
Frontiers in Nutrition 01 frontiersin.org

Association between composite 
dietary antioxidant index and fatty 
liver index among US adults
Meng Zheng 1, Chaochen Li 2, Jia Fu 1, Long Bai 1 and 
Jinghui Dong 1*
1 Department of Radiology, 5th Medical Center of Chinese PLA General Hospital, Beijing, China, 
2 Department of Radiology, Beijing Tongren Hospital Affiliated to Capital Medical University, Beijing, 
China

Background: The potential beneficial health effects of dietary antioxidants have 
been reported. However, the association of a composite dietary antioxidant 
index (CDAI) with fatty liver index (FLI) remains unclear. This study aims to assess 
whether CDAI (including its components) is associated with FLI among US 
adults.

Methods: This population-based cross-sectional study used data on US adults 
from the National Health and Nutrition Examination Survey (NHANES) 2007–
2018 cycles. Weighted generalized linear regression models were used to 
analyze the association between CDAI (including vitamin A, C, E, zinc, selenium, 
and carotenoids) and FLI, which was calculated by using body mass index (BMI), 
waist circumference and levels of γ-glutamyl transferase and triglycerides.

Results: Weighted generalized linear regression models showed an inverse 
association between CDAI and FLI in the total population (β, −0.40; 95% CI, 
−0.59, −0.21), in women (β, −0.56; 95% CI, −0.94, −0.18), and in men (β, −0.32; 
95% CI, −0.54, −0.10) after adjusting for various confounders. The restricted 
cubic splines showed the negative linear dose–response associations between 
CDAI and FLI (all P non_linear >0.05). The dietary selenium intake in women has 
an inverse U-shaped relationship with FLI, with an inflection point value of 110  μg. 
In model 3, intake of dietary antioxidants Vitamins A, C, E, and carotenoids were 
significantly negatively associated with FLI in female but only were vitamins A 
and E negatively associated with FLI in male. In subgroup analysis, CDAI showed 
a significantly negative relation to FLI among those aged 60  years or older (β, 
−0.57; 95% CI, −0.81, −0.33), among those who engaged in active physical 
activity (β, −0.46; 95% CI, −0.63, −0.29), among those without metabolic 
syndrome (β, −0.43; 95% CI, −0.62, −0.24), and those without hyperuricemia 
(β, −0.43; 95% CI, −0.60, −0.26). Additionally, CDAI was significantly negatively 
associated with male FLI, regardless of whether they had diabetes or not.

Conclusion: In conclusion, our results indicate that higher CDAI may 
be associated with a lower FLI.
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Introduction

The Fatty Liver Index (FLI) is a composite calculation integrating 
body mass index (BMI), waist circumference, triglyceride levels, and 
Gamma-Glutamyl Transferase (GGT) levels. It serves as a non-invasive 
biomarker for assessing hepatic steatosis in the absence of imaging or 
biopsy data. The FLI was initially designed to assist in identifying patients 
who may have Non-Alcoholic Fatty Liver Disease (NAFLD) (1–6), and 
has been validated as an effective tool for recognizing characteristics of 
liver fat accumulation associated with various metabolic disorders, such 
as insulin resistance, inflammation, and oxidative stress (7). Research has 
demonstrated that the FLI not only identifies individuals with liver fat 
accumulation but also predicts the risk of cardiovascular diseases (8–10). 
Notably, individuals with an FLI score of 60 or higher are considered to 
be at high risk for metabolic dysfunction-associated steatotic liver disease 
(MASLD) (8), which is closely related to the high risk of diabetes and 
cardiovascular diseases. Elevated FLI or hepatic steatosis is associated 
with an increased risk of cardiovascular diseases and dementia (11, 12). 
This indicates that the FLI is an important indicator for assessing the risk 
of multiple metabolic comorbidities. The correlation between the FLI 
and various metabolic syndrome parameters and adverse lipid profiles 
further confirms its suitability as an indicator for assessing the risk of 
metabolic syndrome (13). An increase in body weight and fasting blood 
glucose levels was associated with higher FLI values (14, 15). This further 
substantiates the FLI as an effective tool for assessing the risk of type 2 
diabetes. FLI has also been found to be associated with a wide range of 
diseases in various systems, such as fractures (16, 17) hyperuricemia (18, 
19), hypertension (20, 21), chronic kidney disease (22), lung cancer risk 
(23), and all-cause and cause-specific mortality (24). Therefore, it is 
crucial to find factors that can reduce FLI.

With the emphasis on healthy lifestyles, research on antioxidants in 
the diet is increasing, the composite dietary antioxidant index (CDAI), 
a composite score of multiple dietary antioxidants (including vitamin 
A, C, E, zinc, selenium, and carotenoids), represents an individual’s 
comprehensive dietary antioxidant intake profile, has been found to 
be associated with a variety of chronic diseases such as coronary heart 
disease, hypertension, chronic kidney disease, metabolic syndrome and 
hyperuricemia (25–29). Dietary antioxidants are known can firstly 
alleviate oxidative stress and reduce the occurrence of lipid 
peroxidation. Secondly, antioxidants can regulate lipid metabolic 
pathways, promote lipid oxidative metabolism and reduce fat 
accumulation in the liver. In addition, antioxidants have anti-
inflammatory and antifibrotic effects. Some studies have reported the 
role of dietary antioxidants in fatty liver disease. A study found that 
MAFLD prevalence, CAP, HSI, and FLI, all decreased with increased 
daidzein intake, suggesting that daidzein intake may improve hepatic 

steatosis (30). Christensen K et al. found that higher intake and serum 
levels of most carotenoids were associated with lower odds of having 
NAFLD (31).

However, there are still many controversies and uncertainties 
about the mechanism and clinical application of dietary antioxidants 
on FLI. In this study, we investigated for the first time the independent 
and joint associations of CDAI (including vitamin A, vitamin C, 
vitamin E, zinc, selenium, and carotenoids) with FLI using a cross-
sectional design. Based on previous studies, we hypothesize that there 
may be a potential negative correlation between CDAI and FLI, and 
that FLI decreases with increasing CDAI.

Material and methods

Data sources

NHANES is a nationally representative survey conducted by the 
National Center for Health Statistics (NCHS). It’s designed to assess 
the health and nutritional status of adults and children in the 
United States. The survey is unique in that it combines interviews and 
physical examinations (32). To select participants representative of the 
civilian, non-institutionalized US population, NHANES excluded all 
persons in supervised care or custody in institutional settings, all 
active-duty military personnel, active-duty family members living 
overseas, and any other US citizens residing outside the 50 states and 
the District of Columbia (33). Detailed survey operation manuals, 
consent documents, and brochures of each period are available on the 
NHANES website. NHANES was approved by the National Center for 
Health Statistics Institutional Review Board and all participants signed 
informed consent (32).

Study design and population

The NHANES 2007–2018 survey data were analyzed in this cross-
sectional study. Participants under the age of 18 (n = 23,262), missing 
information on CDAI (n = 4,157), missing data to calculate the FLI 
(n = 18,201) and with viral hepatitis (n = 313) were all excluded. 
Furthermore, any missing data on alcohol consumption status 
(n = 3,241) were excluded, as were any missing data on demographic 
data of age, gender, race/ethnicity, education level, marital status, 
poverty-to-income (PIR), height, weight, blood pressure, total 
metabolic equivalent of physical activity (PA MET) and smoking 
status (n = 3,547), missing co-morbidities data on diabetes mellitus 
(DM), metabolic dysfunction (MetS), hypertension, cardiovascular 
disease (CVD), chronic kidney disease (CKD) and malignancy 
(n = 107), and missing blood biochemical indicators (alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), uric acid 
(UA), platelets (PLT), albumin and total energy intake were further 
excluded (n = 465) (Figure 1).

