical indices 
included: hemoglobin (g/L), red blood cells (10^12/L), aspartate 
aminotransferase (U/L), alanine aminotransferase (U/L), alkaline 
phosphatase (U/L), total cholesterol (mmol/L), high-density 
lipoprotein cholesterol (mmol/L), low-density lipoprotein cholesterol 
(mmol/L), triglycerides (mmol/L), serum creatinine (μmol/L), blood 
urea nitrogen (mmol/L), serum uric acid (μmol/L), N-terminal pro-B-
type natriuretic peptide (pg/ml), serum sodium (mmol/L), serum 
potassium (mmol/L), serum chloride (mmol/L), serum calcium 
(mmol/L), serum phosphorus (mmol/L), proteinuria, and carbon 
dioxide binding capacity (mmol/L).

2.3 Statistical analysis

All data were statistically analyzed using R software version 4.22. 
The normality of continuous variables was tested using the Shapiro–
Wilk test. Continuous variables that followed a normal distribution 
were expressed as mean ± standard deviation and compared between 
groups using the t-test. Non-normally distributed continuous 
variables were expressed as median and interquartile range (IQR) and 
compared using the Mann–Whitney U test. Categorical variables were 
presented as counts (percentages) and compared using the chi-square 
test. Univariate logistic regression analysis was conducted for all 
variables, and those with p < 0.05 were included in a bidirectional 
stepwise multivariate logistic regression to identify independent risk 
factors for hypoalbuminemia in patients with CKD stages 3 and 4. The 
bidirectional stepwise multivariate logistic regression combines the 
advantages of both forward stepwise regression and backward stepwise 
regression, enabling automatic selection of variables that have 
significant impacts on the results during the modeling process while 
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eliminating unimportant variables. This helps reduce the complexity 
of the model and improve its interpretability and generalization ability. 
The bidirectional stepwise multivariate logistic regression ensures that 
only variables with significant impacts on the results are included in 
the final model, thereby enhancing the interpretability of the model. 
The strength of prediction was quantified using odds ratios (OR) and 
confidence intervals (CI). Based on the multivariate logistic regression 
results, a nomogram was constructed using the rms package in R 
software. The discrimination of the model was assessed using the area 
under the receiver operator characteristic curve (AUC) calculated by 
the pROC package and visualized via receiver operator characteristic 
curve (ROC). Internal validation was performed with 1,000 bootstrap 
resamples to construct calibration curves, evaluating the calibration 
of the model. The clinical net benefit of the model was assessed using 
the rmda package to plot decision curve analysis (DCA), thus 
evaluating its clinical utility.

3 Results

3.1 Baseline characteristics

Based on the inclusion and exclusion criteria, a total of 237 
patients were included in our study (Figure 1), comprising 153 males 
and 84 females with a median age of 72 years (IQR: 60–80). According 
to the diagnostic criteria for hypoalbuminemia, the patients were 
divided into the hypoalbuminemia group (n = 65, 42 males and 23 
females, median age 72 years [IQR: 66–79]) and the 
non-hypoalbuminemia group (n = 172, 111 males and 61 females, 
median age 71.5 years [IQR: 57.75–80]). Detailed clinical and 
laboratory data for both groups are presented in Table 1. Significant 
differences (p < 0.05) were observed between the two groups in body 
mass index, chronic kidney disease staging, proteinuria, red blood cell, 
hemoglobin, serum creatinine, N-terminal pro-B-type natriuretic 
peptide, blood urea nitrogen, serum sodium, and serum calcium.

3.2 Logistic regression analyses

Univariate and bidirectional stepwise multivariate logistic 
regression analyses identified red blood cell (OR = 2.00, 95%CI: 0.78–
5.12, p = 0.1473), hemoglobin (OR = 0.96, 95% CI: 0.93–0.99, p = 0.0169), 
serum sodium (OR = 0.93, 95% CI: 0.87–0.99, p = 0.0498), and serum 
calcium (OR = 0.0035, 95% CI: 0.0003–0.0433, p < 0.0001) as 
independent risk factors for hypoalbuminemia inpatients with CKD 
stages 3 and 4 (Table 2). Based on these independent risk factors, a 
nomogram for predicting the risk of hypoalbuminemia inpatients with 
CKD stages 3 and 4 was constructed (Figure 2). The contribution of 
each independent risk factor to the development of hypoalbuminemia 
was scored, and the total prediction score was obtained by summing 
these scores. The total prediction score corresponded to the predicted 
probability of hypoalbuminemia in patients with CKD stages 3 and 4.

