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Objective: This study investigates the relationship between the Composite 
Dietary Antioxidant Index (CDAI) and cognitive function among elderly 
individuals, aiming to understand how increased antioxidant intake affects 
cognitive abilities in an aging population.

Methods: Utilizing data from the National Health and Nutrition Examination 
Survey (NHANES) from 2011 to 2014, we  analyzed a sample of 2,516 
participants aged 60 and above. Cognitive performance was assessed using 
the CERAD Word Learning and Recall Test, the Animal Fluency Test, and the 
Digit Symbol Substitution Test. Multivariable regression models were adjusted 
for demographic, dietary, and health-related factors to explore the association 
between CDAI scores and cognitive outcomes.

Results: The regression analyses showed a statistically significant positive 
association between higher CDAI scores and cognitive performance across 
several tests. Specifically, increments in CDAI were associated with increased 
scores in the CERAD Word Learning Test: Score 1 (β  =  0.04, 95% CI [0.03, 
0.06]), Score 2 (β =  0.04, 95% CI [0.02, 0.05]), Score 3 (β =  0.04, 95% CI [0.02, 
0.06]), and the Delayed Recall Test (β =  0.04, 95% CI [0.01, 0.06]). Additionally, 
significant improvements were observed in the Animal Fluency Test (β =  0.19, 
95% CI [0.14, 0.24]) and the Digit Symbol Test (β  =  0.55, 95% CI [0.39, 0.71]). 
Subgroup analyses further highlighted that higher CDAI scores conferred more 
pronounced cognitive benefits in women, individuals aged 80 and above, Non-
Hispanic Black people, and those with lower educational levels, suggesting that 
dietary antioxidants might be particularly beneficial in these groups.

Conclusion: An antioxidant-rich diet may represent a viable intervention to 
mitigate age-related cognitive decline, supporting cognitive health in the elderly. 
These results underscore the potential public health implications of dietary 
recommendations aimed at increasing antioxidant consumption among older 
adults. Further studies are necessary to confirm these findings and to investigate 
the underlying mechanisms in detail.
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1 Introduction

The global aging population has intensified the focus on cognitive 
health as a significant public health issue. Dementia is often 
characterized by cognitive decline. WHO estimates 46.8  million 
dementia cases globally in 2015, expected to surge to 131.5 million by 
2050 (1). The causes of cognitive decline are complex, involving 
genetic, environmental, physiological, psychological, social, lifestyle, 
and dietary factors (2–5). The significance of identifying changeable 
risk factors associated with cognitive function is growing. Numerous 
research looks at the connection between cognitive performance and 
food. These factors may help slow cognitive decline during aging and 
prevent or delay cognitive impairment or dementia (6–8).

Oxidative and inflammatory damage are crucial aspects of the 
multifaceted pathophysiological mechanisms of cognitive decline 
(9–11). As a result, inadequate consumption of antioxidants in the diet 
might be a changeable risk factor for cognitive deterioration. Earlier 
research has indicated that antioxidants in the diet can inhibit the 
generation of oxygen-rich compounds and potentially decrease 
oxidative DNA damage (12). As free radicals increase with age, 
antioxidants can mitigate the destructive impact of free radicals on 
neurons, thereby delaying cognitive decline (13).

An accurate and dependable nutritional technique for evaluating 
the diet’s total antioxidant content is the CDAI. It consists of the 
following six dietary antioxidants: carotenoids, selenium, zinc, vitamins 
A, C, and E (14–16). Prior research has connected CDAI to depression 
(17) and colorectal cancer (16). Although Prior studies have generally 
focused on the link between specific antioxidants and cognitive 
outcomes, there has been limited investigation into the potential 
combined benefits of antioxidants on cognitive well-being (18). Thus, 
this research aims to investigate the cross-sectional relationship between 
the Composite Dietary Antioxidant Index (CDAI) and cognitive 
function in older adults, utilizing data from the 2011–2014 NHANES.

2 Experimental materials and process

2.1 Study methodology and individuals

This study analyzed data specifically from the 2011–2014 cycles of 
the National Health and Nutrition Examination Survey (NHANES), 
a biennial survey conducted by the National Center for Health 
Statistics (NCHS) since 1999. NHANES evaluates the physical well-
being and dietary condition of individuals in the United States.

We excluded 4,996 participants due to incomplete CDAI data and 
283 participants with missing cognitive outcomes. Additionally, 

12,128 participants under the age of 60 were also excluded. Eight 
participants with missing covariates, such as education level, marital 
status, and habit of smoking were further eliminated. The ultimate 
research group comprised 2,516 people. The sample selection process 
and results are detailed in Figure 1.

2.2 Definition of composite dietary 
antioxidant index

The NHANES survey gathered nutritional data by conducting two 
24-h recall surveys. The first had been a face-to-face interview in the 
mobile Examination Center, and the following interview was 
conducted 3 to 10 days subsequently via phone, involving recalling 
food and beverage intake from the previous 24 h (19).