Definition

Fatty liver index
FLI was based on BMI, waist circumference, triglycerides and 

gamma-glutamyl-transferase (GGT) (34). The FLI formula is:

Abbreviations: CDAI, Composite Dietary Antioxidant Index; FLI, Fatty Liver Index; 

NAFLD, Non-alcoholic Fatty Liver Disease; MASLD, Metabolic Dysfunction-

Associated Steatotic Liver Disease; CAP, Controlled Attenuation Parameter; HSI, 

Hepatic Steatosis Index; NHANES, National Health and Nutrition Examination 

Survey; BMI, Body Mass Index; PIR, Poverty-to-Income Ratio; MET, Metabolic 

Equivalent; SBP, Systolic Pressure; DBP, Diastolic Pressure; GGT, gamma-glutamyl-

transferase; PLT, Platelets Count; ALT, Alanine Aminotransferase; AST, Aspartate 

Aminotransferase; UA, Uric acid; DM, Diabetes Mellitus; MetS, Metabolic 

Dysfunction; CVD, Cardiovascular Disease; CKD, Chronic Kidney Disease; CI, 

Confidence Interval.
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Dietary assessment
To assess the joint exposure due to dietary antioxidant intake, 

we used the modified dietary antioxidant composite index (CDAI) 
developed by Wright et al. That is, normalization was performed for 
each of the six dietary antioxidants (vitamin A, vitamin C, vitamin E, 
zinc, selenium, and carotenoids) by subtracting the mean from the 
intake of each antioxidant and dividing by the standard deviation. 
Next, calculate the CDAI by adding the standardized dietary 
antioxidant intake (23, 35, 36).
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Covariates

Demographics, lifestyle factors and laboratory data were available 
through baseline household questionnaires and laboratory 
examination and used as covariates, including age (<40, 40–60, 
≥60 years), sex (female and male), body mass index (BMI) calculated 
as weight divided by height squared (<25, 25–30 and ≥ 30 kg/m2), 
poverty income ratio (PIR) calculated by dividing household or 
individual income by poverty guidelines for the survey year (<1.3, 
1.3–3.5, ≥3.5), race/ethnicity (Non-Hispanic White, Non-Hispanic 
Black, Mexican American and Others), marital status (married/living 
with partner, widowed/divorced/separated, and never married), 
education level (lower than high school, high school or equivalent and 

FIGURE 1

The flowchart of this study.
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college or above), smoking status (smoked more than 100 cigarettes 
in life and smoke not at all now indicated former smoker, smoked 
moth than 100 cigarettes in life and smoke some days or every day 
indicated current smoker, and smoked less than 100 cigarettes in life 
indicated never smoker), alcohol drinking user was categorized as 
never (had <12 drinks in lifetime), mild (≤1 drink per day for women 
or ≤ 2 drinks per day for men on average over the past year), heavy 
drinking (≤2 drinks per day for women or ≤ 3 drinks per day for men 
on average over the past year), physical activity (active (total MET 
≥600 min/week) and inactive (total MET <600 min/week)).

The detailed clinical and laboratory evaluation methods have been 
described previously (37–39).

Hypertension was defined as: (1) SBP ≥ 140mmhg and 
DBP ≥ 90mmhg in three blood pressure measurements; (2) have been 
told by a doctor or health professional that you have hypertension; (3) 
have ever used antihypertensive drugs. Diabetes was defined as: (1) 
Triglyceride (TG) ≥ 150 mg/dL, Serum total cholesterol (TC) ≥ 200 mg/
dL, low-density lipoprotein (LDL) ≥130 mg/Dl, high-density 
lipoprotein (HDL) <40 mg/dL for male or < 50 mg/dL for female; (2) 
have ever used lipid-lowering drugs. CKD was defined as kidney 
structure or function abnormalities, present for >3 months, with 
implications for health (40). CVD included coronary heart disease, 
congestive heart failure, heart attack, stroke, and angina. 
Hyperuricemia was defined as serum uric acid levels in males 
>420umol/L (7 mg/dL) and in females >360umol/L (6 mg/dL), 
measured twice on different days with fasting after a normal purine 
diet. Metabolic syndrome, variously known also as syndrome X, 
insulin resistance, etc., was defined by WHO as a pathologic condition 
characterized by abdominal obesity, insulin resistance, hypertension, 
and hyperlipidemia.

Statistical methods

Histogram distribution, Q-Q plot, and Kolmogorov–Smirnov test 
were employed to assess the normality of variables. Normally 
distributed continuous variables were reported as mean ± standard 
error (SE), while skewed continuous variables were presented as 
median with interquartile range (IQR). Categorical variables were 
expressed as frequencies and percentages. Paired t-test or Wilcoxon 
signed-rank test was utilized to compare paired factors within groups. 
Chi-square test or Fisher’s exact test was used for categorical variables, 
One-Way ANOVA test for normally distributed variables, and 
Kruskal-Wallis H test for skewed distributions to examine differences 
among different CDAI groups. Multiple comparisons were adjusted 
using the Bonferroni correction, Tukey’s method, or LSD method.

All analyzes in this study include sample weight calculation, 
clustering, and stratification. During the data analysis process, 
complex sampling weight calculation provided by the NHANES 
analysis guide is used, and comprehensive weight calculation and 
weighting processing are performed on valid sample data. Potential 
nonlinear associations between the CDAI and CDAI components 
(vitamin A, vitamin C, vitamin E, zinc, selenium, and carotenoids) 
and FLI were examined with restricted cubic splines, the median or 
curve inflection point was taken as the reference point. Univariate 
linear analysis was applied to identify FLI-related factors. Significant 
variables in the univariate linear regression analysis and variables 
thought to be confounders based on existing literature and clinical 

judgment were included in a weighted generalized linear regression 
model, which was used to analyze the linear relationship between 
CDAI (including continuous variables and quartile groups) and CDAI 
components (vitamin A, vitamin C, vitamin E, zinc, selenium, and 
carotenoids) and FLI. Weighted logistic regression model was used to 
analyze the relationship between CDAI and NAFLD and MASLD 
(NAFLD was defined as FLI ≥ 60 without heavy alcohol consumption, 
MASLD was defined as FLI ≥ 60). Three models were constructed for 
the analysis. Model 1 was adjusted for NHANES cycles, age, sex, race, 
education level, marital status, and poverty-income ratio (PIR). Model 
2 included additional adjustments for physical activity, smoking 
status, alcohol consumption, DM, MetS, hypertension, CVD, CKD, 
and malignancy. Model 3 further included adjustments for PLT, ALT, 
AST, albumin, UA, and total energy intake.

For the continuous variable, we first converted it to a categorical 
variable according to the clinical cut point and then performed an 
interaction test. Tests for effect modification for those subgroup 
indicators were followed by the likelihood ratio test. Multicollinearity 
was tested using the variance inflation factor (VIF) method, with a 
VIF ≥ 5 indicating the presence of multicollinearity. All statistical 
analyses were carried out using R Statistical Software (Version 4.2.2, 
http://www.R-project.org, The R Foundation and nhanesR package) 
and Free Statistics Analysis Platform (Version 1.9.2 (41), Beijing, 
China, http://www.clinicalscientists.cn/freestatistics). Free Statistics is 
a software tool that offers user-friendly interfaces for common 
analyses and data visualization. It leverages R as the underlying 
statistical engine, with the graphical user interface (GUI) developed 
in Python. The platform facilitates reproducible analysis and 
interactive computing, enabling users to perform analyses with ease. 
Statistical significance was defined as a two-sided p-value <0.05.

