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Glaucoma and dietary links: 
insights from high-salt intake, the 
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nutrients
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Glaucoma, a prevalent and potentially blinding eye disease, is linked to a variety of 
factors, including elevated intraocular pressure, optic nerve damage, and oxidative 
stress. In recent years, dietary habits, as a controllable lifestyle factor, have received 
increasing attention in the prevention and treatment of glaucoma. The purpose 
of this review was to investigate the effects of dietary factors on glaucoma, with 
a particular emphasis on two common dietary patterns: the high-salt diet and 
the Mediterranean diet. In addition, we  investigated the association between 
many particular nutrients (including omega-3 fatty acids, vitamins, caffeine, 
and minerals) and glaucoma to fully assess the potential involvement of dietary 
variables in glaucoma pathogenesis, prevention, and treatment. This article reveals 
the importance of dietary components in glaucoma prevention and explores 
prospective possibilities for future research by conducting a comprehensive review 
of previous scientific studies.
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1 Introduction

Glaucoma, as one of the main causes of visual loss worldwide, is estimated to affect 76 
million people aged 40–80 and is expected to increase to 112 million by 2040 (1). The disease 
threatens and damages the optic nerve (2) and its visual pathways, ultimately leading to 
permanent vision loss (3, 4), severely affecting the quality of life. Clinically, glaucoma is 
classified into three main categories: primary, secondary, and congenital. According to the state 
of the anterior chamber angle, it is further subdivided into closed-angle and open-angle types 
(5, 6). Of these, primary open-angle glaucoma is the most common (7). As a class of irreversible 
common blinding diseases (8), glaucoma is characterized by optic nerve damage and visual 
field loss, and its pathogenesis is complex, involving multiple factors such as genetics, 
environment, and lifestyle (9–11). Given the complexity of the glaucoma condition and the 
severe visual damage it may cause, it is important to study its prevention and treatment. While 
glaucoma is a degenerative disease of the optic nerve (5), lifestyle and dietary habits have a 
potential impact on preventing the occurrence of glaucoma and improving the prognosis of 
glaucoma (12–16), which remains controversial and needs to be further explored in rigorous 
clinical studies.

In recent years, with the deepening understanding of the pathological mechanism of 
glaucoma, researchers have begun to pay increasing attention to the role of dietary factors in the 
pathogenesis of glaucoma. Although the exact cause of glaucoma has not yet been fully revealed, 
existing research suggests that specific dietary habits, such as high-salt diets and Mediterranean 
dietary patterns, have been found to be associated with the prevalence of glaucoma (17, 18). In 
this article, we will analyze these two dietary patterns, which differ significantly in terms of 
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nutrient composition and health benefits, particularly in terms of their 
impact on antioxidant and anti-inflammatory factors, which are 
thought to have a potentially positive effect on the management of 
glaucoma. Although there is a dearth of detailed statistical data on the 
proportion of patients’ dietary choices, the Mediterranean diet has 
earned worldwide attention and acceptance as a model of a healthy 
eating pattern (19–23). Furthermore, taking too much salt has become 
a major worldwide issue (24, 25). Given the popularity of these two 
diets among the general public, we believe that a study comparing the 
Mediterranean diet with a high-salt diet would be  important for a 
deeper understanding of the impact of dietary structure on the risk of 
glaucoma. In addition, some specific nutrients, including omega-3 fatty 
acids (26–30), vitamins (27, 31–34), caffeine (12, 35–38), and minerals 
(39–41), may have an impact on the prevention and treatment of 
glaucoma through various biological pathways such as oxidative stress 
(42–46), changes in eye blood flow, and regulation of intraocular 
pressure (12, 47, 48). Overall, dietary factors have a potential impact on 
the onset and progression of glaucoma through multiple mechanisms, 
including antioxidant, anti-inflammatory, blood flow improvement, 
and intraocular pressure regulation (49). In view of this, future studies 
need to explore these links in further depth and develop reasonable 
dietary plans for glaucoma patients. The aim of this article is to explore 
the effects of high-salt intake and Mediterranean dietary patterns on 
the occurrence and progression of glaucoma in the form of a narrative 
review; in addition, we analyze the relationship between several specific 
nutrients, including omega-3 fatty acids, vitamins, caffeine, and 
minerals, and glaucoma to comprehensively assess the potential roles 
of dietary factors in the pathogenesis, prevention, and treatment of 
glaucoma, as well as to summarize and evaluate the results of the 
current study. Specifically, we focused on relevant studies published in 
the past 20 years (2004 to 2024) with a view to informing future 
research and clinical practice. Through an analysis of the effects of 
several dietary patterns and several specific nutrients on intraocular 
pressure, optic nerve protection, and ocular blood flow, it becomes clear 
how these factors indirectly affect how glaucoma progresses. To provide 
a new perspective and a scientific foundation for comprehensive 
glaucoma treatment strategies, this review also examines the potential 
of dietary interventions as adjuvant therapy for glaucoma and future 
research objectives.