The CDAI is a nutritional technique used to analyze the overall 
antioxidant qualities of a diet. It is computed using the dietary intake of 
six antioxidants: zinc, selenium, carotenoids, vitamins A, C, and E (14, 
15). In this research, the carotenoids were collected by determining the 
mean consumption of alpha-carotene, beta-carotene, beta-cryptoxanthin, 
lycopene, lutein, and zeaxanthin across the two recall periods (20).

In short, we achieved standardization of the six dietary antioxidants 
by calculating the difference between the intake of each antioxidant 
and its average, and then dividing by the standard deviation (16).

The specific formula is as follows:
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ix  represents the daily antioxidant intake, iu  represents the average 
value of ,i ix s  is the standard deviation of iu .

2.3 Cognitive outcomes

The NHANES study utilized three distinct tests to measure 
cognitive function: the CERAD Word Learning and Recall Test, the 
Animal Fluency Test (AFT), and the Digit Symbol Substitution Test 
(DSST). The CERAD Word Learning Test assesses the ability to 
remember new verbal information immediately and after a delay. It 
consists of three consecutive learning trials and one delayed recall 
trial. Each trial is evaluated on a scale from 0 to 10. The AFT assesses 
categorical fluency in language, which is an important part of 
executive function. In addition, the DSST, which is part of the 
Wechsler Adult Intelligence Scale (WAIS-III), evaluates the efficiency 
of processing, continuous focus, and working recall.

2.4 Covariates

To evaluate the impact of potential confounders, several key 
covariates were selected, including sex, age, race, education level, 
marital status, smoking status, BMI, the poverty-to-income ratio 
(PIR), physical activity levels, and medication use. These variables 
were collected through standardized questionnaires, and each 
participant’s weight and height were obtained through physical 
examinations. Physical activity levels were calculated by adding time 

Abbreviations: MCI, Mild cognitive impairment; AD, Alzheimer’s disease; ALT, 

Alanine aminotransferase; AST, Aspartate aminotransferase; AFT, Animal Fluency 

test; BMI, Body Mass Index; CDAI, Composite Dietary Antioxidant Index; CDC, 

Centers for Disease Control and Prevention; CERAD W-L, CERAD Word Learning 

subtest; DSST, Digit Symbol Substitution test; DHA, Docosahexaenoic; EPA, 

Eicosapentaenoic; MMSE, Mini-Mental Status Examination; NCHS, National Center 

for Health Statistics; NHANES, National Health and Nutrition Examination Survey; 

PIR, Ratio of family income to poverty; TAC, Total antioxidant capacity; WAIS-III, 

Wechsler Adult Intelligence Scale; WHO, World Health Organization; BDNF, brain-

derived neurotrophic factor; LTP, long-term enhancement.
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spent per week doing vigorous or moderate work and recreational 
activities. Additionally, certain other dietary factors, such as choline, 
docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) 
intake, were evaluated as potential covariates. The NHANES website1 
provides detailed explanations of how these variables were calculated.

1 https://www.cdc.gov/nchs/nhanes/

2.5 Statistical analysis

Statistical analyses adhered to Centers for Disease Control and 
Prevention guidelines, employing NHANES sample weights to take 
into account the survey’s complexity. The continuous data were 
reported using the mean ± SE, while the categories were shown as 
proportions. The participants were categorized into quartiles based on 
their CDAI scores. Weighted linear regression was used to analyze 
differences between groups for continuous variables, while chi-square 
tests were employed for categorical variables.

FIGURE 1

Flow chart of participants selection. NHANES, National Health and Nutrition Examination Survey.
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Three multivariable regression models were used to investigate the 
correlation between CDAI and cognitive scores. Model 1: Not 
modified; Model 2: Modified to account for sex, age, and race;  
Model 3: Additionally controlled for education, marital status, PIR 
(personal income ratio), BMI (body mass index), smoking, cholesterol, 
glycohemoglobin, physical activity levels, and medication use.

The subgroup analyses were categorized based on variables 
including sex (male/female), age (60–70 years, 70–80 years, ≥80 years), 
race/ethnicity (Mexican American, Non-Hispanic Black people, 
Non-Hispanic White people, other), education level (less than high 
school, high school or higher), poverty-to-income ratio (PIR; ≤1, 1–2, 
2–4, ≥4), and BMI (≤25, 25–30, ≥30) to study the link between CDAI 
and cognitive function. Smoothing curve fitting was employed to 
address nonlinear relationships.

All analyses were conducted using EmpowerStats (2.0)2 and R 
software,3 utilizing MEC weights. p-values<0.05 were considered 
statistically significant.

3 Results

3.1 Baseline characteristics

The basic features of the participants are presented in Table 1. 
Compared to the Q1 group, participants with higher CDAI scores 
were more likely to be male, Non-Hispanic White, married, and to 
have higher educational levels. Participants in the Q4 group also had 
higher income levels, vitamin and mineral intakes. Additionally, they 
had higher cognitive test scores. In the highest quartile, participants 
had significantly higher antioxidant intake, including vitamin A 
(1131.46 ± 1287.61 μg/day), vitamin C (135.60 ± 96.00 mg/day), 
vitamin E (12.78 ± 5.71 mg/day), zinc (13.87 ± 4.79 mg/day), selenium 
(131.95 ± 43.71 μg/day), and total carotenoids (17516.18 ± 18467.07 μg/
day), along with lower glycohemoglobin levels. There were no notable 
disparities identified among the groups in terms of age, smoking 
status, BMI, liver enzymes, and cholesterol levels.