3.3 Model performance and validation

The ROC curve of the model showed good discrimination with an 
AUC of 0.819 (95% CI: 0.757–0.880) (Figure 3). Internal validation with 
1,000 bootstrap resamples and calibration curves analysis indicated good 
agreement between the predicted and observed outcomes, demonstrating 
good calibration of the model (Figure 4). The decision curve analysis 
showed net clinical benefits across a wide range of threshold probabilities, 
indicating high clinical utility of the model (Figure 5).

4 Discussion

According to the result of our logistic regression analyses, 
hemoglobin, red blood cells, serum sodium, and serum calcium were 
identified as independent risk factors. Our study also developed a 
nomogram to predict the risk of hypoalbuminemia in patients with 
CKD stages 3 and 4. Our validation showed that the nomogram had 
good performance and clinical utility.

Hemoglobin serve as crucial indicators reflecting the risk of 
hypoalbuminemia occurrence, with malnutrition being a common 
manifestation in affected patients (4) and previous studies have 
indicated the use of hemoglobin as a criterion for assessing malnutrition 
(15). Therefore, hemoglobin levels are important indicators reflecting 
the risk of hypoalbuminemia occurrence. Clinically, close attention to 
hemoglobin levels and variability in patients with CKD is necessary. 
Handelman found that when hemoglobin levels in patients with CKD 
fall below the target range (11–12.5 g/dL), there is an increase in 
hospitalization and mortality rates (16). Moreover, the fluctuation in 
hemoglobin levels in patients with CKD is directly proportional to the 
occurrence of adverse clinical events (17). Recommendations from The 
National Institute for Health and Clinical Excellence and The Trial to 
Reduce Cardiovascular Events with Aranesp Therapy study suggest 
maintaining hemoglobin levels in patients with CKD between 110 and 
120 g/L to reduce cardiovascular events and mortality risk (18, 19). It 
is not only essential to avoid low hemoglobin levels but also to prevent 
hemoglobin variability. Strategies such as the use of erythropoietin, 
iron supplementation, blood transfusions, and enhancing nutritional 
intake can improve low hemoglobin levels in patients with CKD (20–
22). However, maintaining hemoglobin levels within a reasonable and 
stable range while avoiding hemoglobin variability remains a significant 

FIGURE 1

Flowchart of study inclusion.
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TABLE 1 General information and clinical characteristics of participants.

Variables Total
(n  =  237)

Hypoalbuminemia
(n  =  172)

Non-hypoalbuminemia 
(n  =  65)

Statistic p

Age, M (IQR),years 72.00 (60.00, 80.00) 71.50 (57.75, 80.00) 72.00 (66.00, 79.00) Z = −1.16 0.246

Sex, n (%) χ2 = 0.00 0.991

  0 153 (64.56) 111 (64.53) 42 (64.62)

  1 84 (35.44) 61 (35.47) 23 (35.38)

BMI, M (IQR) 23.66 (21.33, 26.30) 24.05 (21.77, 26.76) 23.24 (20.94, 24.97) Z = −2.40 0.016

Chronic kidney disease staging, n (%) χ2 = 6.23 0.013

  3 126 (53.16) 100 (58.14) 26 (40.00)

  4 111 (46.84) 72 (41.86) 39 (60.00)

Hypertension, n (%) χ2 = 0.48 0.490

  0 47 (19.83) 36 (20.93) 11 (16.92)

  1 190 (80.17) 136 (79.07) 54 (83.08)

Diabetes, n (%) χ2 = 1.37 0.241

  0 142 (59.92) 107 (62.21) 35 (53.85)

