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Background and objective: There is a close correlation between bone 
loss, depression, and antidepressants. N-3 PUFA supplementation has been 
considered an effective add-on therapeutic approach in ameliorating bone loss 
and relieving depression. However, the adjunctive effect of n-3 PUFA on bone 
metabolism in participants with depression is still unknown. This is a pilot study 
to investigate the dynamics of bone metabolism in depression and evaluate the 
efficacy of fish oil on bone loss in depression.

Methods: In this study, we focused on the change of bone turnover markers 
in depression, the effect of n-3 PUFA supplementation on bone turnover 
markers, and its association with clinical characteristics. A case–control study 
and a secondary analysis of a previously published randomized clinical trial 
(NCT03295708) that evaluates the efficacy of n-3 PUFA supplementation in 
venlafaxine-treated depressed participants have been included.

Results: The levels of PINP (z = −2.233, p  = 0.026) in depressed participants 
were significantly increased compared with healthy controls at baseline. The 
secondary analysis has shown significant differences exited on CTX (χ2 = 4.848, 
p = 0.028) and OSTEOC (χ2 = 6.178, p = 0.013) between n-3 PUFA and placebo 
group. The levels of CTX and OSTEOC (p < 0.05) significantly decreased in the 
placebo group, which indicates that venlafaxine treatment reduces both bone 
formation and resorption markers. While the levels of OSTEOC and PINP were 
increased in the n-3 PUFA group (p  < 0.05). Moreover, the change in bone 
turnover markers showed consistency with clinical symptomatic outcomes.

Conclusion: Participants with first-diagnosed, drug-naïve depression show 
active bone formation. Venlafaxine decreases bone remodeling, while n-3 PUFA 
increases bone formation, bringing light to preventing and treating bone loss in 
depression.

Clinical trial registration: ClinicalTrials.gov, NCT03295708.
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1 Introduction

Major depressive disorder (MDD) increases the prevalence of 
bone loss, osteoporosis, and fractures, which belong to chronic 
systemic skeletal disorders caused by an imbalance between bone 
formation and bone resorption (1–4). Osteoporosis has also been 
proven to be an independent risk factor for depression (5). These 
bone metabolism-related comorbidities induce substantial morbidity 
and mortality (6). In addition to changes in lifestyle and behaviors 
(2), changes in the endocrine and immune systems secondary to 
depression also play an essential role in bone metabolism (7). Not 
only depression itself, but the use of antidepressants also increases the 
risk of bone loss and fractures (8, 9). Selective serotonin reuptake 
inhibitors (SSRIs) and serotonin and norepinephrine reuptake 
inhibitors (SNRIs), being the first-line pharmaceutical treatment, 
have been widely prescribed in recent years (10). In addition, 
fluvoxamine was found to accumulate in bone marrow at 
concentrations much higher than those in the peripheral blood, 
suggesting that antidepressants can bioaccumulate in bone (11). The 
potential effect of antidepressants on bone metabolism 
deserves attention.

The molecular mechanisms underlying the effects of antidepressants 
on bone metabolism are not fully understood. SSRIs users have twice the 
rate of bone loss in the hip and a higher risk of osteoporosis and related 
fractures compared with non-users (12). This might be because peripheral 
5-HT could act on osteoblasts and inhibit bone formation (13, 14). 
Furthermore, the risks of fractures between SNRIs and SSRIs users were 
comparable (15). Apart from 5-HT, SNRIs also can inhibit NE 
(norepinephrine) reuptake. The inhibition of NE reuptake affects the 
sympathetic nervous system, strongly influencing osteoclast and osteoblast 
function (16, 17). Additionally, after long-term pharmacological NE 
transport blockade, the genetic ablation of NE transporter, expressed in 
bone cells, leads to a low peak bone mass (18, 19).