Results

Baseline characteristics of participants 
grouped by CDAI quartiles

Among 6,549 adults included in this study, 3,106 were female with 
a median age of 45.25 years (standard error 0.43) and 3,443 were male 
with a median age of 43.70 years (standard error 0.37). The inclusion 
and exclusions criteria of the population are shown in Figure 1.

Table 1 shows the characteristics of the study participants grouped 
by CDAI quartiles.

The four groups differed in sex, age, race, BMI, systolic pressure, 
diastolic pressure, poverty-to-income, education level, marital status, 
physical activity status, smoke status, alcohol user, cardiovascular 
disease, chronic kidney disease, total energy intake, platelet count, 
alanine aminotransferase, aspartate aminotransferase, uric acid and 
fatty liver index (all p value <0.05).

The highest CDAI quartile group tends to be married or living 
with partner, never-smoker, mild-drinker, active physical activity, with 
higher total energy intake, economic level and education level, with a 
lower BMI, platelet count and FLI. In contrast, the lowest CDAI 
quartile group tends to be  were widowed, divorced or separated, 
current-smokers and never-drinkers, with CVD, CKD and low 
economic level, but there was no difference in hypertension, diabetes 
mellitus, metabolic syndrome and malignancy among different CDAI 
quartile groups.
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TABLE 1 Characteristics of the study participants by the quartiles of composite dietary antioxidant index.

Variable Total Q1 (−7.262, 
−1.977)

Q2 (−1.977, 
0.096)

Q3 (0.096, 
2.682)

Q4 (2.682, 
83.672)

P value

N =  6,549 N =  1,638 N =  1,638 N =  1,636 N =  1,637

CDAI 0.99 (0.08) −3.36 (0.03) −0.91 (0.02) 1.28 (0.02) 6.09 (0.15) < 0.0001

Vitamin_A, μg 642.58 (11.42) 243.87 (5.12) 447.83 (6.74) 656.66 (7.67) 1140.15 (32.43) < 0.0001

Vitamin_C, mg 80.00 (1.66) 29.98 (1.05) 56.52 (1.55) 80.50 (2.30) 142.79 (4.40) < 0.0001

Vitamin_E, mg 9.08 (0.11) 4.20 (0.08) 7.01 (0.11) 9.23 (0.13) 14.91 (0.25) < 0.0001

Zinc, mg 12.00 (0.12) 6.33 (0.10) 10.08 (0.13) 12.81 (0.18) 17.67 (0.25) < 0.0001

Selenium, μg 120.82 (1.01) 69.37 (0.95) 102.47 (1.00) 128.89 (1.25) 172.51 (2.35) < 0.0001

Carotenoids, μg 10212.97 (260.60) 2791.20 (85.59) 5793.02 (156.88) 9878.68 (250.00) 20808.12 (759.43) < 0.0001

Age, years 44.44 (0.33) 43.26 (0.53) 44.89 (0.47) 45.24 (0.58) 44.21 (0.57) 0.03

Age Categories, n (%) 0.002

<40 2,666 (43.05) 690 (46.66) 653 (43.26) 636 (39.94) 687 (42.94)

40–60 2,218 (36.56) 502 (33.99) 529 (33.36) 586 (38.38) 601 (39.86)

> = 60 1,665 (20.40) 446 (19.35) 456 (23.38) 414 (21.68) 349 (17.20)

Sex, n (%) 0.01

Female 3,106 (47.50) 839 (52.35) 750 (46.96) 760 (47.14) 757 (44.34)

Male 3,443 (52.50) 799 (47.65) 888 (53.04) 876 (52.86) 880 (55.66)

BMI, kg/m2 28.47 (0.13) 28.84 (0.29) 28.76 (0.22) 28.19 (0.19) 28.18 (0.22) 0.02

BMI categories, n (%) 0.07

<25 2061 (32.73) 500 (31.77) 493 (30.37) 515 (33.88) 553 (34.58)

25–30 2,201 (33.54) 540 (32.93) 548 (32.58) 576 (35.15) 537 (33.36)

> = 30 2,287 (33.73) 598 (35.30) 597 (37.06) 545 (30.97) 547 (32.06)

SBP, mmHg 119.77 (0.29) 120.41 (0.51) 120.55 (0.49) 118.87 (0.55) 119.41 (0.49) 0.04

DBP, mmHg 70.15 (0.25) 69.73 (0.39) 69.72 (0.46) 69.95 (0.38) 71.10 (0.35) 0.02

Total energy intake, kcal 2255.76 (13.61) 1465.57 (16.39) 2010.50 (20.92) 2405.55 (20.85) 2989.64 (29.71) < 0.0001

PLT, 1000 cells/uL 239.17 (1.04) 248.80 (2.24) 238.80 (1.87) 235.88 (1.72) 234.80 (1.74) < 0.0001

Albumin, g/dL 4.28 (0.01) 4.25 (0.01) 4.29 (0.01) 4.28 (0.01) 4.29 (0.01) 0.10

AST, U/L 22.00 (19.00, 27.00) 22.00 (18.00, 27.00) 23.00 (19.00, 27.00) 22.00 (19.00, 26.00) 23.00 (19.00, 28.00) < 0.0001

ALT, U/L 21.00 (16.00, 28.00) 20.00 (15.00, 28.00) 21.00 (17.00, 28.00) 21.00 (16.00, 27.00) 22.00 (17.00, 30.00) < 0.0001

UA, mg/dL 5.49 (0.02) 5.55 (0.05) 5.57 (0.05) 5.38 (0.04) 5.46 (0.04) 0.01

Hyperuricemia, n (%) < 0.001

No 5,383 (82.2) 1,291 (78.8) 1,326 (81) 1,387 (84.8) 1,379 (84.2)

Yes 1,166 (17.8) 347 (21.2) 312 (19) 249 (15.2) 258 (15.8)

PIR, n (%) < 0.0001

<1.3 1766 (18.01) 568 (25.60) 441 (18.01) 382 (14.55) 375 (15.17)

1.3–3.5 2,421 (34.43) 631 (37.02) 641 (38.12) 610 (33.89) 539 (29.39)

> = 3.5 2,362 (47.55) 439 (37.38) 556 (43.87) 644 (51.56) 723 (55.44)

Race/Ethnicity, n (%) < 0.0001

White 3,006 (70.59) 676 (65.25) 771 (71.99) 792 (72.92) 767 (71.39)

Black 1,231 (10.05) 373 (13.71) 302 (9.56) 266 (8.65) 290 (8.87)

Mexican American 931 (7.55) 246 (8.26) 229 (7.25) 228 (7.11) 228 (7.69)

Other 1,381 (11.80) 343 (12.78) 336 (11.20) 350 (11.32) 352 (12.04)

Education level, n (%) < 0.0001

Lower than high school 386 (2.80) 142 (4.47) 101 (2.83) 80 (2.49) 63 (1.70)

High school or equivalent 2,152 (29.20) 649 (37.82) 575 (31.28) 470 (25.56) 458 (23.75)

(Continued)
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Full model multivariable-adjusted restricted cubic spline 
analysis showed a “linear decrease” in the association of CDAI with 
FLI, and the negative linear dose–response association both 

between female CDAI and male CDAI and FLI (Figure 2, P for 
non-linearity = 0.971 for all participants, 0.372 for female and 
0.613 for male).