2 Method

2.1 Literature search strategies

From the inception of the databases to June 2024, we conducted 
searches across a number of databases, including PubMed, Web of 
Science, and other libraries. The majority of articles published between 
2004 and 2024 were chosen. Predetermined keyword combinations 
such as “glaucoma,” “intraocular pressure,” “high-salt diet,” 
“Mediterranean diet,” “Omega-3 diet,” “Omega-3 diet,” and “Omega-3 
diet.,” “Omega-3 fatty acids,” “vitamins,” and “minerals” were used.

2.2 Inclusion criteria

We mainly included English-language literature published 
between 2004 and 2024; studies related to the relationship between 

dietary factors and glaucoma; and types of included studies included, 
but were not limited to clinical trials, including randomized controlled 
trials (RCTs) and non-randomized controlled trials (NRCTs), which 
provided direct evidence on the effects of interventions. Observational 
studies include prospective cohort studies, retrospective cohort 
studies, case–control studies, and cross-sectional studies. These types 
of studies do not prove causality but are useful in exploring associations.

2.3 Exclusion criteria

Study design: We excluded case reports, review articles, conference 
abstracts, etc. as they usually do not provide sufficient data for 
systematic analysis. Participants: We excluded studies that included 
only children or adolescents as glaucoma may present differently in 
adults and risk factors. Language: This study excluded articles 
published in non-English-language literature. Publication status: 
We excluded unpublished data, preprints, or gray literature. Duplicate 
data: We excluded data from duplicate published studies and retained 
only the original or most recent version of the study. Irrelevance: 
We excluded studies that were not relevant to glaucoma or diet, even 
if they contained data on nutrients.

3 Pathogenesis of glaucoma

A variety of essential factors, including elevated intraocular 
pressure, damage to the optic nerve, and oxidative stress, are all 
components of the complicated pathomechanism of glaucoma.

3.1 Physiological basis of elevated 
intraocular pressure

Elevated intraocular pressure (IOP) is a major risk factor for the 
development of glaucoma (50–53). The maintenance of intraocular 
pressure depends on the dynamic balance of aqueous humor, that is, 
the generation and discharge of aqueous humor remain consistent 
(54). The aqueous humor enters the anterior chamber through the 
ciliary body through the pupil, then enters the Schlemm duct through 
the trabecular meshwork, and finally exits the eye through the 
Schlemm duct system through the trabecular meshwork (55, 56). 
When the drainage system is unable to effectively discharge aqueous 
humor due to various reasons, such as dysfunction of trabecular 
meshwork cells, Schlemm tube blockage, and angle stenosis, the 
accumulation of intraocular fluid leads to an increase in intraocular 
pressure (55, 57–63).