Since treatment recommendations for osteoporosis are often based on 
future fracture risk, and some anti-osteoporosis drugs have serious adverse 
effects (20), potential options for bone loss from a preventive perspective 
are of great importance. Accumulating evidence has established the 
essential roles of PUFA in bone metabolism (21). N-3 PUFA, mainly 
consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA), may positively impact bone remodeling by reducing osteoclast 
activity and increasing osteoblast activity (22, 23). They could also facilitate 
bone metabolism through prostaglandin production, calcium absorption, 
and lipid oxidation (24–26). Depressed participants will develop bone 
metabolism-related problems in the early stages of the disease, and long-
term use of antidepressants is likely to increase bone loss and related risks. 
As a result, it is essential to evaluate bone metabolism activity in the early 
stages of depression and find possible preventive solutions.

This study aimed to investigate the dynamics of bone metabolism in 
depression, the efficacy of n-3 PUFA supplementation on bone metabolism, 
and finally, the association between bone metabolism and clinical 
characteristics. By investigating these critical aspects, the research would 
offer significant perspectives that may eventually result in enhanced 

interventions and tactics targeted at improving disease prognosis and 
ultimately improving the quality of life in depression.

2 Methods

2.1 Study design

This study’s clinical data and biomarkers came from a case–
control study and a randomized, double-blind, placebo-controlled 
trial (RCT). Figure  1 shows a flowchart of the scheduled data 
collection of the case–control study and RCT over the 12 weeks of 
treatment of participants with MDD. The cross-sectional study 
included 139 first-diagnosed, drug-naïve participants with 
depression and 55 healthy controls (HCs) as previously published 
(27). The randomized, double-masked, placebo-controlled trial 
recruited venlafaxine-treated depressed participants had two 
groups (n = 36 per group): 2.4 g/d n-3 PUFA (1,440 mg of 
eicosapentaenoic acid [EPA] plus 960 mg of docosahexaenoic acid 
[DHA]); and placebo (soybean oil) groups. The detailed protocol 
and primary outcomes, which mainly evaluate the effectiveness and 
safety, were published (28).

2.2 Study participants

All participants provided written informed consent. Participants 
were 18- to 50-year-old outpatients or HCs recruited from the Second 
Xiangya Hospital of Central South University from March 2017 to 
January 2020. Two specialists in psychiatry evaluated participants, and 
all participants met the Diagnostic and Statistical Manual of Mental 
Disorders IV criteria for MDD. The following were the inclusion criteria: 
(1) Hamilton Depression Rating Scale (24-item HAMD) score greater 
than 20 points; (2) first-time diagnosis and non-use of antipsychotics. 
Exclusion criteria included: (1) a history or current of a clinically 
significant disease; (2) pregnancy or breastfeeding; (3) Current apparent 
suicide attempts or suicidal behavior; (4) any conditions or drugs that 
may affect biomarkers: long-term regular use of NSAIDs, COX-2 
inhibitors, immunosuppressants, hormone, interferons, chemotherapy 
drugs, anticoagulants; (5) taking supplements containing omega-3 
PUFAs or eating omega-3-rich fatty fish more than twice a week. A total 
of 139 subjects met the inclusion criteria, and ultimately, 72 participated 
in the RCT evaluating the efficacy of n-3 PUFA in the adjunctive 
treatment of depression. A previous study described HCs as healthy 
volunteers with no psychiatric history or medical conditions (27). The 
clinical trial was approved by the Ethics Committee of the Second 
Xiangya Hospital of Central South University (MDD201610).

2.3 Clinical assessment

Demographic and clinical information, including gender, age, 
and BMI, were collected from each subject at baseline. Assessments 
of the 24-item Hamilton Depression Rating Scale (HAMD-24), 
Hamilton Anxiety Rating Scale (HAMA), Zung Self-Rating Anxiety 
Scale (SAS), and Beck Depression Inventory (BDI) were completed 
at baseline, week 4, and week 12 of treatment.