TABLE 1 (Continued)

Variable Total Q1 (−7.262, 
−1.977)

Q2 (−1.977, 
0.096)

Q3 (0.096, 
2.682)

Q4 (2.682, 
83.672)

P value

N =  6,549 N =  1,638 N =  1,638 N =  1,636 N =  1,637

College or above 4,011 (68.00) 847 (57.72) 962 (65.89) 1,086 (71.95) 1,116 (74.56)

Marital status, n (%) 0.001

Never married 1,396 (20.61) 378 (23.91) 342 (20.30) 330 (18.81) 346 (19.95)

Married/Living with Partner 3,979 (64.64) 899 (58.20) 1,013 (64.96) 1,032 (67.46) 1,035 (66.85)

Widowed/Divorced/

Separated

1,174 (14.75) 361 (17.88) 283 (14.73) 274 (13.73) 256 (13.19)

MET, min/week 4916.87 (135.22) 4862.71 (209.49) 4956.39 (251.27) 4851.08 (219.30) 5010.28 (230.42) 0.93

Physical Activity, n (%) 0.02

Active 5,411 (83.87) 1,310 (81.30) 1,360 (84.23) 1,342 (83.07) 1,399 (86.45)

Inactive 1,138 (16.13) 328 (18.70) 278 (15.77) 294 (16.93) 238 (13.55)

Smoke status, n (%) < 0.0001

Never 3,784 (57.91) 876 (51.52) 938 (58.07) 977 (60.91) 993 (60.09)

Former 1,510 (24.02) 348 (22.25) 390 (23.83) 389 (23.76) 383 (25.93)

Now 1,255 (18.06) 414 (26.23) 310 (18.10) 270 (15.33) 261 (13.98)

Alcohol user, n (%) < 0.0001

Never 860 (10.02) 264 (12.23) 221 (11.02) 198 (9.21) 177 (8.05)

Mild 2,801 (44.40) 597 (35.20) 717 (44.80) 732 (47.35) 755 (48.71)

Heavy 2,888 (45.58) 777 (52.57) 700 (44.18) 706 (43.44) 705 (43.24)

Hypertension, n (%) 0.14

No 4,195 (67.71) 984 (64.95) 1,058 (67.37) 1,088 (70.06) 1,065 (67.97)

Yes 2,354 (32.29) 654 (35.05) 580 (32.63) 548 (29.94) 572 (32.03)

DM, n (%) 0.06

No 5,539 (88.73) 1,353 (87.01) 1,368 (87.66) 1,406 (89.26) 1,412 (90.63)

Yes 1,010 (11.27) 285 (12.99) 270 (12.34) 230 (10.74) 225 (9.37)

MetS, n (%) 0.80

No 4,525 (71.12) 1,104 (70.59) 1,134 (70.30) 1,142 (72.18) 1,145 (71.29)

Yes 2024 (28.88) 534 (29.41) 504 (29.70) 494 (27.82) 492 (28.71)

CVD, n (%) 0.01

No 6,069 (94.25) 1,488 (93.39) 1,508 (93.31) 1,518 (94.06) 1,555 (96.02)

Yes 480 (5.75) 150 (6.61) 130 (6.69) 118 (5.94) 82 (3.98)

CKD, n (%) 0.03

No 5,723 (90.20) 1,383 (88.12) 1,433 (89.92) 1,436 (90.73) 1,471 (91.64)

Yes 826 (9.80) 255 (11.88) 205 (10.08) 200 (9.27) 166 (8.36)

Malignancy, n (%) 0.88

No 6,032 (91.55) 1,514 (92.21) 1,504 (91.52) 1,511 (91.26) 1,503 (91.33)

Yes 517 (8.45) 124 (7.79) 134 (8.48) 125 (8.74) 134 (8.67)

FLI 47.51 (0.63) 49.28 (1.03) 49.28 (1.22) 46.01 (1.02) 45.87 (1.21) 0.03

The characteristics of the participants were described using frequency (%), median (standard error) or median and interquartile range (IQR). CDAI = composite dietary antioxidant index, 
BMI = body mass index, PIR = poverty income ratio, SBP = systolic pressure, DBP = diastolic pressure, PLT = platelet count, ALT = alanine aminotransferase, AST = aspartate aminotransferase, 
UA = uric acid, MET = metabolic equivalent, DM = diabetes mellitus, MetS = metabolic syndrome, CVD = cardiovascular disease, CKD = chronic kidney disease, FLI = fatty liver index.
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Factors associated with fatty liver index

Advanced age, male gender, Mexican-American, married or living 
with a partner, living alone, former-smoker, heavy-drinker, inactive 
physical activity, higher total energy intake, BMI, PLT, ALT, AST, UA 
values, and DM, hypertension, MetS-ATP, CKD, CVD disease were 
positively associated with FLI, whereas college or above education 
level, higher PIR, and albumin were negatively related to FLI (all p 
value <0.05) (Supplementary Table S1).

Association between CDAI and FLI

In multivariable linear regression analyses, with adjustment for 
potential confounders (Table  2, model 3), Composite Dietary 
Antioxidant Index (DAI expressed as a continuous variable (per 1 
unit) was decreased associated with FLI (β = −0.40, −0.59 ∼ −0.21, 
p < 0.001), as well as female CDAI (β = −0.56, −0.94 ∼ −0.18, p = 0.005) 
and male CDAI (β = −0.32-0.54 ∼ −0.10, p = 0.005) with FLI.

After adjusting for socioeconomic factors (model 1), the highest 
quarter (Q4) of CDAI (β = −3.35, −6.29 ∼ −0.41, p = 0.026) was 
significantly associated with decreased FLI compared with the first 
quarter (Q1), as well as in male (β = −5.43, −8.68 ∼ −2.17, p = 0.001), 
while the highest quarter of female CDAI (Q4) (β = −3.98, 
−7.21 ∼ −0.75, p = 0.017) was also significantly associated with 
decreased FLI compared with the second quarter (Q2).

The relationship remained valid after continued adjustment for 
factors such as lifestyle habits and comorbidities (model 2). However, 
after adjusting for blood indices and total energy intake, compared to 
the second quarter (Q2), the highest quarter (Q4) of female CDAI 
(β = −4.92, −8.16 ∼ −1.69, p = 0.003) was found to be  significantly 
associated with decreased FLI, and the fourth quarter of total CDAI 
(β = −2.51, −5.08 ∼ 0.07, p = 0.056) and the male CDAI (β = −3.16, 
−6.43 ∼ 0.12, p = 0.059) were still associated with decreased FLI 
compared to the first quarter but were not statistically significant.

Weighted multivariable logistic regression analysis between CDAI 
and NAFLD and MASLD, showed that in the total population, CDAI 
was negatively correlated with both NAFLD and MASLD. For each 
unit increase in CDAI, the risk of NAFLD and MASLD was reduced 
by 5.7 and 3.4%, respectively (Model 3). After stratification by gender, 
this negative correlation still existed, but the results were not 
statistically significant, especially for female CDAI and NAFLD 
(Supplementary Table S2).

Association between CDAI components 
and FLI

In the multivariable linear regression analyses, after adjusting for 
potential confounders as outlined in Table 3, model 3, the intake of 
vitamin A (β = −0.00174, −0.00297 ∼ −0.00051, p = 0.006), vitamin C 
(β = −0.01079, −0.01771 ∼ −0.00387, p = 0.003), vitamin E (β = −0.22052, 
−0.35073 ∼ −0.09031, p = 0.001), and carotenoids (β = −0.00007, 
−0.00011 ∼ −0.00003, p = 0.002), when expressed as a continuous 
variable (per 1 unit), was found to be inversely associated with FLI, as 
well as the female intake of vitamin A (β = −0.0029, −0.00505 ∼ −0.00075, 
p = 0.009), vitamin C (β = −0.02071, −0.03311 ∼ −0.00831, p = 0.001), 
vitamin E (β = −0.25533, −0.48910 ∼ −0.02157, p = 0.033), carotenoids 
(β = −0.00012, −0.00022 ∼ −0.00002, p = 0.023) and FLI, but only intake 
of vitamin A (β = −0.00145, −0.00260 ∼ −0.00030, p = 0.014) and 
vitamin E (β = −0.22428, −0.36397 ∼ −0.08458, p = 0.002) was found to 
be inversely associated with FLI in man.