3.2 Molecular mechanisms of optic nerve 
damage

Optic nerve injury is the core pathological process leading to 
permanent visual loss in glaucoma (3, 4, 7, 64). Elevated intraocular 
pressure can directly press on the optic nerve (65) and also affect the 
blood supply to the optic nerve, leading to ischemia and hypoxia (66). 
This ischemic environment can activate a series of intracellular cascade 
reactions, including excitotoxicity, inflammatory responses, glial cell 
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activation, and neuronal apoptosis (67). Moreover, Mackenzie et al. have 
found that elevated IOP may trigger a series of parallel and interacting 
pathological processes, including direct axonal damage, weight-bearing 
tissue failure, and disruption of the microvascular supply (68). These 
processes lead to a progressive loss of structure and function of the optic 
ganglion cells, eventually causing optic nerve atrophy and visual field 
defects. In addition, Harada et al. found that mice lacking the GLAST 
gene developed spontaneous retinal ganglion cell (RGC) reduction and 
optic nerve degenerative changes, suggesting that reduced GLAST 
expression leading to glutamate excitotoxicity in the retina may be a 
potential pathogenetic mechanism for glaucoma (69).

3.3 The association between oxidative 
stress and glaucoma

Oxidative stress is a disruption of the oxidative and antioxidant 
balance in the body, resulting in high levels of reactive oxygen species 
(ROS) that exceed the scavenging capacity of the antioxidant defense 
system, thus causing damage to cellular structure and function (70–74). 
Oxidative stress plays an important role in the pathogenesis of glaucoma 
(75–79). In addition, Ferreira et al. found high levels of oxidative stress 
markers in the atrial fluid of glaucoma patients, suggesting that oxidative 
stress is involved in optic nerve damage (80). Oxidative stress can cause 
DNA damage, lipid peroxidation, protein oxidation, and mitochondrial 
dysfunction (81), all of which are associated with apoptosis in retinal 
ganglion cells. In addition, oxidative stress promotes extracellular matrix 
remodeling, exacerbates pathological changes in the trabecular mesh, 
and further affects atrial water outflow, creating a vicious cycle (79).

Through a variety of intricate processes, dietary antioxidants help to 
reduce oxidative stress and so decrease the evolution of glaucoma. Direct 
scavenging of free radicals, suppression of oxidative processes, repair of 
oxidative damage, upregulation of antioxidant enzyme production, and 
stabilization of cell membranes are a few examples of these strategies 
(82–85). For example, vitamin C, as a highly effective water-soluble 
antioxidant, can directly neutralize free radicals in the aqueous phase, 
such as superoxide anion and hydroxyl radical, and effectively protect 
cell membranes and internal components from oxidative damage (82, 
86, 87). Vitamin E is a fat-soluble antioxidant that is especially effective 
at scavenging free radicals produced during lipid peroxidation. This 
helps to preserve the lipid bilayer of cell membranes’ structural integrity 
and repairs damage caused by lipid peroxidation to cell membranes, 
allowing them to resume their regular functions (83, 84). Selenium is 
one of the key components of glutathione peroxidase, an enzyme that 
catalyzes the reduction of hydrogen peroxide and organic peroxides to 
water and the corresponding alcohols by reduced glutathione, 
significantly reducing the production of free radicals (85, 88). In 
conclusion, antioxidants play an important role in preventing and 
mitigating glaucoma, effectively reducing the negative effects of oxidative 
stress on eye health through a combination of these mechanisms.

4 Two dietary patterns

4.1 High-salt diet

Existing studies suggest that a high-salt diet may be indirectly 
associated with glaucoma by affecting blood pressure and other 

physiological mechanisms (17). A low-sodium diet is a protective 
factor for hypertension, and excessive salt intake is known to be one 
of the risk factors for hypertension (89–92). In addition, a high-salt 
diet may affect intraocular pressure through a series of complex 
biological mechanisms, and there are findings to support the 
possibility that increased blood pressure may cause increased 
intraocular pressure (93), whereas the generation of aqueous humor 
involves multiple pathways, including secretion, ultrafiltration, and 
diffusion (94, 95). Among other things, the ultrafiltration process is 
influenced by plasma colloid osmolality. However, further studies are 
needed to clarify whether a high-salt diet disrupts the dynamic 
balance of intraocular fluid by causing systemic fluid retention, which, 
in turn, affects intraocular pressure.