  1 95 (40.08) 65 (37.79) 30 (46.15)

Cardiovascular disease, n (%) χ2 = 1.86 0.173

  0 140 (59.07) 97 (56.40) 43 (66.15)

  1 97 (40.93) 75 (43.60) 22 (33.85)

Cerebrovascular disease, n (%) χ2 = 0.29 0.591

  0 184 (77.64) 132 (76.74) 52 (80.00)

  1 53 (22.36) 40 (23.26) 13 (20.00)

Smoking, n (%) χ2 = 2.28 0.131

  0 189 (79.75) 133 (77.33) 56 (86.15)

  1 48 (20.25) 39 (22.67) 9 (13.85)

Drinking, n (%) χ2 = 0.07 0.787

  0 217 (91.56) 158 (91.86) 59 (90.77)

  1 20 (8.44) 14 (8.14) 6 (9.23)

HGB (g/L), Mean ± SD 125.53 ± 25.68 130.11 ± 24.48 113.42 ± 25.02 t = 4.66 <0.001

RBC (10^12/L), Mean ± SD 4.15 ± 0.84 4.27 ± 0.81 3.83 ± 0.85 t = 3.72 <0.001

AST (U/L), M (IQR) 21.00 (17.00, 28.00) 21.00 (17.00, 27.00) 20.00 (16.00, 29.00) Z = −0.52 0.601

ALT (U/L), M (IQR) 18.00 (13.00, 27.00) 18.00 (13.00, 28.00) 17.00 (11.00, 25.00) Z = −0.59 0.557

(Continued)
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Variables Total
(n  =  237)

Hypoalbuminemia
(n  =  172)

Non-hypoalbuminemia 
(n  =  65)

Statistic p

ALP (U/L), M (IQR) 81.00 (65.00, 107.00) 80.50 (64.00, 103.75) 83.00 (66.00, 112.00) Z = −0.48 0.628

Scr (μmol/L), M (IQR) 160.10 (131.10, 218.50) 154.95 (124.45, 203.03) 176.40 (148.60, 237.10) Z = −2.88 0.004

BUN (μmol/L), M (IQR) 10.68 (7.95, 13.94) 9.98 (7.79, 13.18) 12.37 (9.20, 14.40) Z = −2.55 0.011

UA (μmol/L), M (IQR) 496.00 (397.00, 626.00) 511.00 (406.00, 633.25) 480.00 (393.00, 576.00) Z = −1.16 0.248

TC (mmol/L), M (IQR) 4.55 (3.75, 5.61) 4.49 (3.77, 5.42) 4.69 (3.60, 5.91) Z = −0.81 0.416

TG (mmol/L), M (IQR) 1.57 (1.13, 2.35) 1.63 (1.19, 2.67) 1.44 (0.97, 2.16) Z = −1.28 0.202

HDL-c (mmol/L), M (IQR) 1.01 (0.82, 1.23) 1.01 (0.84, 1.20) 0.96 (0.79, 1.27) Z = −0.46 0.646

LDL-c (mmol/L), M (IQR) 2.50 (1.86, 3.36) 2.50 (1.88, 3.31) 2.54 (1.81, 3.36) Z = −0.04 0.967

Serum sodium (mmol/L), M (IQR) 141.70 (138.90, 144.00) 142.10 (139.30, 144.20) 140.70 (137.60, 142.80) Z = −2.87 0.004

Serum potassium (mmol/L), M (IQR) 4.31 (3.99, 4.75) 4.30 (4.02, 4.67) 4.31 (3.79, 4.89) Z = −0.11 0.912

Serum chloride (mmol/L), M (IQR) 106.10 (103.10, 109.00) 105.85 (102.70, 108.73) 106.40 (104.60, 109.70) Z = −1.79 0.074

Serum calcium(mmol/L), M (IQR) 2.21 (2.12, 2.30) 2.25 (2.18, 2.32) 2.11 (2.01, 2.18) Z = −7.17 <0.001