In order to investigate the presence of a dose–response relationship 
between CDAI components and the Fatty Liver Index (FLI), a 
smoothing function analysis was conducted (Supplementary Figures S1, 
S2). Following adjustments for potential confounding factors, a 
nonlinear association between female selenium and FLI was identified 
(P for nonlinearity = 0.006, as shown in Supplementary Figure S1). The 
zenith of FLI level was observed at 110 μg, as calculated using a 
two-piecewise linear regression model. To the left of the inflection 

FIGURE 2

Restricted cubic splines for the relationships between CDAI and FLI. Figure 2 presents restricted cubic spline plots illustrating the relationship between 
Composite Dietary Antioxidant Index (CDAI) and the Fatty Liver Index (FLI) after adjusting for NHANES cycles, age, sex, race, education level, marital 
status, PIR, Physical Activity, smoke status, alcohol user, DM, MetS, Hypertension, CVD, CKD, malignancy, PLT, ALT, AST, albumin, UA, and total energy 
intake. The bold blue central lines represent the estimated adjusted effect value, with shaded ribbons indicating the 95% confidence intervals. The 
horizontal dashed lines represent the β value of 0.0 (reference point). The reference point was set at the median level of CDAI. The vertical dashed lines 
indicate the threshold value of CDAI at reference point. Please note the wide divergence in the 95% confidence intervals at the extremes due to the 
small number of patients and the cubic fit. (A) all participants, (B) female, (C) male.
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point, there was an increase in the level of FLI as female selenium levels 
increased (β1 = 0.09550, 0.04560 ∼ 0.14539, p < 0.001). Conversely, on 
the right side of the inflection point, a different relationship was 
observed (β2 = −0.01699, −0.05665 ~ 0.02268, p = 0.401), but not 
statistically significant, suggesting an inverted U-shaped relationship 
between female selenium intake and FLI, at the same time, inflection 
point analysis shows that only when the dietary selenium intake of men 
is greater than or equal to 124.7 μg, did it have a statistically significant 
negative correlation with FLI, as shown in Table 4.

Subgroup analysis

Possible modifications of the association between the CDAI and 
FLI were evaluated for the following subgroups: age (<40, 45–60 vs. 
≥60 years), physical activity (active vs. inactive), DM (no vs. yes), 
MetS-ATP (no vs. yes), and hyperuricemia (no vs. yes). There were 
statistically significant interaction effects between the physical 
activity, MetS and hyperurucemia groups (p-values for interactions 
were 0.008, <0.001 and 0.024, respectively) for total sample. 

TABLE 2 Association between CDAI and FLI.

Subgroup Crude model Model 1 Model 2 Model 3

β (95% CI) P_value β (95% CI) P_value β (95% CI) P_value β (95% CI) P_value

Overall (N = 6,549)

CDAI (continuity 

value)

−0.57 (−0.81, 

−0.32)
<0.001

−0.55 (−0.77, 

−0.34)
<0.001

−0.44 (−0.60, 

−0.29)
<0.001

−0.40 (−0.59, 

−0.21)
<0.001

Q1 (−7.262, −1.977) Reference Reference Reference Reference

Q2 (−1.977, 0.096) 0.01 (−3.06, 3.08) 0.995
−0.55 (−3.47, 

2.36)
0.708

−0.15 (−2.77, 

2.48)
0.911 0.43 (−1.88, 2.74) 0.712

Q3 (0.096, 2.682)
−3.27 (−6.01, 

−0.52)
0.020

−3.51 (−6.15, 

−0.87)
0.010

−2.47 (−4.77, 

−0.16)
0.036 −1.18 (−3.38, 1.01) 0.285

Q4 (2.682, 83.672)
−3.40 (−6.55, 

−0.25)
0.035

−3.35 (−6.29, 

−0.41)
0.026

−3.23 (−5.51, 

−0.95)
0.006 −2.51 (−5.08, 0.07) 0.056

P for trend 0.007 0.006 <0.001 0.022

Stratified by sex

Female (N = 3,106)

CDAI (continuity 

value)

−0.91 (−1.26, 

−0.56)
<0.001

−0.66 (−1.00, 

−0.31)
<0.001

−0.40 (−0.67, 

−0.13)
0.004

−0.56 (−0.94, 

−0.18)
0.005

Q1 (−7.262, −2.195)
−2.79 (−6.83, 

1.26)
0.175

−2.65 (−6.16, 

0.87)
0.138

−3.31 (−7.06, 

0.44)
0.083 −2.43 (−5.60, 0.73) 0.129

Q2 (−2.195, 0.008) Reference Reference Reference Reference

Q3 (0.008, 2.598)
−8.46 (−13.03, 

−3.90)
<0.001

−3.83 (−7.36, 

−0.30)
0.034

−6.96 (−11.31, 

−2.60)
0.002

−3.11 (−6.03, 

−0.19)
0.038

Q4 (2.598, 26.061)
−8.03 (−11.72, 

−4.34)
<0.001

−3.98 (−7.21, 

−0.75)
0.017

−6.28 (−10.10, 

−2.46)
0.002

−4.92 (−8.16, 

−1.69)
0.003

P for trend <0.001 0.013 <0.001 0.003

Male (N = 3,443)

CDAI (continuity 

value)

−0.46 (−0.74, 

−0.18)
0.002

−0.49 (−0.76, 

−0.22)
<0.001

−0.48 (−0.71, 

−0.25)
<0.001

−0.32 (−0.54, 

−0.10)
0.005

Q1 (−6.866, −1.821) Reference Reference Reference Reference

Q2 (−1.821, 0.164)
−3.37 (−7.43, 

0.68)
0.102

−2.79 (−6.28, 

0.70)
0.115

−4.20 (−8.06, 

−0.34)
0.033 −1.26 (−4.03, 1.51) 0.366

Q3 (0.164, 2.753)
−1.32 (−5.78, 

3.13)
0.557

−2.93 (−6.65, 

0.78)
0.119

−2.75 (−7.14, 

1.64)
0.216 −1.22 (−4.26, 1.83) 0.427

Q4 (2.753, 83.672)
−4.10 (−8.35, 

0.16)
0.059

−5.43 (−8.68, 

−2.17)
0.001

−4.69 (−8.82, 

−0.57)
0.026 −3.16 (−6.43, 0.12) 0.059

P for trend 0.137 0.002 0.065 0.079

Crude model: adjusted for nothing. Model 1: adjusted for NHANES cycles, age, sex, race, education level, marital status, PIR. Model 2: adjusted for Model 1 and Physical Activity, smoke status, 
alcohol user, DM, MetS, Hypertension, CVD, CKD, and malignancy. Model 3: adjusted model 2 and PLT, ALT, AST, albumin, UA and total energy intake. The gender variable was no longer 
adjusted for stratification by sex. CDAI = composite dietary antioxidant, FLI = fatty liver index, CI = confidence interval, NHANES = National Health and Nutrition Examination Survey, 
PIR = poverty income ratio, CVD = cardiovascular disease, CKD = chronic kidney disease, PLT = platelet count, ALT = alanine aminotransferase, AST = aspartate aminotransferase, UA = uric 
acid, DM = diabetes mellitus, MetS = metabolic syndrome. AST = aspartate aminotransferase, UA = uric acid, DM = diabetes mellitus, MetS = metabolic syndrome. Results that are statistically 
significant are presented in bold font.
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Furthermore, after stratifying by gender, our analysis revealed similar 
results across the female metabolic syndrome and hyperuricemia 
groups in relation to FLI, with a statistically significant interaction 
observed (p = 0.003 and 0.041, respectively), as well as male physical 

activity and metabolic syndrome groups (p = 0.003 and 0.004, 
respectively). Men who did not engage in active physical activity 
showed an increase in FLI levels even with increased CDAI intake. 
However, the impact of physical activity on the relationship between 

TABLE 3 Association between CDAI components and FLI.