In addition to being associated with the risk of developing 
glaucoma, a high-salt diet may also affect the progression of glaucoma. 
Increased salt intake leads to higher sodium concentrations, leading 
to stiffening of endothelial cells and reduced release of nitric oxide 
from vascular endothelial cells (96). Some studies have shown that 
nitric oxide is a vasodilator that has a positive effect on regulating 
blood flow and cell viability in the eye and protects vascular 
endothelial cells and nerve cells. Endothelial cell dysfunction may 
reduce nitric oxide bioavailability and increase reactive oxygen species 
production, leading to impaired ocular hemodynamics (97), whereas 
reactive oxygen species can induce cellular senescence and apoptosis 
(98), which may ultimately lead to optic nerve cell apoptosis, 
exacerbating optic nerve damage and further exacerbating the 
progression of glaucoma. Recently, a researcher conducted an in-depth 
analysis of the relationship between urinary sodium excretion and 
glaucoma and its associated characteristics with the help of data from 
the UK Biobank. The findings suggest that urinary sodium excretion, 
a biological indicator of dietary sodium intake, may be a key and 
modifiable risk factor for the development of glaucoma, especially in 
those individuals with a higher genetic susceptibility. This finding is 
particularly noteworthy because it not only emphasizes the role of 
lifestyle factors in the pathogenesis of glaucoma but also points to a 
potential point of intervention to prevent or delay disease progression 
by modifying dietary sodium intake (99). In view of the possible 
influence between a high-salt diet and the onset and progression of 
glaucoma, a low-salt diet with a reduced intake of processed and fast 
foods is recommended in clinical practice for glaucoma patients to 
control intraocular pressure, slow down progression, and improve the 
quality of life.

4.2 Mediterranean diet

The Mediterranean diet, a traditional dietary pattern originating 
in the countries bordering the Mediterranean Sea, is widely regarded 
as one of the healthiest diets in the world due to its abundance of 
vegetables, fruits, whole grains, legumes, nuts, olive oil, and moderate 
amounts of fish and wine (100–105). The Mediterranean diet 
emphasizes a whole-food, low-sugar, low-processed food intake with 
an abundance of vegetables and fruits that are natural antioxidants 
(106), containing high levels of vitamin C, vitamin E, beta-carotene, 
and polyphenolic compounds such as flavonoids and anthocyanins 
(107). These antioxidants play a role in the body in fighting free 
radicals and mitigating oxidative stress, which is a key factor in the 
development of glaucoma because it can exacerbate retinal ganglion 
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cell damage and affect optic nerve function (108). Moreno-Montañés 
et al. find Mediterranean lifestyle as a protective factor for glaucoma 
incidence as measured by the SUN Healthy Lifestyle Score (SHLS) 
(109). Thus, the richness of antioxidants in the Mediterranean diet 
may help to protect the optic nerve against oxidative damage and thus 
play a positive role in slowing down the process of glaucoma.

5 Nutrients and glaucoma

Nutrient intake is recognized as a potential factor influencing 
glaucoma onset and progression (76, 110). The effect of nutrients on 
glaucoma is a complex, multifactorial, and multi-mechanism process. 
Although glaucoma is mainly associated with increased intraocular 
pressure and optic nerve damage rather than being directly caused by 
nutritional deficiencies, the intake of specific nutrients may help 
prevent the deterioration of glaucoma or reduce the risk of developing 
the disease. In the following section, we will analyze the effects of 
some specific nutrients on glaucoma (Figure 1).