3.2 Correlation between CDAI and 
cognitive function

The results of the multivariate regression analysis are presented in 
Table 2 and Figure 2. In Model 1, the CDAI positively impacts the 
scores of various cognitive tests. Specifically, the CERAD test shows 
significant improvements in word learning and recall scores, with β 
values for the first, second, third word tests, and delayed recall being 
(β = 0.04, 95% CI [0.03, 0.06]), (β = 0.04, 95% CI [0.02, 0.06]), (β = 0.04, 
95% CI [0.03, 0.06]), and (β = 0.04, 95% CI [0.02, 0.06]), respectively. 
Both the animal fluency test (β = 0.18, 95% CI [0.13, 0.23]) and the 
digit symbol test (β = 0.62, 95% CI [0.46, 0.78]) also show positive 
associations. In Model 3, this relationship persists, with the β values 
for the cognitive test scores being as follows: first word test (β = 0.04, 
95% CI [0.03, 0.06]), second word test (β = 0.04, 95% CI [0.02, 0.05]), 

2 http://www.empowerstats.com

3 http://www.r-project.org

third word test (β = 0.04, 95% CI [0.02, 0.06]), delayed recall (β = 0.04, 
95% CI [0.02, 0.06]), animal fluency test (β = 0.19, 95% CI [0.13, 
0.24]), and digit symbol test (β = 0.55, 95% CI [0.38, 0.71]).

Using two-piecewise linear regression models (Table  3). 
We identified the breakpoints in the link between CDAI and several 
cognitive function tests. The breakpoints were as follows: CERAD 
Trial 1 Recall: 1.23, Trial 2 Recall: 0.83, Trial 3 Recall: 4.1, Delayed 
Recall: 4.26, Animal Fluency: 5.8, and Digit Symbol: 5.08. The analysis 
indicated a significant positive impact of CDAI on cognitive test 
scores, with varying effects at different CDAI thresholds. Within lower 
CDAI ranges, the improvements in test scores were more noticeable, 
while the increases plateaued or even declined beyond the threshold. 
This suggests the potential role of dietary antioxidants in enhancing 
cognitive function, particularly within specific ranges.

3.3 Subgroup analysis

After adjusting for covariates, the results from subgroup analyses, 
smoothing curve fitting, and generalized additive models indicated 
that CDAI had a universally positive impact on cognitive test scores, 
with more significant effects observed in women, those aged 80 and 
above, Non-Hispanic Black people, and individuals with lower 
education levels. This suggests that these groups may benefit more 
from higher dietary antioxidant intake. Differences among subgroups 
were mostly insignificant, indicating the consistency of CDAI benefits 
across diverse populations. Detailed information on subgroup 
analyses is provided in Figure 3.

4 Discussion

This cross-sectional study explored CDAI and cognitive function 
in older US adults using NHANES (2011–2014) data. It showed that 
higher CDAI correlated to better scores in memory, language, and 
executive function domains. Subgroup analyses further revealed more 
pronounced effects in women, those aged 80 and above, Non-Hispanic 
Black people, and individuals with lower education levels. However, 
given that subgroup analysis involves dividing the entire study sample 
into smaller subsets for analysis, this often leads to a decrease in 
statistical power, consequently impairing the ability to detect 
statistically significant outcomes. Accordingly, caution should 
be exercised when interpreting the results, and it is recommended that 
these findings be validated in future studies with larger sample sizes 
and pre-defined hypotheses to mitigate the risk of Type I errors.

Earlier research has demonstrated a beneficial relationship of total 
dietary antioxidant capacity (TAC) and cognitive function, even after 
adjusting for potential confounders, which aligns with our findings 
(21). Prospective cohort studies have shown that greater intake of 
antioxidant vitamins is linked to slower cognitive impairment and 
reduced likelihood of dementia (22, 23).

Vitamin A obtained from the diet accumulates in the liver as 
retinyl esters as well as releases gradually to ensure a steady supply of 
retinol to body cells, including those in the brain (24). The 
hippocampus, a critical area for cognition due to its role in learning 
and memory, requires vitamin A and retinoic acid to control the 
neuroplasticity necessary for these processes (25). Vitamin A is crucial 
for two aspects of neuroplasticity, long-term potentiation (LTP) and 
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TABLE 1 Characteristics of the study population according to CDAI quartiles.

