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obesity-related indicators with 
sarcopenic obesity and 
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This study investigates the correlation between insulin resistance and obesity 
indicators with sarcopenic obesity (SO) and develops diagnostic models. Utilizing 
the 1999–2006 National Health and Nutrition Examination Survey (NHANES) 
database, the research included 5,574 adults. Sarcopenic obesity was defined 
following the 2022 consensus by ESPEN and EASO. The study analyzed indicators 
such as the triglyceride-glucose index (TyG), homeostasis model assessment of 
insulin resistance (HOMA-IR), body roundness index (BRI), and lipid accumulation 
product (LAP). Results indicated a significant positive correlation between these 
indicators and SO, with the strongest association observed for TyG-WHtR. Predictor 
variables were identified through logistic and Lasso regression, including age, sex, 
weight-height ratio (WHtR), and TyG-WCR. The diagnostic model demonstrated 
good predictive performance with AUC values of 0.897 for internal validation 
and 0.853 for external validation. The study underscores the importance of early 
identification of SO patients and provides a theoretical foundation for future 
prevention and management strategies. Limitations include the cross-sectional 
study design and the potential limited generalizability of the model based on the 
American population.

KEYWORDS

sarcopenic obesity, diagnostic model, Lasso, NHANES, random forest

1 Introduction

Sarcopenic obesity (SO), a growing health concern due to the aging global population (1, 
2), has a reported prevalence ranging from 13 to 23% (3). Despite varying definitions and 
diagnostic criteria across studies, SO is consistently recognized as a significant independent 
risk factor for frailty and mortality, particularly in patients with common comorbidities (4, 5).

In alignment with the 2022 consensus established by the European Society for Clinical 
Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity 
(EASO), Sarcopenic Obesity is defined as a condition wherein sarcopenia and obesity are not 
merely coexisting but rather characterized by a reduction in relative skeletal muscle mass 
(ALM/W) and an elevation in fat mass percentage (FM%) (6, 7). This condition diverges from 
isolated sarcopenia and obesity, as it is associated with a relatively higher mortality rate and an 
increased risk of cardiovascular diseases (8–12). Li et al. (13) propose that SO is linked to the 
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onset of chronic diseases, with the severity of sarcopenia correlating 
with disease progression. This suggests that early detection of SO 
could be instrumental in preventing or managing chronic diseases.

Studies have shown that the pathogenesis of SO is closely related 
to insulin resistance (IR) and obesity-related inflammation (14). 
Obesity is a risk factor for sarcopenia (15–17), so the global obesity 
epidemic (18) will increase the incidence of SO with age. Although 
there are similar trends in SO in different regions (19, 20), the 
prevalence of obesity could potentially influence future incidence rates 
of SO. Consequently, it becomes imperative to employ IR and obesity 
indicators as screening tools for SO.

The triglyceride-glucose index (TyG) and related metrics, along 
with the homeostasis model assessment of insulin resistance (HOMA-
IR) are established markers for IR, with TyG showing greater 
predictive power for metabolic diseases over HOMA-IR (21). 
Adjusting TyG for WHtR and BMI enhances its predictive value in 
non-alcoholic fatty liver disease (NAFLD) (22). The novel obesity 
indicator, body roundness index (BRI) more accurately reflects 
visceral fat distribution than conventional anthropometrics (23), while 
lipid accumulation product (LAP), as a cost-effective marker of 
lipotoxicity, shows promise in NAFLD screening (24). However, the 
correlation between these indicators and SO, as well as the dose–
response relationship, remains unclear, making the research on 
predictive value and screening capabilities yet to emerge.

In summary, the early identification of SO and the implementation 
of efficacious interventions to reduce its prevalence are of paramount 
importance. This is crucial for not only preventing and managing 
chronic diseases at the individual level and reducing mortality rates 
but also for preventing a future public health crisis due to the rising 
prevalence of SO. To date, no diagnostic model for insulin resistance 
has been developed. Therefore, this study conducted a cross-sectional 
study using the National Health and Nutrition Examination Survey 
(NHANES) database with two objectives: the first was to investigate 
the correlation between IR and obesity-related markers and SO; the 
second, and modified, was to develop a diagnostic model capable of 
early identification of SO. The second of these objectives served as the 
main research aim of this study.