Serum phosphorus (mmol/L), M 

(IQR)
1.20 (1.02, 1.36) 1.20 (1.03, 1.34) 1.19 (1.00, 1.37) Z = −0.35 0.728

Carbon dioxide binding capacity 

(mmol/L), M (IQR)
22.10 (20.10, 23.70) 22.10 (20.35, 23.90) 22.10 (19.60, 23.30) Z = −1.01 0.315

NT-proBNP (pg/ml), M (IQR) 690.00 (220.00, 2397.00) 393.00 (196.75, 1747.00) 1194.00 (604.00, 5315.00) Z = −3.98 <0.001

Proteinuria, n (%) χ2 = 4.62 0.032

  0 107 (45.15) 85 (49.42) 22 (33.85)

  1 130 (54.85) 87 (50.58) 43 (66.15)

0, no; 1, yes; 3, chronic kidney disease stage 3; 4,chronic kidney disease stage 4; T, t-test; Z, Mann–Whitney test; χ2, Chi-square test,SD: standard deviation; p, p value; M, Median; IQR, interquartile range.
AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; HGB, hemoglobin; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; NT-proBNP, N-terminal pro-B-type 
natriuretic peptide; RBC, red blood cells; Scr, serum creatinine; TC, total cholesterol; TG, triglycerides; UA, serum uric acid.

TABLE 1 (Continued)
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TABLE 2 Univariate and multivariate logistic regression analysis in participants.

Variables Univariate analysis Multivariate analysis

p OR (95%CI) p OR (95%CI)

Age, years 0.164 1.02 (0.99 ~ 1.04)

Sex

  0 1.00 (Reference)

  1 0.991 1.00 (0.55 ~ 1.81)

BMI 0.017 0.90 (0.83 ~ 0.98)

Chronic kidney disease staging

  3 1.00 (Reference)

  4 0.013 2.08 (1.16 ~ 3.73)

Hypertension

  0 1.00 (Reference)

  1 0.491 1.30 (0.62 ~ 2.74)

Diabetes

  0 1.00 (Reference)

  1 0.242 1.41 (0.79 ~ 2.51)

Cardiovascular disease

  0 1.00 (Reference)

  1 0.174 0.66 (0.36 ~ 1.20)

Cerebrovascular disease

  0 1.00 (Reference)

  1 0.592 0.83 (0.41 ~ 1.67)

Smoking

  0 1.00 (Reference)

  1 0.135 0.55 (0.25 ~ 1.21)

Drinking

  0 1.00 (Reference)

  1 0.788 1.15 (0.42 ~ 3.13)

HGB (g/L) <0.001 0.97 (0.96 ~ 0.99) 0.017 0.96 (0.93 ~ 0.99)

RBC (10^12/L) <0.001 0.52 (0.36 ~ 0.75) 0.147 2.00 (0.78 ~ 5.12)

AST (U/L) 0.449 1.01 (0.99 ~ 1.02)

ALT (U/L) 0.477 1.00 (0.99 ~ 1.02)

ALP (U/L) 0.093 1.00 (1.00 ~ 1.01)

Scr (μmol/L) 0.073 1.00 (1.00 ~ 1.01)

BUN (μmol/L) 0.032 1.05 (1.01 ~ 1.10)

UA (μmol/L) 0.215 1.00 (1.00 ~ 1.00)

TC (mmol/L) 0.118 1.14 (0.97 ~ 1.34)

TG (mmol/L) 0.829 1.02 (0.87 ~ 1.20)

HDL-c (mmol/L) 0.700 1.16 (0.54 ~ 2.47)

LDL-c (mmol/L) 0.993 1.00 (0.79 ~ 1.27)

Serum sodium (mmol/L) 0.025 0.93 (0.87 ~ 0.99) 0.050 0.93 (0.87 ~ 0.99)

Serum potassium (mmol/L) 0.376 1.17 (0.82 ~ 1.67)

Serum chloride (mmol/L) 0.082 1.06 (0.99 ~ 1.12)

Serum calcium (mmol/L) <0.001 0.00 (0.00 ~ 0.02) <0.001 0.00 (0.00 ~ 0.04)

(Continued)
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challenge in clinical practice due to various complex factors affecting 
hemoglobin levels in patients with CKD, such as inflammation, blood 
loss, and inadequate protein intake.