Value Crude model Model 1 Model 2 Model 3

β (95% CI), P_value β (95% CI), P_value β (95% CI), P_value β (95% CI), P_value

Overall (N = 6,549)

Vitamin_A
−0.00323 (−0.00491, −0.00156), 

<0.001

−0.00372 (−0.00527, −0.00218), 

<0.001

−0.00258 (−0.00389, 

−0.00128), <0.001

−0.00174 (−0.00297, −0.00051), 

0.006

Vitamin_C
−0.02345 (−0.03358, −0.01332), 

<0.001

−0.02813 (−0.03820, −0.01806), 

<0.001

−0.01901 (−0.02769, 

−0.01033), <0.001

−0.01079 (−0.01771, −0.00387), 

0.003

Vitamin_E
−0.28998 (−0.45918, −0.12079), 

<0.001

−0.38814 (−0.54658, −0.22971), 

<0.001

−0.2758 (−0.40136, −0.15024), 

<0.001

−0.22052 (−0.35073, −0.09031), 

0.001

Zinc 0.21127 (0.06418, 0.35836), 0.005 0.06228 (−0.05150, 0.17606), 0.279
−0.0042 (−0.09216, 0.08375), 

0.924

0.02318 (−0.07425, 0.12061), 

0.636

Selenium 0.02446 (0.00767, 0.04125), 0.005 0.00522 (−0.01037, 0.02081), 0.507
−0.00504 (−0.01757, 0.00748), 

0.424

−0.00858 (−0.02310, 0.00594), 

0.242

Carotenoids
−0.00012 (−0.00018, −0.00005), 

<0.001

−0.00014 (−0.00020, −0.00007), 

<0.001

−0.00012 (−0.00016, 

−0.00007), <0.001

−0.00007 (−0.00011, −0.00003), 

0.002

Stratified by sex

Female (N = 3,106)

Vitamin_A
−0.00597 (−0.00869, −0.00325), 

<0.001

−0.00481 (−0.00736, −0.00225), 

<0.001

−0.00285 (−0.00491, 

−0.00080), 0.007

−0.0029 (−0.00505, −0.00075), 

0.009

Vitamin_C
−0.03491 (−0.05243, −0.01738), 

<0.001

−0.03439 (−0.05095, −0.01782), 

<0.001

−0.02759 (−0.04031, 

−0.01487), <0.001

−0.02071 (−0.03311, −0.00831), 

0.001

Vitamin_E
−0.54582 (−0.79217, −0.29948), 

<0.001

−0.39891 (−0.63924, −0.15857), 

0.001

−0.22115 (−0.43362, 

−0.00867), 0.042

−0.25533 (−0.48910, −0.02157), 

0.033

Zinc −0.15799 (−0.47131, 0.15532), 0.319 0.03075 (−0.27320, 0.33469), 0.841
0.07272 (−0.13947, 0.28491), 

0.496

0.00442 (−0.27888, 0.28771), 

0.975

Selenium −0.00168 (−0.03449, 0.03113), 0.919 0.01112 (−0.02139, 0.04364), 0.498
0.01259 (−0.01155, 0.03673), 

0.302

−0.00046 (−0.02831, 0.02739), 

0.974

Carotenoids
−0.00034 (−0.00046, −0.00022), 

<0.001

−0.00027 (−0.00040, −0.00014), 

<0.001

−0.00018 (−0.00029, 

−0.00008), 0.001

−0.00012 (−0.00022, −0.00002), 

0.023

Male (N = 3,443)

Vitamin_A
−0.00312 (−0.00480, −0.00144), 

<0.001

−0.00343 (−0.00505, −0.00181), 

<0.001

−0.00254 (−0.00405, 

−0.00104), 0.001

−0.00145 (−0.00260, −0.00030), 

0.014

Vitamin_C
−0.02471 (−0.03726, −0.01216), 

<0.001

−0.02573 (−0.03880, −0.01267), 

<0.001

−0.01662 (−0.02758, 

−0.00565), 0.004

−0.00797 (−0.01700, 0.00107), 

0.083

Vitamin_E
−0.35424 (−0.54101, −0.16747), 

<0.001

−0.39564 (−0.57243, −0.21885), 

<0.001

−0.33728 (−0.47515, 

−0.19941), <0.001

−0.22428 (−0.36397, −0.08458), 

0.002

Zinc 0.06262 (−0.06638, 0.19162), 0.338 0.05613 (−0.06801, 0.18028), 0.371
−0.0382 (−0.13234, 0.05594), 

0.421

0.02788 (−0.06015, 0.11591), 

0.529

Selenium −0.00636 (−0.02517, 0.01245), 0.504 0.00087 (−0.01670, 0.01845), 0.922
−0.01283 (−0.02711, 0.00145), 

0.077

−0.01060 (−0.02640, 0.00519), 

0.184

Carotenoids −0.00006 (−0.00013, 0.00002), 0.161
−0.00008 (−0.00015, 0.00000), 

0.060

−0.00008 (−0.00013, 

−0.00002), 0.006

−0.00004 (−0.00009, 0.00001), 

0.094

Crude model: adjusted for nothing. Model 1: adjusted for NHANES cycles, age, sex, race, education level, marital status, PIR. Model 2: adjusted for Model 1 and Physical Activity, smoke status, 
alcohol user, DM, MetS, Hypertension, CVD, CKD, and malignancy. Model 3: adjusted model 2 and PLT, ALT, AST, albumin, UA and total energy intake. The gender variable was no longer 
adjusted for stratification by sex. CDAI = composite dietary antioxidant, FLI = fatty liver index, CI = confidence interval, NHANES = National Health and Nutrition Examination Survey, 
PIR = poverty income ratio, CVD = cardiovascular disease, CKD = chronic kidney disease, PLT = platelet count, ALT = alanine aminotransferase, AST = aspartate aminotransferase, UA = uric 
acid, MET = metabolic equivalent, DM = diabetes mellitus, MetS = metabolic syndrome. Results that are statistically significant are presented in bold font.

https://doi.org/10.3389/fnut.2024.1466807
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zheng et al. 10.3389/fnut.2024.1466807

Frontiers in Nutrition 10 frontiersin.org

CDAI and FLI still needs further validation. Conversely, no significant 
interactions were detected among the age and DM groups in relation 
to FLI (all p values for interaction >0.05), as shown in 
Supplementary Table S3.