2 Materials and methods

2.1 Database

The data for this cross-sectional study were obtained from 5,574 
adults who participated in the NHANES during the 1999–2006 cycle, 
and included data including demographic data (age, sex, education, race, 
marital status, family income-to-poverty ratio, sampling weights), risk 
behaviors (smoking, alcohol use), history of disease (diabetes, 
hypertension), anthropometric data (waist circumference calf 
circumference, arm circumference, weight, height), dual-energy X-rays 
absorptiometry data (DXA), laboratory test data (LDL-cholesterol, 
triglycerides, fasting glucose, insulin), physical active data and 
nutritional survey data (energy intake, protein intake, total fat intake). A 
flow chart was drawn based on the inclusion process of the above 
relevant variables (for details, see Supplementary Figure S1) The 
National Center for Health Statistics (NCHS) research ethics review 
board approved the NHANES data survey, and written informed 
consent constituted the inaugural step in the experimental procedure. A 

comprehensive account of each investigation can be  found 
elsewhere (25).

Anthropometric measurements were obtained utilizing a Toledo 
electronic scale, Seca electronic rangefinder, and a steel tape 
measure, and whole-body dual-energy X-ray absorptiometry (DXA) 
scans were conducted using a Hologic QDR-4500A fan-beam 
densitometer (Hologic, Inc., Bedford, Massachusetts). The 
instrumentation utilized in the laboratory inspection data and the 
remainder of the quality control details can be  accessed on the 
NHANES website.1

2.2 Group definition

In accordance with the consensus published by ESPEN and EASO 
in 2022, and considering the diversity of racial types in the US 
population, we  employed the diagnostic threshold values 
recommended in the consensus, based on NHANES data (6), which 
included low muscle mass (ALM/W, <0.257 for male; < 0.194 for 
female) (26) and a high fat mass percentage (FM%, >25 for male; 
>32% for female) (27). Individuals with SO characteristics were 
defined as a group when both criteria were met (S-O group), while the 
rest of the individuals were uniformly categorized (Non S-O group).

2.3 Assessment of TyG, TyG-WC, TyG-BMI, 
TyG-WCR, TyG-WHtR, TyG-WAR, HOMA-IR, 
BRI and LAP

The TyG Index is a quantitative measure of insulin resistance that 
is calculated by combining fasting blood glucose levels with 
triglyceride levels. Fasting blood glucose (FBG), triglycerides (TG), 
and insulin (IL) were assessed at the baseline stage of the study, when 
participants provided a blood sample. The following anthropometric 
measurements were obtained during the physical examination at the 
mobile screening center: weight, height, calf circumference (CC), arm 
circumference (AC), and waist circumference (WC). Additionally, the 
waist-calf circumference ratio (WCR), waist-height ratio (WHtR), 
waist-arm circumference ratio (WAR), HOMA-IR, BRI, and LAP were 
calculated using the following equations:

 ( ) ( )ln / / / 2TyG TG mg dl FBG mg dl=  ×    (1)

 ( ) ( )/WCR Waist cm Calf circumference cm= −  (2)

 ( ) ( )/WHtR Waist cm Height cm=  (3)

 ( ) ( )/WAR Waist cm Arm circumference cm= −  (4)

 ( )TyG WC TyG Waist cm− = ×  (5)

1 https://www.cdc.gov/nchs/nhanes/index.htm
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 ( )2/TyG BMI TyG BMI kg m− = ×
 

(6)

 TyG WCR TyG WCR− = ×  (7)

 TyG WHtR TyG WHtR− = ×  (8)

 TyG WAR TyG WAR− = ×  (9)

 ( ) ( )/ / 405HOMA IR FPG mg dl IL U mLµ− = × ÷  (10)

 ( ) ( )
1/22 2 2364.2 365.5 1BRI WC m Height mπ − − = − − × ×   

(11)

 ( ) ) ( ): 65 / ]Male LAP WC cm TG mmol L=  − ×  (12)

 ( ) ) ( ): 58 / ]Female LAP WC cm TG mmol L=  − ×  (13)

2.4 Assessment of covariates

Age and family income-to-poverty ratio (PIR) are treated as a 
continuous variable, gender is categorized into two groups (males and 
females), race/ethnicity is categorized into four segments (Mexican 
Americans, Non-Hispanic White people, Non-Hispanic Black people, 
and others), and education is categorized into three segments (less 
than high school, high school, and high school or above).