Abbreviations: MDD, Major depressive disorder; PUFA, Polyunsaturated fatty acid; 

HCs, Health controls; CTX, C-terminal crosslinked terminal peptide of type 

I collagen; hCT, Thyrocalcitonin; OSTEOC, Osteocalcin; PTH, Parathyroid hormone; 

PINP, N-terminal propeptides of type I collagen.
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2.4 Sample processing and bone turnover 
markers assessment

Between 6 and 9 a.m., the participants’ blood was gathered 
while fasting at baseline, clinical visit week 4, and clinical visit 
week 12. Bone turnover markers were assessed on baseline and 
clinical visit 12. The blood samples were centrifuged at 3,000 rpm 
for 10 min, and the plasma was removed and stored in a refrigerator 
at −80°C. A Roche Cobas 8000-e602 automated 
electrochemiluminescence immunoassay system was used to 
measure the levels of C-terminal crosslinked terminal peptide of 
type I  collagen (CTX), thyrocalcitonin (hCT), osteocalcin 
(OSTEOC), parathyroid hormone (PTH), and N-terminal 
propeptides of type I  collagen (PINP). The assessment was 
conducted at the Second Xiangya Hospital of Central South 
University. The study assistants were blinded to the grouping of 
samples during any evaluation process.

2.5 Statistical analysis

Data analyses were performed using IBM SPSS Statistics 26.0 
and GraphPad Prism 8.0. Baseline data that conformed to the 
normal distribution were analyzed using independent samples 
t-tests. Data were presented in mean (SD), and chi-square tests or 
Fisher’s exact probability method were used for statistical analysis 
of count data. Non-normal data were expressed as median (P25-
P75), and repeated measures were analyzed using a generalized 
estimating equation (GEE). Linear regression analyses examined 

associations between bone turnover markers (baseline levels and 
post-intervention changes) and clinical outcomes. All statistical 
significance tests were performed using two-tailed tests, and 
p < 0.05 was considered a statistically significant difference.

3 Results

3.1 Demographic and clinical 
characteristics

A comparison of demographic data and clinical characteristics 
between the MDD and HC groups is shown in Table 1. There were no 

TABLE 1 Baseline characteristics of HC and MDD groups.

Parameter
HCs 

(n = 55)
MDD 

(n = 139)
t/χ2 p value

Age 29.1(8.8) 27.6(8.7) −1.100 0.273

Female, n (%) 31(56.4) 91(65.5) 1.399 0.237

BMI (kg/m2) 21.9(2.7) 21.4(2.9) −1.121 0.264

HAMD - 29.7(6.7) - -

HAMA - 22.7(6.7) - -

BDI 5.5(5.3) 28.5(10.0) 20.127 <0.001**

SAS 39.7(7.7) 55.5(11.2) 10.870 <0.001**

BMI, body mass index; BDI, Beck Depression Inventory; HAMA, Hamilton Anxiety Scale; 
HAMD, 24-item Hamilton Depression Rating Scale; HC, healthy control; MDD, major depressive 
disorder; SAS, Self-Rating Anxiety Scales. **p < 0.01. The bold values indicate the data with 
statistical significance.

FIGURE 1

Flowchart of study trial assessments for participants.
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TABLE 3 The bone turnover markers between the two groups at baseline and 12 weeks after treatment.

Baseline W12 Intervention χ2 
(p-value)

Time χ2 
(p-value)

Intervention + time χ2 
(p-value)

Placebo n-3 
PUFA

Placebo n-3 
PUFA

CTX 0.38 (0.03) 0.47 (0.04) 0.27 (0.02) a 0.40 (0.06) 4.848 (0.028) 7.188 (0.007) 0.495 (0.482)

hCT 1.83 (0.34) 2.90 (0.88) 1.82 (0.32) 2.26 (0.41) 1.277 (0.258) 0.785 (0.376) 0.722 (0.396)

OSTEOC 19.89 (1.38) 22.98 (1.84) 17.04 (1.01) a
25.90 (2.89) 

*
6.178 (0.013) 0.001 (0.980) 5.329 (0.021)

PTH 34.36 (1.85) 36.69 (2.42) 31.98 (1.95) 37.74 (4.11) 1.944 (0.163) 0.068 (0.794) 0.447 (0.504)