5.1 Omega-3 polyunsaturated fatty acids

Omega-3 polyunsaturated fatty acids (PUFA) are a group of 
essential nutrients whose family members include alpha-linolenic acid 
(ALA), stearic acid (SDA), eicosapentaenoic acid (EPA), 
docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA) 
(111–114). Rich sources of omega-3 in food include deep-sea fish 
(115–117), such as salmon and mackerel, and plant-based options, 
such as flaxseeds (118, 119) and walnuts (120, 121), which are all ideal 
for boosting omega-3 intake in the daily diet.

A cross-sectional study using data from the National Health and 
Nutrition Examination Survey (NHANES) database (2005–2008) 
involving 3,865 participants aged 40 years or older found that 
increasing the proportion of dietary omega-3 fatty acid intake levels 
in the daily diet may have a protective effect against glaucoma (122). 
In recent years, studies have shown that a higher intake of omega-3 
fatty acids has the potential to reduce the risk of glaucoma and that 
omega-3 fatty acids may have a protective effect on glaucoma through 
various mechanisms, such as lowering intraocular pressure, regulating 
blood supply, relieving inflammation, and reducing oxidative stress 
(26). 1. Lowering intraocular pressure: Nguyen et  al. pointed out 
through a study on rats that omega-3 fatty acids can lower intraocular 
pressure by increasing atrial aqueous outflow (30). In addition, oral 
supplementation with omega-3 fatty acids has been shown to 
significantly improve IOP (123). However, more research is needed to 
further validate and elucidate the specific mechanisms and effects of 
omega-3 fatty acids in lowering IOP. 2. Regulates blood flow in the 
eye: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) 
are two important omega-3 fatty acids (114, 124). A study investigating 
the fatty acid composition of the blood of patients with primary open-
angle glaucoma found that the patients’ blood levels of EPA and DHA 
were reduced. EPA and DHA can positively regulate systemic 
microcirculation and improve ocular blood flow, as well as reduce 
optic neuropathy (125). Kalogerou et  al. also found omega-3 to 
be  neuroprotective in the retina in a mouse model of hereditary 
glaucoma (126). 3. Inflammatory response modulation: Omega-3 fatty 
acids have anti-inflammatory effects (122, 127–130) and may 

influence glaucoma progression by modulating the inflammatory 
response (75).

In conclusion, omega-3 fatty acids, as a potential protective factor, 
may influence the pathogenesis of glaucoma through multiple 
pathways. However, the relationship between omega-3 fatty acids and 
glaucoma still needs to be validated by more longitudinal clinical 
studies and randomized controlled trials. Therefore, future studies 
need to further explore the specific roles and mechanisms of omega-3 
fatty acids in glaucoma prevention and treatment.

5.2 Vitamins (A, E, C, B, K1, and D)

Vitamins, as key dietary supplements, have been widely explored 
in recent years in studies examining their impact on the common 
disease of glaucoma (131–137). Several studies have attempted to 
reveal the potential association of vitamins A, E, C, B, K1, and D with 
the incidence and severity of glaucoma.