The participants were divided into two groups based on their 
smoking history: those who had smoked fewer than 100 cigarettes in 
their lifetime and those who had smoked more than 100 cigarettes. 
Alcohol consumption was defined as not drinking alcohol (fewer than 
12 cups per year) and drinking alcohol (at least 12 cups per year). 
Self-reported hypertension and self-reported family history of 
diabetes were determined based on self-reported physician diagnosis 
obtained in a personal interview using a standardized medical status 
questionnaire. The participants were queried as follows: The 
participants were asked whether their physicians had informed them 
that they had high blood pressure or diabetes. They were instructed to 
respond with a yes or no answer.

Furthermore, LDL-cholesterol was quantified at baseline as a 
continuous variable, and total energy, protein, and total fat intake were 
calculated as the mean of the two-day intake when 2 days of dietary 
intake data were complete, and the first day’s intake otherwise.

The physical activity level was gaged with the Global Physical 
Activity Questionnaire and evaluated in accordance with the WHO 
guideline.2 Individuals who fulfilled the WHO physical activity 

2 https://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_

Guide.pdf

recommendation were deemed to be  physically active, which is 
defined as engaging in a minimum of 149 min of moderate physical 
activity, 74 min of vigorous physical activity, or 599 metabolic 
equivalent (MET) minutes per week. For more detailed information 
on covariate measurement, please refer to the NHANES website at 
(see text footnote 1, respectively).

2.5 Statistical analysis

In the correlation analysis for objective one of this study, statistical 
analysis for this segment incorporated sample weights due to the 
complex, multi-stage stratified probability survey design employed by 
NHANES, and was conducted in accordance with Centers for Disease 
Control and Prevention (CDC) guidelines.3 In the baseline 
characteristics table, continuous variables are presented as weighted 
means and standard errors (SE), while categorical variables are 
expressed as weighted proportions and standard errors (SE). For 
continuous variables, we employed weighted linear regression analysis 
to assess differences between participants with and without SO. For 
categorical variables, we utilized weighted chi-square tests for the same 
assessment. Subsequently, univariate and multivariate weighted logistic 
regression analyses were conducted to examine the relationships 
between TyG, TyG-WC, TyG-BMI, TyG-WCR, TyG-WHtR, TyG-WAR, 
HOMA-IR, BRI, LAP, and SO. Four models were applied in the study: 
Model 1 was unadjusted; Model 2 was adjusted for age, sex, race, marital 
status, and education level; Model 3 included additional adjustments for 
low-density lipoprotein on top of Model 2; Model 4 further adjusted for 
smoking, alcohol consumption, hypertension, diabetes, total energy 
intake, protein intake, and total fat intake on top of Model 3. In these 
four predefined models, the results are presented as odds ratios (OR) 
and 95% confidence intervals (CI). To elucidate the dose–response 
relationships between TyG, TyG-WC, TyG-BMI, TyG-WCR, 
TyG-WHtR, TyG-WAR, HOMA-IR, BRI, LAP, and SO, restricted cubic 
splines analysis (RCS) with the same covariates adjusted in Model 4 was 
conducted. Three knots were set to exclude the most extreme values, 
minimizing the potential impact of outliers, and likelihood ratio tests 
were used for nonlinearity testing, followed by flexible visualization.

In the second part of this study, focusing on the construction of a 
diagnostic model, we encountered a technical limitation: the R package 
‘rms’ used does not support weighted processes. Consequently, during 
the model construction phase, we had to forgo the weighted variables. 
We randomly divided the dataset into a training set and a validation set 
in a 7:3 ratio. In the training set, we included 35 variables encompassing 
demographics, risk behaviors, anthropometrics, laboratory tests, and 
nutritional survey data. Initially, we  identified potential predictive 
factors through univariate Logistic regression analysis. Variables were 
then selected based on a p-value less than 0.05 and included in the 
multivariate Logistic regression model. We employed the “backward” 
method for variable selection, ultimately identifying 16 variables. 
Furthermore, we utilized Lasso regression to select variables from a 
large set potentially subject to multicollinearity. This method 
determines the optimal penalty coefficient λ through 10-fold cross-
validation. Ultimately, five key variables were selected: age, sex, WHtR, 