PINP 66.33 (5.28) 77.87 (7.86) 58.24 (5.22)
87.38 (11.77) 

*
3.759 (0.053) 0.028 (0.867) 4.364 (0.037)

CTX: C-terminal crosslinked terminal peptide of type I collagen; hCT: thyrocalcitonin; OSTEOC: osteocalcin; PTH: parathyroid hormone; PINP: N-terminal propeptides of type I collagen. 
Data are presented as mean ± SEM. *p < 0.05: significantly different between n-3 PUFAs and placebo group at different visit. ap < 0.05: significantly different between baseline and week 12 in 
the n-3 PUFAs or placebo group. The bold values indicate the data with statistical significance.

significant differences in age, gender, and BMI between the MDD and HC 
groups. In addition, depression and anxiety self-rating scale analysis 
showed that the BDI (p < 0.001) and SAS (p < 0.001) scores of depression 
participants were significantly higher than those of healthy controls.

3.2 Changes in bone turnover markers 
between HCs and participants with 
depression

Table 2 lists the results of bone turnover markers and differences 
between the HC and MDD groups. The levels of PINP (z = −2.233, 
p = 0.026) in the depression participants were significantly increased 
compared with the HCs. In contrast, the CTX, hCT, OC, and PTH 
levels were not significantly different between the two groups.

3.3 Bone turnover marker change after 
12-week treatment

As shown in Table 3 and Figure 2, significant differences exited on 
CTX (χ2 = 4.848, p = 0.028) and OSTEOC (χ2 = 6.178, p = 0.013) 

between n-3 PUFA and placebo group. As for the PINP level 
(χ2 = 3.759, p = 0.053), there is a trend without statistical significance. 
After 12 weeks of treatment, both OSTEOC and PINP levels increased 
significantly in the n-3 PUFA group comparing the placebo group 
(p < 0.05).

After 12 weeks of treatment, CTX (χ2 = 7.188, p = 0.007) levels 
were significantly altered. In the placebo group, CTX level significantly 
decreased after 12 weeks of venlafaxine treatment (p < 0.05). In 
addition, the OSTEOC level decreased significantly after 12 weeks of 
venlafaxine treatment in the placebo group.

3.4 Associations between change in bone 
turnover markers and week 12 clinical 
outcome measures

After adjusting for baseline bone turnover marker levels and 
baseline score of clinical measure, linear regression analyses 
examining associations between bone turnover markers (baseline 
levels and post-intervention changes) with clinical outcomes revealed 
that a decrease in CTX level during the intervention was significantly 
associated with more favorable outcomes on the SAS (Stand. 
Beta = 0.368, p = 0.030) and BDI (Stand. Beta = 0.452, p = 0.014), and 
an increase in hCT level was significantly associated with more 
favorable outcomes on the SAS (Stand. Beta = −0.845, p = 0.014). 
Furthermore, an increase in PINP level was significantly associated 
with more favorable outcomes on the HAMA (Stand. Beta = −0.321, 
p = 0.041) at week 12. A decreased CTX level predicted better 
symptomatic outcomes by self-rating scales. In addition, an increase 
in hCT level predicted better anxiety self-rating outcomes, and an 
increase in PINP level predicted better clinician-rating anxiety 
outcomes (Table 4).

4 Discussion

This study investigated the changes in bone turnover markers 
in first-diagnosed, drug-naïve depression, and the efficacy of fish 
oil supplementation on bone turnover markers and its association 
with clinical outcomes were also investigated. The significant 
findings are as follows: (1) Bone formation maker (PINP) is 

TABLE 2 Bone turnover markers between HC and MDD groups.