Red blood cells are also identified as independent risk factors for 
hypoalbuminemia in patients with CKD stages 3 and 4. Firstly, similar 
to hemoglobin, malnutrition, one of the manifestations of 
hypoalbuminemia, can affect red blood cell levels (23). Secondly, 
factors such as toxin accumulation, shortened red blood cell lifespan, 
and insufficient erythropoietin secretion due to CKD-related reasons 
suggest a close relationship between red blood cell levels and 
hypoalbuminemia and kidney disease progression in patients with 
CKD (24). Additionally, Zhang-Zhe Peng’s study has shown that 
elevated levels of red blood cell markers such as adenosine 
monophosphate-activated protein kinase, 2,3-biphosphoglycerate, and 
50% of hemoglobin binding to oxygen may play compensatory roles, 

promoting renal tissue oxygenation, reducing tissue damage, and 
delaying CKD progression (25). Therefore, close monitoring of red 
blood cell levels in patients with CKD is essential in clinical practice.

Lower serum sodium levels in patients with CKD stages 3 and 4 are 
associated with a higher risk of hypoalbuminemia. Studies have indicated 
that hyponatremia may be a marker of protein-energy wasting and low 
solute intake (26, 27), which is consistent with our results. Patients with 
CKD are prone to hyponatremia due to impaired sodium reabsorption 
in the kidneys and the use of diuretics (28). Hyponatremia can lead to 
imbalance, decreased bone density, increased risk of fractures, and 
toxicity to the brain, heart, and muscular systems (29–33). Additionally, 
low serum sodium levels may increase the risk of infections (34). 
Although some studies have suggested a higher risk of mortality with 
lower serum sodium levels and a lower risk with higher serum sodium 
levels (26), considering the long-term effects of serum sodium level 

FIGURE 2

The nomogram for hypoalbuminemia prediction in patients with CKD stages 3 and 4. We could use this nomogram to predict the risk of 
hypoalbuminemia in patients with chronic kidney disease stages 3 and 4. For example, as shown in this image, if a patient with chronic kidney disease 
stage 3 or stage 4 has hemoglobin of 3.55  g/L, red blood cells of 10^12/L, serum sodium of 141  mmol/L, and serum calcium of 2.32  mmol/L, then the 
scores for each individual risk factor would be approximately 42, 56, 47, and 42, respectively. The total score would be around 187, corresponding to an 
approximate 20.4% probability of developing hypoalbuminemia. HGB, hemoglobin; RBC, red blood cells; sodium, serum sodium; calcium, serum 
calcium.

TABLE 2 (Continued)

Variables Univariate analysis Multivariate analysis

p OR (95%CI) p OR (95%CI)

Serum phosphorus (mmol/L) 0.815 0.91 (0.42 ~ 1.99)

Carbon dioxide binding capacity (mmol/L) 0.099 0.93 (0.85 ~ 1.01)

NT-proBNP (pg/ml) 0.101 1.00 (1.00 ~ 1.00)

Proteinuria

  0 1.00 (Reference)

  1 0.033 1.91 (1.05 ~ 3.46)

0, no; 1, yes; 3, chronic kidney disease stage 3; 4, chronic kidney disease stage 4; p, p value; OR, Odds Ratio; CI, Confidence Interval.
AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; HGB, hemoglobin; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-
density lipoprotein cholesterol; NT-proBNP, N-terminal pro-B-type natriuretic peptide; RBC, red blood cells; Scr, serum creatinine; TC, total cholesterol; TG, triglycerides; UA, serum uric acid.
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changes over time, both lower and higher serum sodium levels (<138 
and ≥ 144 mEq/L, respectively) are associated with increased mortality 
risk (35). Therefore, maintaining stable serum sodium levels in patients 
with CKD is crucial to prevent hypoalbuminemia, further deterioration 
of kidney function, and other adverse events. Close monitoring of serum 
sodium levels in patients with CKD in clinical practice, early prediction, 
and prevention of serum sodium abnormalities, and timely intervention 
and correction for patients with CKD with serum sodium abnormalities 
are necessary to avoid other adverse events.