Discussion

In this large population-based cross-sectional study, we found a 
negative correlation between CDAI and FLI, and gender subgroup 
analysis showed that this phenomenon was more significant in the 
female population. Additionally, the study confirmed a negative 
correlation between dietary vitamin A, vitamin C, vitamin E, 
carotenoids, and FLI. Subgroup analysis by gender also revealed a 
negative correlation between these dietary antioxidants and FLI in 
females, while in males, a significant negative correlation was found 
only between vitamin A, vitamin E, and FLI. Importantly, we have 
identified an inverted U-shaped relationship between female dietary 
selenium intake and FLI (P nonlinearity = 0.006), with the peak level 
observed at 110 μg. Furthermore, our study found physical activity in 
men mediates the association between CDAI and FLI. Subsequent 
subgroup analysis within the age and diabetes mellitus groups showed 
that there were no significant interactions between the subgroups.

To date, few studies have reported the association between CDAI 
and FLI. This study is the first cross-sectional survey using a composite 
dietary antioxidant index to explain changes in the level of 
FLI. Compared to traditional dietary antioxidant measures, CDAI is 
significantly associated with many adverse health outcomes and has 
been demonstrated to have advantages and effectiveness in 
epidemiological studies. A cross-sectional study (42) highlighted a 
negative non-linear association between CDAI and depression in a 
nationally representative sample of US adults, before the inflection 
point of 0.16, each unit increase in CDAI was associated with a 30% 
decrease in the risk of depression, after the inflection point, the risk of 
depression was found to be reduced by 11% for each unit increase. 
Another cross-sectional assessment in the Kardiovize study (35) 
found CDAI negatively associates with carotid intima media thickness 
in women but not in men. Evidence from a Cancer Screening Trial 
(43) indicated a trend for a higher quartile of food-based CDAI 

(fCDAI) associated with a lower lung cancer risk after adjusting for 
covariates (HR (Q4vs.Q1) = 0.64, 95% CI: 0.52, 0.79; P for trend 
<0.001). A study (44) of middle-aged and elderly Americans found 
that CDAI was linearly negatively associated with depression [0.77 
(0.67, 0.89)] and non-linearly negatively associated with all-cause 
mortality [0.91 (0.83, 1.00)] with an inflection point of-0.19. Another 
prospective cohort study (45) revealed a linear relationship between 
CDAI and all-cause mortality (0.97 (0.87–1.07) for Q2, 0.88 (0.81–
0.96) for Q3, and 0.90 (0.80–1.00) for Q4 (P for trend = 0.009) upon 
comparison with the lowest quartile of CDAI), and an identical trend 
was observed for cardiovascular mortality. Therefore, this study 
utilized this indicator.

Our study utilized CDAI as a primary measure, uncovering a 
negative association with the FLI. Considering FLI’s role in diagnosing 
NAFLD and its link to metabolic diseases, we further examined the 
correlation between CDAI and NAFLD (defined as FLI ≥ 60 without 
excessive alcohol intake) as well as MASLD (defined as FLI ≥ 60). Our 
findings indicated an inverse relationship between CDAI and the 
prevalence of both NAFLD (OR: 0.943, 95% CI: 0.902, 0.987) and 
MASLD (OR: 0. 966, 95% CI: 0. 936, 0. 998). A cross-sectional study 
(46) involving 12,286 participants, after adjusting for age, gender and 
ethnicity, revealed a negative association between MASLD status and 
CDAI (OR: 0. 976, 95% CI: 0. 960, 0. 993), which is consistent with 
our findings. Another study (47) based on NHANES data from 2017 
to 2020 found that compared to the first quartile of CDAI, the odds 
ratios for MASLD were 0.96 (95% CI: 0.82, 1.12) in the second 
quartile, 0.80 (95% CI: 0.68, 0.95) in the third quartile, and 0.60 (95% 
CI: 0.49, 0.73) in the fourth quartile, respectively, once again 
corroborating the results of our study. The above results suggest that 
CDAI played a significant role in improving FLI and its associated 
metabolic diseases.

In addition, our study also conducted an association analysis 
between the representative components of CDAI and FLI. This study 
confirmed that dietary antioxidants vitamin A, vitamin C, vitamin E, 
and carotenoids all have a positive contribution to the improvement 
of FLI. In a Korean NHANES study (48), vitamin A, vitamin C, and 
vitamin E were not significantly different between MASLD and 
non-MASLD patients. However, the majority of the literature still 
supports our conclusion.

The following related studies provide further support for the 
findings of this study.

Guo et al. (49) found serum vitamin C was negatively correlated 
with the risk of non-alcoholic fatty liver disease (defined as the US 
Fatty Liver Index ≥30 in the absence of other chronic liver disease) 
when its level was less than 0.92 mg/dL. Mazidi et al. (50) showed that 
when levels of vitamin A changed from low (1.53) to high (1.95), the 
fatty liver index (FLI) in the low BMI category changed from 36.1 to 
24.3. Ivancovsky-Wajcman et al. (51) found that both vitamin A and 
E were related with the level of steatosis according to SteatoTest, their 
intake may be protective from NAFLD-related liver damage. All of 
these studies suggest that antioxidants have a protective effect on FLI, 
which is consistent with our findings that the intake of dietary 
vitamins A, C, E, carotenoids and CDAI can reduce FLI. But the 
protective role of dietary antioxidants in fatty liver disease still needs 
further verification.

Our research results also showed that regardless of gender, 
compared to other antioxidants, vitamin E has the most significant 
effect in reducing FLI. The potential mechanisms between vitamin E 

TABLE 4 Threshold effect analysis of selenium intake on fatty liver index 
(FLI).

Threshold of 
selenium

Adjusted 
β

95% CI P value

Female intake of selenium

  <110 μg 0.09550 0.04560, 0.14539 <0.001

  ≥110 μg −0.01699 −0.05665, 0.02268 0.401

Likelihood ratio test <0.001

Male intake of selenium

  <124.7 μg −0.02123 −0.06853, 0.02606 0.379

  ≥124.7 μg −0.02378 −0.04396, −0.00361 0.021

Likelihood ratio test 0.539

Adjusted for NHANES cycles, age, race, education level, marital status, PIR, Physical 
Activity, smoke status, alcohol user, DM, MetS, Hypertension, CVD, CKD, and malignancy, 
PLT, ALT, AST, albumin, UA and total energy intake. CI = confidence interval. Results that 
are statistically significant are presented in bold font.
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and fatty liver index mainly involve its antioxidant and anti-
inflammatory effects. Oxidative stress plays a central role in the 
pathogenesis of fatty liver disease (FLD). As a potent antioxidant, 
vitamin E can reduce oxidative stress (52), thereby slowing down the 
progression of FLD.

In clinical trials, vitamin E has shown a positive effect on 
improving biochemical indicators (such as alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) levels) and hepatic 
pathological features in patients with NAFLD (53–57). Vitamin E can 
significantly improve steatosis, lobular inflammation, and ballooning 
scores in patients with non-alcoholic steatohepatitis (NASH) (58). 
Vitamin E also improves lipid metabolism in mice with non-alcoholic 
fatty liver disease through the Nrf2/CES1 signaling pathway (59) and 
improves liver function, lipid metabolism, and oxidative stress in rats 
with NAFLD induced by a high-fat, high-cholesterol diet (HFD) (59, 
60). However, some studies suggest that vitamin E therapy can 
improve blood lipids to some extent, but its effect on children’s liver 
function and liver tissue is not apparent (61). Another study found 
vitamin E is not recommended for the treatment of diabetes, NAFLD 
without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis with 
NASH (62). Dietary intake of vitamin E proves advantageous in the 
prevention of NAFLD based on CAP threshold values of 288 dB/m 
and 263 dB/m, particularly among individuals devoid of 
hyperlipidemia (63). Although our research also found the beneficial 
effects of vitamin E in reducing the FLI, its efficacy still needs to 
be further verified in different populations.