Wang et al. conducted a cross-sectional study in 2013 and found 
that both supplemental vitamin A and E intake and their serum levels 
failed to show a correlation with glaucoma incidence. Although the 
study revealed that low-to-high levels of vitamin C supplementation 
were associated with a reduced risk of glaucoma, no direct association 
was found between serum vitamin C concentrations and the 
prevalence of glaucoma (138). In 2012, Giaconi et al. focused their 
study on a specific population, older African American women, 
suggesting that increased intake of fruits and vegetables rich in 
vitamins A and C and carotenoids may reduce the prevalence of 
glaucoma in older African American women. However, further 
randomized controlled trials need to be designed to confirm whether 
these specific nutrients are effective in modifying the risk of glaucoma 
(139). Recently, Yang et al. examined the relationship between vitamin 
B and glaucoma in the US population and found that increased intake 
of vitamin B6 was negatively associated with the risk of glaucoma (14), 
providing new evidence for the potential role of vitamin B6  in 
glaucoma prevention. In addition, an animal model study by Williams 
et al. revealed the positive effects of vitamin B3 (niacin) on glaucoma 
and other age-related neurodegenerative diseases, highlighting its 
potential value in neuroprotection (137). Moreover, the study by Li 
et al. highlighted the protective effects of vitamin C on the nervous 
system and suggested that vitamin C may have therapeutic potential 
for neurodegenerative diseases such as glaucoma (132). Goncalves 
et al. explored the relationship between vitamin D and primary open-
angle glaucoma (POAG) in an elderly population through a case–
control approach in their 2015 study, which showed that vitamin D 
insufficiency was significantly associated with POAG (OR = 2.09, 
p = 0.034), while there was no significant correlation with the severity 
of the disease. This study used serum 25OHD concentrations as an 
indicator of vitamin D levels, and although it did not reveal a specific 
link between vitamin D deficiency and the severity of POAG, it 
highlights the importance of vitamin D in POAG prevention (140). In 
addition, a recent study examining the effects of dietary vitamin K 
supplementation in a rat model of glaucoma revealed an inhibitory 
effect of high-dose vitamin K1 (VitK1) intake on retinal ganglion cell 
loss during glaucomatous injury. The researchers concluded that this 
protective effect may be related to VitK1’s increased expression of 
stromal GLA protein. Moreover, rats in the high-VitK1 group also 
exhibited a transient decrease in intraocular pressure (IOP), suggesting 
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that VitK1 may have a potential regulatory effect on the flow of atrial 
fluid. Overall, the protective effect of VitK1 on retinal ganglion cells 
may be  realized through two mechanisms: first, by lowering the 
intraocular pressure, which reduces the pressure on the optic nerve, 
and second, by directly counteracting glaucoma-induced cellular 
damage through its own neuroprotective effect. Together, these two 
mechanisms help to minimize the loss of retinal ganglion cells, thereby 
slowing the progression of glaucoma (141).

When considered collectively, these results reveal that although 
vitamins as components of dietary supplements have the ability to 
affect the risk of glaucoma-related diseases, further study is necessary 
to determine the precise effects of vitamins on the condition. Large-
scale, long-term randomized controlled trials should be the primary 
objective of future research to precisely evaluate the intervention 
effects of particular vitamin supplements on glaucoma risk in various 
populations. Deepening our understanding of this complicated 
disease will require researching the relationships between vitamins 
and other lifestyle factors, such as dietary practices, physical activity, 
and smoking status, and how these factors interact to influence the 
course of glaucoma. Furthermore, given the importance of individual 

genetic variations, future studies might focus on the relationship 
between genes and nutrition to promote more individualized and 
precise glaucoma prevention and treatment strategies.

5.3 Minerals (calcium, selenium, zinc, and 
iron)

Multiple studies reveal a complex link between mineral intake and 
glaucoma risk (41, 142–148). Calcium is an important mineral for 
maintaining normal intraocular pressure, and calcium channel 
blockers are commonly used in glaucoma treatment (142, 143, 149). 
According to a cross-sectional study, excessive intake of the oxidants 
calcium and iron may be  associated with an increased risk of 
glaucoma, especially when intake exceeds a certain threshold. Further 
prospective longitudinal studies are needed to assess whether oxidant 
intake is a risk factor for glaucoma development and progression 
(149). Meanwhile, Kastner et al. explored the relationship between 
calcium channel blocker (CCB) use and the risk of glaucoma in a UK 
Biobank and showed that the use of CCBs (but not other 