HC 
(n = 55)

MDD 
(n = 139)

Z p value

CTX
0.37 (0.24–

0.47)
0.38 (0.28–0.53) −0.734 0.463

hCT
1.38 (0.50–

2.26)
1.25 (0.50–2.31) −0.352 0.725

OSTEOC
17.60 (13.91–

21.30)

19.74 (15.03–

23.53)
−0.446 0.656

PTH
33.83 (27.37–

43.03)

34.09 (26.20–

44.14)
−0.175 0.861

PINP
56.85 (43.13–

70.24)

64.19 (48.78–

83.74)
−2.233 0.026*

The bone turnover markers were assessed at baseline. CTX: C-terminal crosslinked terminal 
peptide of type I collagen; hCT: thyrocalcitonin; OC: osteocalcin; PTH: parathyroid hormone; 
PINP: N-terminal propeptides of type I collagen. Data are presented as interquartile range (P25–
P75). *p < 0.05. The bold values indicate the data with statistical significance.
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increased in drug-free depressed participants. (2) 12 weeks of 
venlafaxine treatment decreases both bone formation (OSTEOC) 
and resorption (CTX) markers, and n-3 PUFA supplementation 
could increase bone formation markers (OSTEOC and PINP). (3) 
The decrease in bone resorption marker (CTX) and increase in 
bone formation marker (hCT and PINP) predicts better outcomes 
for anxiety symptoms.

Previous studies have shown that the severity of depressive 
symptom severity and early life stress in depression were positively 
associated with levels of CTX and PINP, which suggests that anabolic 
activation of bone metabolism occurs during a depressive episode (29, 
30). In addition, the level of CTX was significantly increased in mice 
exposed to early-life stress (30). And chronic mild stress induces bone 
loss (31). Wippert et al. concluded that long-term decline in bone 
mineral density (BMD) in depressed participants may be linked to 
either an overshooting or a lack of metabolic adaptation during a 
depressive episode (29). Our previous study has also found that 
individuals with mood disorders (32) have lower BMD than healthy 
controls. However, the current research only observed elevated bone 
formation markers (PINP) and did not find alterations in bone 
resorption markers. This may be  because depressed individuals 
already show low BMD and bone formation is compensatory 
enhanced. Meanwhile, the bone resorption process is either slowed or 
is not reflected by current markers. Furthermore, newly diagnosed, 
drug-naïve participants with bipolar disorder also showed increased 
compensatory bone formation, with increased levels of PINP, 
OSTEOC, and PTH (33), which is consistent with our findings. The 
exact mechanisms and potential confounders relating to the 
correlation between bone metabolism and depression remain to 
be elucidated.

Despite the effect of the disease itself on bone metabolism, 
antidepressants also have a clinically significant impact on bone 
metabolism (34), although with inconsistent findings. Previous studies 
have found that CTX increased and P1NP decreased during 
venlafaxine treatment in older adults with depression (35, 36). Our 
study found that venlafaxine treatment induces reduced bone 
metabolic activity (CTX and OSTEOC) among relatively younger 
depressed participants (mean age: 27.6 years). In addition, other 
studies have found that PTH and CTX decreased, and OSTEOC 
increased with 12 weeks of escitalopram treatment in premenopausal 
female participants with newly diagnosed depression (37), while 
8 weeks of escitalopram treatment does not significantly alter bone 
turnover markers in peri- or postmenopausal non-depressed women 
(38). It seems that the type of antidepressant, how long it is used, and 
who uses it might influence the outcomes of bone turnover markers. 
Depressed individuals might be more susceptible to antidepressant-
induced changes in bone metabolism.

Studies on animals have also demonstrated the complexity of 
SSRI’s effects on bone metabolism. Fluoxetine treatment significantly 
reduced osteocalcin levels in mice but with no significant impact on 
CTX, and desipramine (SNRIs) had no significant effect on either 
(39). What’s more, Maria et al. found that short-term use of fluoxetine 
(3 weeks) increased bone mass by directly impairing osteoclast 
differentiation and function, leading to an increase in  local 
antiresorptive effects, whereas long-term (6 weeks) use of fluoxetine 
led to a decrease in bone mass because fluoxetine acted on adrenergic 
receptors on osteoblasts by increasing central sympathetic activity, 
thus decreasing bone formation (8). The differential effects of short- or 
long-term fluoxetine use on bone metabolism have been confirmed in 
other studies (40, 41). Since 5-HT-related receptors are also expressed 