Variable Q1 Q2 Q3 Q4 p value

(−7.9–−2.5), 
N =  629

(−2.5–−0.6), 
N =  629

(−0.6–1.8), 
N =  629

(1.8–69.7), 
N =  629

Age (years) 69.44 ± 6.97 69.56 ± 6.73 69.34 ± 6.63 68.79 ± 6.64 0.1814

Gender (%) <0.0001

  Male 29.97 38.92 51.37 54.60

  Female 70.03 61.08 48.63 45.40

Race and ethnicity (%) 0.0042

  Mexican American 4.05 3.18 2.87 3.06

  Non-Hispanic White 

people

73.31 80.74 83.01 81.70

  Non-Hispanic Black 

people

12.93 7.87 6.66 7.36

  Other 9.71 8.20 7.45 7.89

Educational attainment (%) <0.0001

  Less than high school 23.76 18.81 14.46 12.94

  High school diploma 24.70 25.79 19.51 17.64

  More than high school 51.54 55.39 66.03 69.42

Marital status (%) <0.0001

  Married 58.97 59.38 69.46 70.53

  Single or separated 41.03 40.62 30.54 29.47

Smoking status (%) 0.3479

  Yes 51.82 53.13 48.66 49.50

  No 48.18 46.87 51.34 50.50

Family poverty income ratio 2.70 ± 1.52 2.85 ± 1.48 3.26 ± 1.54 3.34 ± 1.54 <0.0001

Anti-hypertension therapy 

(%)

54.36 54.83 52.43 51.78 0.5200

Lipid-lowering therapy (%) 53.35 48.81 51.64 48.21 0.0931

Physical activity levels (%) 0.7977

  <60 min 5.21 3.96 3.66 4.59

  160–180 min 11.79 15.0 13.86 13.68

  ≥180 min 39.2 36.05 37.08 36.29

  Missing 43.8 44.99 45.4 45.44

BMI (kg/m2) 29.07 ± 6.20 29.72 ± 6.41 29.33 ± 6.39 29.05 ± 6.39 0.2134

Total Energy (kcal/day) 1304.39 ± 311.24 1671.26 ± 332.86 1967.44 ± 401.68 2283.16 ± 529.27 <0.0001

Dietary Vitamin A intake 

(mg/day)

361.16 ± 162.00 527.38 ± 196.25 679.32 ± 304.55 1131.46 ± 1287.61 <0.0001

Dietary Vitamin C intake 

(mg/day)

45.08 ± 30.29 71.34 ± 38.86 84.64 ± 44.33 135.60 ± 96.00 <0.0001

Dietary Vitamin E intake 

(mg/day)

4.62 ± 1.80 6.55 ± 2.16 8.65 ± 2.68 12.78 ± 5.71 <0.0001

Dietary Zinc intake (mg/

day)

6.60 ± 1.90 8.69 ± 2.20 10.97 ± 2.93 13.87 ± 4.79 <0.0001

Dietary Selenium intake 

(mcg/day)

70.11 ± 21.38 91.85 ± 21.49 108.50 ± 27.83 131.95 ± 43.71 <0.0001

Dietary Total carotenoid 

intake (mcg/day)

3881.15 ± 3468.48 6454.22 ± 4163.23 9279.33 ± 6211.05 17516.18 ± 18467.07 <0.0001

(Continued)
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long-term depression (LTD), that are important to memory and recall. 
These reactions cause enduring alterations in synaptic strength, 
resulting in the enhancement or reduction of neuronal circuits. 
Synapses are the connections between neurons in the neural circuit, 
and changes in these circuits are thought to underlie learning and 
memory (24). In conclusion, these findings have provided significant 
insight toward the effect of vitamin A in supporting neuronal plasticity 
and cognitive function in adulthood.

Taking supplements of vitamin C and various antioxidants may 
play an essential role in maintaining cognitive abilities as we age. This 
effect is largely due to their capacity to combat oxidative stress, which 
is a major contributor to cellular aging, neurodegenerative disorders, 
and the decline in cognitive functions associated with aging (26, 27). 
Vitamin C is essential for the production and proper performance of 
both dopamine and norepinephrine in the brain (28). A study has 
demonstrated that high doses of vitamin C can significantly improve 
cognitive impairment in septic rats by reducing brain inflammation, 
protecting the blood–brain barrier, inhibiting oxidative stress, and 
activating the Nrf2/HO-1 signaling pathway (29). Additionally, 

vitamin C deficiency has been associated with hypoglycemia and 
cognitive impairment, primarily through S-nitrosylation-mediated 
activation of glycogen synthase kinase 3β, which regulates glucose 
homeostasis. This suggests that vitamin C supplementation may help 
prevent hypoglycemia and cognitive impairment in certain 
populations, particularly young women (18, 30). Research has also 
linked vitamin C deficiency to impairments in attention, executive 
function, recall, communication, and abstract thinking (31, 32). 
Overall, current evidence indicates that sustaining adequate vitamin 
C levels may aid in preventing cognitive loss due to age and 
neurological disorders, and vitamin C supplementation can enhance 
cognitive function.