Hypocalcemia often accompanies hypoalbuminemia because the 
total serum calcium concentration is the sum of ionized calcium and 
calcium bound to albumin (36). When albumin levels decrease, it 
affects calcium binding, resulting in decreased serum calcium levels. 
Therefore, when serum calcium levels decrease, hypoalbuminemia may 

occur. On the other hand, factors such as decreased synthesis of 
1,25-hydroxyvitamin D in patients with CKD, hyperphosphatemia, and 
gastrointestinal lesions can lead to hypocalcemia (37–39). Studies have 
shown that hypocalcemia is associated with osteoporosis, cardiovascular 
events, and increased mortality rates in patients with CKD (40, 41). 
Additionally, according to a study by Chang-Seong Kim et al., serum 
calcium levels in patients with CKD are closely related to their estimated 
glomerular filtration rate levels (42). Another study, including African 
American and Hispanic participants in the Chronic Renal Insufficiency 
Cohort, showed that hypocalcemia is one of the complications of 
patients with estimated glomerular filtration rate < 20 mL/min/1.73m2 
(43), indicating a close relationship between hypocalcemia and CKD 
progression. In clinical practice, more attention should be  paid to 
serum calcium levels in patients with CKD stages 3 and 4 to maintain 

FIGURE 3

The ROC of the models. Area under the ROC was 0.819. ROC, receiver operator characteristic curve.

FIGURE 4

The calibration curves of the model. The clinical utility of the model was demonstrated by the calibration curves with the bootstrap (B  =  1,000) 
technique. The calibration curves showed good agreement between the predicted and observed outcomes.
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stable serum calcium levels, reduce the occurrence of adverse clinical 
events, and delay further deterioration of kidney function.

This study has several limitations. Firstly, the dataset used in this 
study is relatively small. Although model validation showed good 
performance, more data are still needed to train and validate the model 
further, our main task next will be  to seek higher-quality research 
participants with a larger sample size, in order to reduce the potential 
interference of objective data factors and further explore its effectiveness 
in practical applications. Secondly, due to the source of the dataset, some 
potentially relevant risk factors were not collected. Although we have 
included known confounding factors in our analysis based on previous 
research literature, other unidentified factors may also impact our 
outcomes. However, we will actively work to improve and supplement 
additional information that may be related to hypoalbuminemia, aiming 
to provide more precise guidance for clinical treatment. Finally, this 
study is a single-center retrospective study, lacking external validation 
and prospective results to provide guiding information. In future 
research, one of our directions will be to conduct multicenter external 
validation based on large-sample real-world data or more comprehensive 
databases, to further expand the data and validate the model performance.

In conclusion, through univariate and bidirectional stepwise 
multivariate logistic regression analysis, we identified hemoglobin, red 
blood cells, serum sodium, and serum calcium as four independent risk 
factors for hypoalbuminemia in patients with CKD stages 3 and 4. 
Based on the logistic regression results, a nomogram was constructed. 
The model, validated with good discrimination, calibration, and clinical 
utility, can provide a reliable, convenient and universally applicable tool 
for early identification and intervention of hypoalbuminemia in 
patients with CKD stages 3 and 4. Therefore, for all patients in 
hypoalbuminemia with CKD stages 3 and 4, hemoglobin, red blood cell 
count, serum sodium, and serum calcium should be included as routine 
tests. Subsequently, the pre-established nomogram could be utilized to 
rapidly assess their risk of hypoalbuminemia, enabling early risk 
identification. For patients who have already exhibited abnormalities in 
any one or more of these indicators, the monitoring frequency should 
be increased, with regular rechecks of these parameters. The nomogram 
should also be employed for dynamic risk assessment, allowing for swift 
reactions to changes in disease status or adjustments to treatment plans. 

Furthermore, clinicians can tailor intervention plans based on the 
nomogram assessment results, in conjunction with the patient’s 
individual circumstances, to minimize the risk of hypoalbuminemia 
and enhance the overall health status of these patients.
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