FIGURE 2

Changes of bone turnover markers between placebo and n-3 PUFA groups *: significantly different after n-3 PUFA supplementation.
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in the skeletal system, this may be one of the reasons for the complex 
effects of SSRIs on bone. In vitro experiments have found that 5-HT 
or fluoxetine promotes the differentiation of human monocytes into 
osteoblast-like cells and increases their bone resorption (42). In 
contrast, high concentrations of fluoxetine have an inhibitory effect 
on osteoblast differentiation and activity (42, 43). Results from in vivo 
experiments have also been inconsistent: some studies have found that 
inhibition of 5-HT and 5-HT transporters has a protective effect on 
bone (31, 44, 45), while others have shown the exact opposite (46, 47).

This study has found the potential benefits of n-3 PUFA in the 
prevention or treatment of bone loss by increasing osteogenesis in 
depressed participants. Although the effects of n-3 PUFA 
supplementation on bone turnover markers and BMD have been 
investigated in osteopenia, pre- and post-menopausal, overweight, 
kidney transplant recipients, and healthy individuals (48–53), very few 
studies have evaluated those in depression. Only one study found no 
significant change in CTX levels in participants with mild-to-
moderate depression after 12 weeks of supplementation with n-3 

PUFAs (1.48 g/d) but without testing bone formation markers (54). 
Previous systematic reviews and meta-analyses have revealed an 
inverse association between n-3 PUFA and fracture risk, and n-3 
PUFA may improve BMD, although the evidence was of low quality 
(55, 56). In addition, a recent meta-analysis found that n-3 PUFA had 
some potential benefits for younger postmenopausal subjects in the 
short term. However, it might not affect BMD or bone metabolism 
markers (57). Another meta-analysis showed that n-3 PUFA 
significantly affected bone turnover markers (58). This is the first 
study to show that high n-3 PUFA supplements could increase bone 
formation markers in younger first-diagnosed depressed participants 
(mean age 26.5 years).

The mechanisms underlying the benefits of n-3 PUFA are multi-
factorial. Previous studies suggested that EPA and DHA 
supplementation could reduce the expression of multiple 
inflammatory markers involved in the pathogenesis of osteoporosis, 
such as CRP, IL-6, and TNF-α (59–63). Besides, EPA-derived 
Resolvin E1 (RvE1) has also been reported to reduce systemic 
inflammation and protect against inflammation-induced bone loss 
(64, 65). In addition, n-3 PUFA supplementation has prevented 
age-related bone and hematopoietic bone marrow (HBM) loss by 
reducing MAT expansion (66). Furthermore, in  vitro studies 
supported that DHA has widened the whole skull width of mice by 
stimulating osteoblast activity (22). EPA and DHA can decrease the 
number of osteoclasts and impede osteoclast differentiation through 
the GRP120-related signaling pathway (67). However, previous 
findings have suggested different actions between EPA and DHA on 
bone cells. DHA strongly inhibited bone marrow-derived 
macrophages into osteoclasts in vitro by inhibiting sRANKL, while 
EPA enhanced it (68). The effect of EPA on osteoclastogenesis may 
be  influenced by the different effects of its metabolite, such as 
resolvin E1 and PGE3 (69, 70). In summary, the osteoprotective 
effects of n-3 PUFA through various mechanisms of action are 
complex, which should be considered when employing nutritional 
supplements of n-3 PUFA as therapy for bone loss in depression in 
the future.

This study has shown that improving bone metabolism markers, 
which is a decrease in bone resorption and an increase in bone 
formation, predicted clinical symptomatic outcomes. Since only 
40–60% of participants respond clinically, and only 30–45% achieve 
clinical remission after pharmaceutical treatment in depression (71, 
72), it is crucial to predict treatment response. This is the first study to 
find bone turnover markers could predict treatment outcomes of 
anxiety symptoms in depression. Further research is needed on 
this topic.