FIGURE 1

Relationship between two dietary patterns and nutrients with glaucoma. Created with BioRender.com.
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antihypertensive medications) was associated with an increased 
chance of glaucoma (odds ratio [OR], 1.39 [95% CI, 1.14–1.69]; 
p = 0.001) (39). In addition, a study by Araie et al. demonstrated that 
calcium channel blockers (CCBs) improved ocular perfusion and 
exerted neuroprotective effects on retinal ganglion cells and these 
CCBs were effective in dilating ocular blood vessels, which facilitated 
an increase in ocular blood flow. In vitro studies also revealed a 
neuroprotective effect on neurons. This protective effect was also 
clearly documented in the retinal ganglion cells and photoreceptors of 
experimental animals (143). Regarding selenium, in a case–control 
study comparing plasma and atrial selenium levels in patients with 
primary open-angle glaucoma with those in non-patients, Bruhn et al. 
found that the odds of glaucoma in the highest tertile of plasma 
selenium (OR = 11.3; p = 0.03) and in the middle tertile of atrial 
selenium (OR = 0.06; p = 0.02) were significantly associated with 
glaucoma, after adjusting for common glaucoma risk factors (146). In 
light of the observed increased incidence of glaucoma in some 
populations taking selenium supplements, Conley et al. explored the 
mechanism of selenium-induced changes in human trabecular 
meshwork (HTM) cell homeostasis. Their study revealed that 
selenium-induced changes in MMP-2 (matrix metalloproteinase-2) 
and TIMP-1 (matrix inhibitor of metalloproteinase-1) secretion may 
alter the balance of extracellular matrix transitions in the conventional 
efflux pathway and lead to elevated intraocular pressure, ultimately 
leading to glaucoma (147). In addition, it has been found that excessive 
accumulation of iron and zinc ions causes the loss of retinal ganglion 
cells (RGCs) and that mitochondrial dysfunction caused by excessive 
accumulation of iron or zinc, including defects in mitochondrial 
biogenesis and fusion, as well as processes such as fission and an 
increase in mitochondrial autophagy, constitutes a potential 
mechanism of glaucoma causation, accelerating the loss of RGCs (41).

Overall, appropriate intake of minerals is essential for maintaining 
eye health and preventing glaucoma, but excessive or inappropriate 
use may be  counterproductive. Future studies should continue to 
explore in depth the optimal range of intake of these minerals, their 
mechanisms of action, and their interactions with other factors to 
provide a scientific basis for the development of personalized 
glaucoma prevention and treatment strategies. In the meantime, 
clinical practice should take into account individual differences, and 
mineral supplementation and medication regimens should 
be monitored and adjusted to achieve optimal therapeutic outcomes 
and minimize potential risks.

5.4 Caffeine consumption

Caffeine, as a central nervous system stimulant, is widely found in 
coffee, tea, cocoa products, and some drugs (150–154). The results of 
a series of studies have shown that caffeine at routine intake levels 
appears to have little effect on IOP and glaucoma risk in the general 
population. However, higher doses of caffeine intake may be associated 
with increased intraocular pressure and an increased risk of glaucoma 
in specific groups, particularly in individuals who are genetically 
predisposed to high IOP or who have a family history of glaucoma (12, 
38, 155). Using statistical modeling in a cross-sectional study from the 
UK Biobank, Kim et al. revealed that habitual caffeine intake was 
weakly associated with lower IOP, and the association between 
caffeine intake and glaucoma was nil. However, among participants 

with the strongest genetic susceptibility to elevated IOP, greater 
caffeine intake was associated with higher IOP and a higher prevalence 
of glaucoma (12). Another prospective cohort study examined the 
potential association between caffeine intake and the risk of primary 
open-angle glaucoma (POAG) and primarily found that total caffeine 
intake was not significantly associated with an increased risk of 
POAG. However, secondary analyses suggested that caffeine may 
increase the risk of POAG in individuals with a family history of 
glaucoma (38). Notably, some association was observed between 
exfoliative glaucoma and groups with higher coffee consumption. The 
association between caffeine and caffeinated beverage consumption 
and the risk of exfoliation glaucoma or exfoliation glaucoma suspected 
(EG/EGS) was highlighted in a study by Pasquale et al. In this large 
prospective study, there was a positive correlation between higher 
coffee consumption and the risk of EG/EGS (156). In addition, Li et al. 
provided insight into the effects of caffeine on IOP through a 
systematic evaluation and meta-analysis. The pooled evidence reveals 
that the effect of caffeine on IOP varies among individuals: In healthy 
populations, caffeine intake does not cause changes in IOP; in contrast, 
caffeine intake in patients with glaucoma or ocular hypertension 
(OHT) tends to increase the IOP significantly (157).