Vitamin E, naturally present in the diet, has multiple bioactivities, 
including scavenging toxic free radicals as an antioxidant. As a potent 
lipid-soluble antioxidant, vitamin E is known for protecting against 
lipid peroxidation of the membranes of cells, which is essential to 
maintaining cognitive fitness (26, 33). Vitamin E can prevent lipid 
peroxidation by neutralizing lipid peroxyl radicals (LOO•), when 
vitamin E deficiency leads to increased lipid peroxidation in the 

TABLE 1 (Continued)

Variable Q1 Q2 Q3 Q4 p value

(−7.9–−2.5), 
N =  629

(−2.5–−0.6), 
N =  629

(−0.6–1.8), 
N =  629

(1.8–69.7), 
N =  629

Dietary Alpha-carotene 

intake (mcg/day)

219.75 ± 388.45 350.17 ± 445.18 446.64 ± 628.21 863.49 ± 2677.87 <0.0001

 Dietary Beta-carotene intake 

(mcg/day)

1028.19 ± 1131.61 1741.06 ± 1602.37 2426.18 ± 2384.11 4992.90 ± 9064.29 <0.0001

 Dietary Beta-cryptoxanthin 

intake (mcg)

51.20 ± 119.11 77.80 ± 159.19 109.57 ± 254.20 149.45 ± 485.17 <0.0001

 Dietary Lycopene intake 

(mcg)

1765.24 ± 2777.87 3077.54 ± 3458.07 4636.30 ± 5363.46 8036.93 ± 9203.02 <0.0001

 Dietary Lutein + zeaxanthin 

intake (mcg)

816.77 ± 989.11 1207.65 ± 1250.23 1660.63 ± 1747.45 3473.41 ± 5975.26 <0.0001

 Dietary Total choline intake 

(mg)

211.60 ± 73.65 283.48 ± 80.74 326.24 ± 94.92 395.95 ± 126.73 <0.0001

Dietary EPA intake (gm) 0.02 ± 0.03 0.03 ± 0.08 0.03 ± 0.07 0.05 ± 0.10 <0.0001

Dietary DHA intake (gm) 0.04 ± 0.12 0.07 ± 0.22 0.08 ± 0.18 0.11 ± 0.27 <0.0001

Total Cholesterol (mmol/L) 5.06 ± 1.17 4.89 ± 1.10 4.90 ± 1.03 4.96 ± 1.11 0.0328

Glycohemoglobin (%) 6.21 ± 1.34 6.13 ± 1.13 6.00 ± 1.01 5.91 ± 0.87 <0.0001

ALT (U/L) 20.99 ± 11.99 21.93 ± 10.69 23.01 ± 14.08 21.94 ± 12.21 0.0409

AST (U/L) 25.24 ± 12.63 25.14 ± 9.55 25.10 ± 9.39 24.42 ± 8.95 0.4601

CERAD: Score Trial 1 Recall 4.49 ± 1.73 4.61 ± 1.66 4.85 ± 1.66 4.92 ± 1.69 <0.0001

CERAD: Score Trial 2 Recall 6.52 ± 1.86 6.67 ± 1.87 6.84 ± 1.82 6.89 ± 1.63 0.0010

CERAD: Score Trial 3 Recall 7.32 ± 1.80 7.40 ± 1.82 7.63 ± 1.81 7.73 ± 1.67 0.0001

CERAD: Score Delayed 

Recall

5.68 ± 2.38 5.90 ± 2.21 6.13 ± 2.31 6.21 ± 2.05 0.0002

Animal Fluency: Score Total 15.54 ± 5.40 16.51 ± 5.39 17.06 ± 5.16 17.58 ± 5.42 <0.0001

Digit Symbol: Score 42.01 ± 17.47 45.07 ± 17.70 48.20 ± 16.26 50.43 ± 16.03 <0.0001

BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); EPA, Eicosapentaenoic; DHA, Docosahexaenoic; ALT, Alanine aminotransferase; AST, 
Aspartate aminotransferase. The descriptive statistics are expressed as mean ± standard deviation and percentage for continuous and categorical variables.
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TABLE 2 Association of composite dietary antioxidant index and cognitive tests.

Model 1 Model 2 Model 3

β [95% CI] p β [95% CI] p β [95% CI] p

CERAD: Score Trial 1 Recall

CDAI

Q1 Ref Ref Ref

Q2 0.12 (−0.07, 0.31) 0.22 0.12 (−0.07, 0.32) 0.21 0.12 (−0.08, 0.31) 0.23

Q3 0.36 (0.17, 0.55) <0.01 0.37 (0.17, 0.56) <0.01 0.37 (0.18, 0.56) <0.01

Q4 0.43 (0.24, 0.62) <0.01 0.43 (0.24, 0.63) <0.01 0.44 (0.24, 0.63) <0.01

continuous 0.04 (0.03, 0.06) <0.01 0.04 (0.03, 0.06) <0.01 0.04 (0.03, 0.06) <0.01

P for trend <0.0001 <0.0001 <0.0001

CERAD: Score Trial 2 Recall

CDAI

Q1 Ref Ref Ref

Q2 0.15 (−0.06, 0.35) 0.16 0.14 (−0.06, 0.35) 0.16 0.15 (−0.06, 0.35) 0.16

Q3 0.32 (0.12, 0.53) <0.01 0.32 (0.11, 0.52) <0.01 0.29 (0.09, 0.50) <0.01

Q4 0.37 (0.17, 0.58) <0.01 0.37 (0.16, 0.58) <0.01 0.33 (0.12, 0.54) <0.01

continuous 0.04 (0.02, 0.06) <0.01 0.04 (0.02, 0.05) <0.01 0.04 (0.02, 0.05) <0.01