Interestingly, we  discovered an inverse U-shaped relationship 
between female dietary selenium intake and FLI. When the dietary 
selenium intake of women is less than 110 μg, the two are positively 
correlated, but as the selenium intake increases, the FLI decreases, but 
not statistically significant. Selenium is an essential trace element that 
plays a crucial role in human health, many studies have found a close 
relationship between selenium intake in the diet and liver fat. 
However, there has been ongoing controversy.

Consistent with our study, a cross-sectional study (64) based on 
baseline data from the prospective PERSIAN Kavar cohort study found 
that after adjusting for sociodemographic variables, smoking status, 
alcohol consumption, physical activity, and dietary factors, the odds 
ratios (ORs) for FLI-defined NAFLD in the fourth and fifth quintiles 
were 1.31 (95% confidence interval (CI): 1.01–1.70) and 1.50 (95% CI: 
1.13–1.99), respectively, compared to the first quintile (P trend = 0.002). 
This result revealed a weak positive correlation between dietary selenium 
intake and the risk of NAFLD. Another study based on the NHANES 
database from 2017 to 2018 found that higher blood selenium levels 
(>205.32, ≤453.62 μg/L) were significantly positively correlated with 
NAFLD (ORs = 1.31). Additionally, men with high blood selenium levels 
showed a significant negative correlation with late-stage liver fibrosis 
(ORs = 0.61). But NAFLD and liver fibrosis are caused by an imbalance 
of selenium homeostasis, not by dietary selenium intake (65). These 
contradictory results have also been observed in previous animal studies. 
Steinbrenner et al. (66) found that severe selenium overdose and severe 
selenium deficiency could both alter animal liver metabolism. Dietary 
selenium levels above normal levels did not enhance the biosynthesis of 
liver selenoproteins or the activity of key selenium enzymes, but at high 
doses, reactive selenium metabolites might be produced, which could 
interfere with signal transduction or metabolic pathways. As a result, 
multiple synthetic metabolic pathways and lipid accumulation might 
be  enhanced. Conversely, thebiosynthesis/activity of the major 
antioxidant selenoproteins was inhibited by dietary selenium deficiency, 

leading to oxidative stress and inflammation, which was associated with 
increased glucose and glutamine catabolic metabolism and reduced lipid 
accumulation. Taking into account that the dietary selenium intake is 
between 55-75 μg/d, with a maximum safe intake of 400 μg/d (67), and 
the median selenium intake of the population included in this study is 
110 μg/d, within this intake level, selenium does promote FLI, in 
summary, sufficient dietary selenium intake can affect the deposition 
and metabolism of liver fat through various pathways, thereby playing a 
positive role in liver health. However, it is worth noting that excessive 
selenium intake may also have adverse effects on the liver. Therefore, 
selenium intake in the diet should be moderate to maintain liver health.

Our study also revealed that physical activity in men reverse the 
relationship between CDAI and FLI. While an increase in CDAI leads 
to a reduction in FLI in men, this effect is limited to those engaging in 
active physical activity. For men with inactive physical activity, CDAI 
is positively correlated with FLI. This finding suggests that even with 
active supplementation of dietary antioxidants, it may not alter fat 
deposition in men with low physical activity. Of course, further 
validation of this study is still needed. At the same time, our research 
found that participants with metabolic syndrome and hyperuricemia, 
increasing dietary CDAI intake did not reduce FLI, which further 
suggests the harmful effects of metabolic syndrome and hyperuricemia 
on obese individuals.

Given that FLI is associated with various diseases and adverse 
health outcomes, it is an important public health issue to improve it. 
Today, with the awakening of public health awareness, our research is 
conducted in this context, which is of great significance for guiding 
obese patients to have a healthy diet. Our research has found that 
dietary antioxidants play an important role in improving FLI, and has 
detailed how to choose suitable dietary antioxidants for different 
genders. Though, some of the findings in this study currently lack 
theoretical support, and we will further explore them.

However, there are still some limitations in this study. Firstly, 
cross-sectional design cannot establish the causal relationship between 
dietary antioxidant intake and the risk of FLI. Secondly, because of the 
nature of the NHANES database, the dietary questionnaire 
information was self-reported, which might introduce recall bias. 
Thirdly, this study tried to control confounding factors that may affect 
CDAI and FLI, but based on source data and existing theoretical 
limitations, it is not possible to include all control variables that might 
have influenced the results of the study. Finally, in this study, the 
reasons and mechanisms behind the gender differences in dietary 
antioxidants and FLI have not yet found effective theoretical support. 
It is necessary to further investigate the relevant physiological 
mechanisms in the future.

Conclusion

This cross-sectional study reveals a significant inverse CDAI 
(including vitamin A, C, E) and the FLI, with dietary antioxidants 
showing potential in mitigating FLI, particularly in females. Female 
selenium intake and FLI showed a U-shaped relationship, suggesting 
an optimal level of selenium intake could help prevent fatty liver. The 
findings underscore the importance of dietary interventions in public 
health strategies to combat metabolic dysfunction-associated steatotic 
liver disease (MASLD). While the benefits of higher CDAI on 
reducing FLI may be  modified by physical activity, metabolic 
syndrome, and hyperuricemia, highlighting the complexity of the 
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relationship between diet, lifestyle, and liver health. Future research 
employing prospective study designs is warranted to establish 
causality and further elucidate the mechanisms underlying 
these associations.
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SUPPLEMENTARY FIGURE S1

Restricted cubic splines for the relationships between female dietary vitamin 
A, vitamin C, vitamin E, zinc, selenium, and total carotenoids intake and FLI. 
Figure S1 presents restricted cubic spline plots illustrating the relationship 
between female dietary vitamin A (A), vitamin C (B), vitamin E (C), zinc (D), 
selenium (E) and total carotenoids intake (F) and the Fatty Liver Index (FLI) 
after adjusting for NHANES cycles, age, race, education level, marital status, 
PIR, Physical Activity, smoke status, alcohol user, DM, MetS, Hypertension, 
CVD, CKD, malignancy, PLT, ALT, AST, albumin, UA, and total energy intake. 
The bold blue central lines represent the estimated adjusted effect value, 
with shaded ribbons indicating the 95% confidence intervals. The horizontal 
dashed lines represent the β value of 0.0 (reference point). The reference 
point was set at the median level of female CDAI components. The vertical 
dashed lines indicate the threshold value of female CDAI components at 
reference point. Please note the wide divergence in the 95% confidence 
intervals at the extremes due to the small number of patients and the 
cubic fit.

SUPPLEMENTARY FIGURE S2

Restricted cubic splines for the relationships between male dietary vitamin A, 
vitamin C, vitamin E, zinc, selenium, and total carotenoids intake and FLI. 
Supplementary Figure S2 presents restricted cubic spline plots illustrating the 
relationship between male dietary vitamin A (A), vitamin C (B), vitamin E (C), 
zinc (D), selenium (E) and total carotenoids intake (F) and the Fatty Liver Index 
(FLI) after adjusting for NHANES cycles, age, race, education level, marital 
status, PIR, Physical Activity, smoke status, alcohol user, DM, MetS, 
Hypertension, CVD, CKD, malignancy, PLT, ALT, AST, albumin, UA, and total 
energy intake. The bold blue central lines represent the estimated adjusted 
effect value, with shaded ribbons indicating the 95% confidence intervals. 
The horizontal dashed lines represent theβvalue of 0.0 (reference point). The 
reference point was set at the median level of male CDAI components. The 
vertical dashed lines indicate the threshold value of male CDAI components 
at reference point. Please note the wide divergence in the 95% confidence 
intervals at the extremes due to the small number of patients and the 
cubic fit.
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