Therefore, although moderate consumption of caffeinated 
beverages is likely to have little effect on most people, glaucoma 
patients and high-risk groups should consider moderately limiting 
their caffeine intake in light of current research findings. Overall, 
more research is needed to elucidate the relationship between caffeine 
and glaucoma, but individuals should consider their own conditions 
and adjust their lifestyle habits appropriately to maintain eye health.

6 Conclusion and outlook

Overall, the complex and multifaceted pathomechanisms of 
glaucoma, a complex degenerative disease of the optic nerve, call for 
a comprehensive approach to preventive and therapeutic strategies. 
Dietary factors, as controllable lifestyle components, show potential 
value in the prevention and treatment of glaucoma. A high-salt diet 
may exacerbate glaucoma progression through mechanisms that affect 
blood pressure, ocular blood flow, and oxidative stress, suggesting the 
importance of a low-salt diet for glaucoma patients. In contrast, the 
Mediterranean dietary pattern, which is rich in antioxidants, omega-3 
fatty acids, and a variety of nutrients beneficial to the optic nerve, may 
have a protective effect against glaucoma, emphasizing the role of a 
balanced diet in disease management. Specific nutrients, such as 
omega-3 fatty acids, demonstrate protective potential against 
glaucoma through various mechanisms such as lowering intraocular 
pressure, improving blood circulation, and having anti-inflammatory 
effects. Research on the correlation between intake of vitamins A, C, 
E, B-complex, and D, and minerals such as calcium, selenium, zinc, 
and iron, and glaucoma risk has yielded varying results but generally 
points to the possible benefits of these nutrients in regulating IOP, 
antioxidant activity, promotion of blood flow to the eye, and 
neuroprotection. Vitamins B6 and B3 (niacin), as well as vitamins C 
and D in particular, have shown potential preventive value against 
glaucoma. However, excessive intake of minerals such as calcium and 
iron may be associated with an increased risk of glaucoma, while 
selenium intake needs to be considered with caution. In addition, 
caffeine intake and its association with glaucoma risk remind us that 
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even commonly available daily dietary components need to 
be considered carefully based on individual differences and disease 
status. Although moderate intake has little effect on the general 
population, individuals who are genetically predisposed or have a 
preexisting tendency to glaucoma may be at increased IOP and risk of 
developing the disease, suggesting that caffeine restriction should 
be considered in this population.

In summary, increasing the intake of antioxidants and beneficial 
fatty acids and limiting the excessive intake of potentially harmful 
minerals and caffeine through rational dietary modification may 
be  important for the prevention and management of glaucoma. 
However, most of these findings are based on observational and cross-
sectional studies, and more high-quality prospective studies and 
randomized controlled trials are needed in the future to further 
confirm the causal relationship between dietary factors and glaucoma, 
as well as to provide more precise dietary guidance to patients. 
Although the current findings suggest a positive association between 
dietary factors and glaucoma, the direct causality of the association 
between these nutrients and glaucoma, as well as their specific roles 
in different types and stages of glaucoma, remains to be confirmed by 
more high-quality clinical studies. Future studies should focus on 
more precisely quantifying the effects of different dietary factors on 
glaucoma progression, exploring the mechanisms underlying the 
differential responses between individuals, and conducting long-term 
interventional studies to develop more personalized and precise 
dietary guidance protocols. Meanwhile, using modern biomarker 
technology and big data analysis, the complex interactions between 
diet and glaucoma can be analyzed in greater depth, providing more 
scientific and personalized dietary strategies for the prevention and 
treatment of glaucoma so as to effectively control the disease 
progression and improve the quality of life of patients.
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