P for trend 0.0002 0.0003 0.0007

CERAD: Score Trial 3 Recall

CDAI

Q1 Ref Ref Ref

Q2 0.08 (−0.12, 0.29) 0.42 0.09 (−0.11, 0.30) 0.37 0.09 (−0.11, 0.29) 0.39

Q3 0.30 (0.10, 0.50) <0.01 0.31 (0.11, 0.52) <0.01 0.29 (0.09, 0.50) <0.01

Q4 0.40 (0.20, 0.61) <0.01 0.41 (0.20, 0.62) <0.01 0.38 (0.17, 0.59) <0.01

continuous 0.04 (0.03, 0.06) <0.01 0.04 (0.03, 0.06) <0.01 0.04 (0.02, 0.06) <0.01

P for trend <0.0001 <0.0001 <0.0001

CERAD: Score Delayed Recall

CDAI

Q1 Ref Ref Ref

Q2 0.21 (−0.04, 0.47) 0.10 0.21 (−0.05, 0.47) 0.10 0.22 (−0.03, 0.47) 0.09

Q3 0.44 (0.19, 0.70) <0.01 0.43 (0.18, 0.69) <0.01 0.44 (0.19, 0.70) <0.01

Q4 0.53 (0.27, 0.78) <0.01 0.52 (0.26, 0.78) <0.01 0.51 (0.25, 0.77) <0.01

continuous 0.04 (0.02, 0.06) <0.01 0.04 (0.02, 0.06) <0.01 0.04 (0.02, 0.06) <0.01

P for trend <0.0001 <0.0001 <0.0001

Animal Fluency: Score Total

CDAI

Q1 Ref Ref Ref

Q2 0.98 (0.37, 1.59) <0.01 1.04 (0.42, 1.65) <0.01 1.09 (0.48, 1.71) <0.01

Q3 1.52 (0.92, 2.12) <0.01 1.62 (1.01, 2.23) <0.01 1.70 (1.09, 2.31) <0.01

Q4 2.04 (1.43, 2.65) <0.01 2.15 (1.53, 2.77) <0.01 2.19 (1.56, 2.81) <0.01

continuous 0.18 (0.13, 0.23) <0.01 0.19 (0.14, 0.24) <0.01 0.19 (0.13, 0.24) <0.01

P for trend <0.0001 <0.0001 <0.0001

Digit Symbol: Score

CDAI

Q1 Ref Ref Ref

(Continued)
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nervous system, especially the oxidation of polyunsaturated fatty acids 
(such as DHA-PC), which are important components of nerve cell 
membranes. Increased lipid peroxidation can cause structural damage 
and dysfunction of nerve membranes, which in turn affect cognitive 
function. Studies have shown that vitamin E deficiency during 
embryonic development can lead to impaired neurodevelopment, 
lipid peroxidation and energy metabolism disorders, which affect the 
migration, proliferation, differentiation and survival of neural crest 
cells (34). These mechanisms underscore the critical role of vitamin E 
in neurological health. Moreover, it works in conjunction with other 
antioxidants, including selenium, vitamin C, and carotenoids, to 
safeguard cognitive health in older adults (35). Nevertheless, some 
systematic reviews have found that vitamin E does not enhance 

cognitive abilities among people via mild cognitive impairment (MCI) 
or dementia caused by Alzheimer’s disease (AD). Further study is 
needed to verify the inclusion of vitamin E supplements in dietary 
strategies designed to protect cognitive health in the elderly.

Selenium is a vital element necessary for sustaining mammalian life 
and is integrated into selenoproteins, that are crucial components within 
the body’s natural antioxidant system. The mind especially depends on 
a sufficient supply of selenium and is capable of preventing selenium 
deficiency (36, 37). Randomized controlled trials have demonstrated that 
administering high or super-nutritional doses of sodium selenate 
supplements can enhance selenium uptake in the central nervous system. 
In patients with AD, this has resulted in subtle yet major enhancements 
in the Mini-Mental Status Examination (MMSE), which evaluates 

FIGURE 2

The association between CDAI and cognitive tests. The solid red line represents the smooth curve fit between variables, and the blue bands represent 
the 95% confidence interval from the fit. (A) CERAD: Score Trial 1 Recall, (B) CERAD: Score Trial 2 Recall, (C) CERAD: Score Trial 3 Recall, (D) CERAD: 
Score Delayed Recall, (E) Animal Fluency: Score Total, (F) Digit Symbol: Score. Age, gender, race, education, marital status, ratio of family income to 
poverty, body mass index, smoking status, total cholesterol, and glycohemoglobin were adjusted.