This study has several limitations. The present study only 
measured peripheral bone turnover markers to assess changes in bone 
metabolism instead of the gold standard, such as dual-energy X-ray 
absorptiometry (DEXA) and quantitative computed tomography 
(QCT). Although a 12-week follow-up period is considered sufficient 
to assess changes in bone turnover in the short term (54), direct 
prediction of changes in long-term bone health in depressed 
participants from the current results may be insufficient. Therefore, 
future studies are needed to investigate the effects of long-term n-3 
PUFA supplementation on bone turnover markers and 
BMD. Secondly, unlike animal studies, clinical studies need to 
consider many confounding factors such as disease, drug use, 
smoking, alcohol consumption, age, gender, dietary status, lifestyle 

TABLE 4 Associations between change in bone turnover markers and 
outcome measures at week 12.

Variables Stand. Beta 95% CI p value

Change CTXa

HAMD 0.254 −4.433–22.617 0.181

HAMA 0.082 −8.422–13.185 0.657

BDI 0.452 5.137–43.167 0.014

SAS 0.368 1.470–27.317 0.030

Change hCTa

HAMD 0.106 −2.285–2.865 0.820

HAMA −0.046 −2.007–1.803 0.914

BDI −0.445 −5.207–1.707 0.311

SAS −0.845 −4.842–−0.212 0.014

Change OSTEOCa

HAMD 0.000 −0.503–0.503 0.999

HAMA −0.050 −0.452–0.334 0.763

BDI 0.156 −0.331–0.974 0.352

SAS 0.250 −0.064–0.866 0.089

Change PTHa

HAMD 0.076 −0.145–0.219 0.685

HAMA 0.035 −0.123–0.150 0.844

BDI 0.199 −0.108–0.374 0.271

SAS 0.176 −0.080–0.265 0.287

Change PINPa

HAMD −0.266 −0.254–0.034 0.130

HAMA −0.321 −0.204–−0.004 0.041

BDI 0.178 −0.085–0.289 0.278

SAS 0.095 −0.093–0.177 0.530

CTX: C-terminal crosslinked terminal peptide of type I collagen; hCT: thyrocalcitonin; OC: 
osteocalcin; PTH: parathyroid hormone; PINP: N-terminal propeptides of type I collagen. 
aChange pre-and post-intervention. bBased on linear regression analysis adjusted for baseline 
bone turnover marker levels and baseline score of clinical measure. The bold values indicate 
the data with statistical significance.
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habits, body mass index, etc., and the present study did not collect and 
analyze data on all these confounding factors. Thirdly, immune 
inflammation-related mechanisms are essential for depression-related 
bone loss and bone protection effect induced by n-3 PUFA, while due 
to the limited clinical samples, this study did not collect inflammatory 
factors. Fourthly, all participants have been prescribed venlafaxine by 
the recommendation from psychiatrists with a dosage range of 
75–225 mg/day. However, neither the blood levels of the drug nor the 
related neurotransmitters were measured in the study. The sex 
difference of bone turnover markers (73) and is worth further 
investigating. However, in this study, due to the small sample size 
(n  = 36) of the n-3 PUFA and placebo group, the analysis of sex 
differences was not conducted. In our study, the fish oil was a mixture. 
It is difficult to evaluate the efficacy of fish oil from EPA or DHA since 
there were no pure EPA and pure DHA intervention groups. Finally, 
an exploratory analysis was conducted to investigate the potential 
interaction between bone loss and clinical characteristics; more 
relevant research is needed to confirm this result.

In conclusion, this study has revealed that individuals 
experiencing first-diagnosed, drug-naïve depression display 
heightened levels of bone formation. Intriguingly, the use of 
venlafaxine demonstrates a decrease in the bone remodeling process. 
Furthermore, fish oil supplementation unveils a notable increase in 
bone formation. These findings shed valuable light on potential 
strategies for mitigating and addressing bone loss in depression, 
prompting further exploration into preventive and therapeutic 
interventions for this complex relationship.
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