TABLE 2 (Continued)

Model 1 Model 2 Model 3

β [95% CI] p β [95% CI] p β [95% CI] p

Q2 3.06 (1.13, 4.99) <0.01 3.12 (1.18, 5.05) <0.01 3.01 (1.12, 4.90) <0.01

Q3 6.19 (4.29, 8.09) <0.01 6.21 (4.29, 8.14) <0.01 5.91 (4.02, 7.81) <0.01

Q4 8.42 (6.49, 10.34) <0.01 8.39 (6.43, 10.35) <0.01 7.82 (5.89, 9.75) <0.01

continuous 0.62 (0.46, 0.78) <0.01 0.61 (0.45, 0.77) <0.01 0.55 (0.38, 0.71) <0.01

P for trend <0.0001 <0.0001 <0.0001

Model 1 was not adjusted. Model 2 was adjusted for age, gender and race. Model 3 was adjusted for age, gender, race, education, marital status, Ratio of family income to poverty, Anti-
hypertension therapy, Lipid-lowering therapy, Physical activity levels, body mass index, smoking status, total cholesterol, and glycohemoglobin.
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aspects such as orientation in space and time, immediate and recall 
memory, calculation, comprehension, writing, and drawing to assess AD 
progression (38). Supplementing with selenium is a good option for 
alleviating certain symptoms of AD and MCI. Additional investigations 
will be needed on the long-term impacts of selenium supplementation.

Zinc is essential for growth, development, and healthy 
functioning within the immune system. Cognitive deficits and 

memory loss might occur as a result of zinc imperfections (39, 40). 
The potential role of zinc in dementia was first proposed by Burnet, 
Numerous original studies and meta-analyses have documented 
zinc’s role in AD pathology and its influence on cognitive function 
(41–43). ZnT and ZIP transporters precisely regulate zinc transport 
across neuronal membranes, thereby maintaining zinc homeostasis 
and regulating intracellular zinc concentrations. Once the function 

FIGURE 3

Associations between CDAI and cognitive tests stratified by age, sex, race, education, BMI, and PIR. Adjusted for age, gender, race, education, marital 
status, ratio of family income to poverty, body mass index, smoking status, total cholesterol, and glycohemoglobin. (A) CERAD: Score Trial 1 Recall, 
(B) CERAD: Score Trial 2 Recall, (C) CERAD: Score Trial 3 Recall, (D) CERAD: Score Delayed Recall, (E) Animal Fluency: Score Total, (F) Digit Symbol: Score.
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of these transporters is disrupted, zinc levels in the brain will 
fluctuate, which in turn affects the normal functioning of cell 
functions. ZIP7, in particular, locates in the endoplasmic 
reticulum  - Golgi apparatus and is strongly associated with the 
regulation of metal homeostasis in neurodegenerative diseases such 
as Barton’s disease. Decreased expression of ZIP7 disrupts the 
balance of metals in cells, exacerbating cognitive decline in these 
diseases (44). A randomized, double-blind, and placebo-controlled 
investigation found that zinc supplementation in healthy adults 
aged 55–80 led to improved performance on two cognitive tests, 
specifically those assessing attention and spatial working memory 
(45). Another cross-sectional study showed both selenium and zinc 
intake were non-linearly related to cognitive function across all 
genders and that zinc and selenium consumption interacted to 
improve cognitive function, particularly in women (46). Additional 
research into the connections between zinc metabolism and 
neurological disorders could deepen our comprehension of the 
pathogenesis of such illnesses.

Carotenoids are natural pigments present in an array of vegetables 
and fruits, as well as in algae, plants, and photosynthesis-producing 
bacteria. Human beings are unable to generate carotenoids and have 
to get them through dietary sources or supplements (47). Carotenoids 
have shown potential effects on cognitive function, although their 
specific mechanisms of action are not well understood, they are 
presumed to be  related to their antioxidant activity (48, 49). 
Carotenoids, such as lutein, zeaxanthin, and beta-carotene, 
significantly enhance cognitive function through a complex set of 
cellular and molecular mechanisms. At the core of these mechanisms 
are their potent antioxidant and anti-inflammatory properties, which 
effectively neutralize reactive oxygen species (ROS) and significantly 
reduce the level of oxidative stress within neurons, thereby protecting 
nerve cells from damage (50). Among them, lutein and zeaxanthin 
can also enhance neuroprotection by regulating gene expression 
closely related to oxidative stress response and cell survival. This 
process involves activation of the Nrf2 pathway, which is a key 
cellular defense against oxidative challenges and can up-regulate the 
expression of antioxidant enzymes and detoxification enzymes, 
thereby promoting the health and function of neurons (51). In 
addition, carotenoids support the maintenance of synaptic function 

by stabilizing neuronal membranes and promoting the expression of 
synaptic proteins such as brain-derived neurotrophic factor (BDNF). 
BDNF is essential for synaptic growth and long-term enhancement 
(LTP). Together, these physiological changes act on neural networks, 
laying a solid foundation for memory formation, consolidation, and 
overall cognitive performance improvement (52). A double-blind, 
controlled study revealed that prolonged intake of β-carotene (50 
milligrams each day) played a role in sustaining cognitive function 
within a healthy general population. Participants showed significant 
positive changes in verbal memory, cognitive status, telephone 
interviews, and overall scores after an average of 18 years of treatment 
(53). Lutein and zeaxanthin, carotenoids with anti-inflammatory and 
antioxidant effects, have been connected with cognitive functions 
related to recall, processing quickness, focus, and logical thinking 
(49). Carotenoids are promising bioactive substances in the food 
chain that require further research to elucidate their health benefits, 
and adequate and optimal intake is recommended through food 
or supplements.

Since uncovering the link between free radicals and aging-related 
cellular and tissue damage, further research has highlighted oxidative 
harm as an important player in the onset of cardiovascular conditions, 
neurodegenerative diseases, and various cancers. Consequently, more 
people, particularly in developed nations, apply antioxidant 
supplements for better health and longevity (27). In 2004, Margaret 
E. Wright et al. introduced the concept of the CDAI, which considers 
the synergistic interactions between different molecules present in 
foods and summarizes a total of six dietary antioxidants: vitamins A, 
C, E, selenium, zinc, and carotenoids (15). Overall, a higher CDAI can 
be seen to be an indicator of a better lifestyle in general (with a high 
in vegetables and fruits).

The strengths of the research involve the use of the CDAI as a 
method for assessing the total antioxidant capacity of a diet. 
Furthermore, the analysis encompasses a wide and representative 
sample, accounts for numerous potential confounders, and 
incorporates various cognitive assessments related to 
neurodegenerative diseases like AD, including memory and executive 
function tests. Additionally, we used data extracted from the NHANES 
database were utilized, and survey-weighted methods were applied to 
achieve unbiased estimates.

TABLE 3 Threshold effect analysis of CDAI on cognitive tests using the two-piecewise linear regression model.

CDAI CERAD: Score 
Trial 1 Recall

CERAD: Score 
Trial 2 Recall

CERAD: Score 
Trial 3 Recall

CERAD: Score 
Delayed Recall

Animal 
Fluency: Score 

Total

Digit Symbol: 
Score

Model I

A Single Linear 

Effect

0.04 (0.03, 0.06) 

<0.0001

0.03 (0.02, 0.05) 

0.0001

0.04 (0.02, 0.06) 

<0.0001

0.04 (0.01, 0.06) 

0.0011

0.19 (0.14, 0.24) 

<0.0001

0.55 (0.39, 0.71) 

<0.0001

Model II

Breakpoint (K) 1.23 0.83 4.1 4.26 5.8 5.08

For < K segment: 

Effect 1

0.08 (0.04, 0.11) 

<0.0001

0.08 (0.04, 0.12) 

0.0002

0.06 (0.03, 0.09) 

<0.0001

0.09 (0.06, 0.12) 

<0.0001

0.28 (0.21, 0.35) 

<0.0001

1.04 (0.80, 1.27) 

<0.0001

For > K segment: 

Effect 2

0.02 (−0.00, 0.04) 

0.0747

0.01 (−0.01, 0.04) 

0.2580

0.02 (−0.01, 0.05) 

0.2841

−0.03 (−0.07, 0.01) 

0.1383

0.03 (−0.06, 0.13) 

0.4940

−0.14 (−0.44, 0.15) 

0.3405

Log-Likelihood 

Ratio Test
0.018 0.022 0.051 <0.001 <0.001 <0.001

Threshold effect analysis of CDAI on cognitive tests. Age, gender, race, education, marital status, Ratio of family income to poverty, body mass index, smoking status, total cholesterol and 
glycohemoglobin were adjusted.
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However, this study also has several limitations. A major 
limitation is its cross-sectional design, which restricts the ability of the 
study to establish a causal relationship between CDAI and cognitive 
function. Given that longitudinal studies can enhance the robustness 
of causal inference by clarifying temporal sequences, reducing the 
possibility of reverse causality, and controlling for confounding 
factors, further research is needed to gain a deeper understanding of 
the causal relationship between CDAI and cognitive function. 
Additionally, the adoption of 24-h dietary recall may not accurately 
represent typical dietary patterns, thereby impacting the accuracy of 
the calculated dietary antioxidant levels. Due to the reliance on 24-h 
dietary recall data in this study, potential biases arise, such as 
underreporting or misreporting of dietary intake, which may have led 
to the underestimation or overestimation of the intake of certain 
nutrients or food categories in the results. To achieve more accurate 
and reliable dietary data, future research should explore the combined 
use of multiple methods, including repeated dietary recalls, 
biomarkers, and smart device assistance, in order to overcome the 
limitations inherent in a single approach. Furthermore, although this 
study has adjusted for several confounding factors, such as age, gender, 
and race, residual confounding may still exist due to unmeasured 
variables. Lastly, the NHANES dietary interview system was 
specifically designed for the U.S. population, and variations in growing 
environments might affect antioxidant levels, which could restrict the 
applicability of the results for different groups.

5 Conclusion

Its results indicate a significant positive correlation between the 
Composite Dietary Antioxidant Index (CDAI) and cognitive function in 
older individuals. Even after accounting for various confounders, higher 
CDAI scores were associated with better cognitive test performance. An 
antioxidant-rich diet may help safeguard cognitive health in the elderly.
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