3 https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.aspx
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TyG-WCR, and BRI. Upon conducting a variance inflation factor 
(VIF) analysis for the model with these five variables, we  found 
significant collinearity between BRI and WHtR (VIF > 10). 
Consequently, we constructed two 4-factor models, one including BRI 
and the other WHtR, and used the likelihood ratio test (LRT) to select 
the optimal model. The test results indicated no statistically significant 
difference between the two models. Subsequently, we conducted a 
difference significance test for the area under the receiver operating 
characteristic (ROC) curve using the Bootstrap method. It was found 
that the model including WHtR had a higher area under the ROC 
curve, and the difference was statistically significant. Considering the 
ease of obtaining WHtR in routine clinical practice, we selected age, 
sex, WHtR, and TyG-WCR as the variables for the final model. The VIF 
for the constructed model was less than 5, indicating no 
multicollinearity. Additionally, we used the Hosmer-Lemeshow test to 
assess the model’s goodness of fit, with a p-value greater than 0.05 
indicating a well-fitted model. Next, we  constructed dynamic 
nomograms and plotted the ROC curve, calibration curve, clinical 
decision curve (DCA), and clinical impact curve (CIC). For validation, 
we plotted using the same methods in the training set and compared 
the area under the ROC curves between the training and validation sets 
for significant differences. Additionally, we employed the Bootstrap 
method for internal validation, a statistical technique that simulates 
different datasets by randomly drawing samples repeatedly from the 
dataset (allowing the same sample to be chosen more than once) (28). 
We used 1,000 samples for this analysis to enhance the accuracy of the 
estimation. Lastly, we  utilized random forest analysis to assess the 
relative importance of the four variables in model construction and 
visualized their contribution to the model.

Ultimately, physical activity will be incorporated as a covariate 
adjustment in one sensitivity analysis.

R software, version 4.1.3 (R Foundation, Vienna, Austria) was used 
to perform all statistical analyses. Correlation analyses were performed 
using the R software package “nhanesR,” Lasso regression was 
performed using the R software package “glmnet,” R software package 
“pROC” was used for the ROC analysis, and calibration curves were 

plotted using the R package “calibrate.,” DCA curve analysis using the 
R package “dca,” and image plotting using the “dplyr” package.

3 Results

3.1 Basic characteristics of participants 
according to the SO

This study included a total of 5,574 American adults, of whom 323 
had SO and 5,251 did not. Baseline characteristic analysis revealed 
statistically significant differences between the two groups for multiple 
variables, including the TyG.(for details, see Supplementary Table S1).

3.2 Relationship between TyG, TyG-WC, 
TyG-BMI, TyG-WCR, TyG-WHtR, TyG-WAR, 
HOMA-IR, BRI and LAP and SO

After adjusting for all covariates in the multivariable Logistics 
regression, the associations between TyG, TyG-WC, TyG-BMI, 
TyG-WCR, TyG-WHtR, TyG-WAR, HOMA-IR, BRI, LAP, and SO 
were all statistically significant and positively correlated. Among 
patients with SO, the association with TyG-WHtR was the strongest 
(OR: 4.01, 95% CI: 3.21–5.00), followed by TyG-WC (OR: 2.12, 95% 
CI: 1.87–2.41), BRI (OR: 1.81, 95% CI: 1.65–1.99), and TyG (OR: 1.81, 
95% CI: 1.36–2.42). The results are shown in Table 1.

3.3 Restricted cubic splines analysis 
investigating the relationship between TyG, 
TyG-WC, TyG-BMI, TyG-WCR, TyG-WHtR, 
TyG-WAR, HOMA-IR, BRI and LAP and S-O

In Figure 1, we utilized RCS visualization to depict the nonlinear 
relationships between independent and dependent variables. After 

TABLE 1 Relationship between insulin resistance-related indicators and obesity-related indicators and S-O.

Characteristic OR (95% 
CI)

p OR (95% 
CI)

p OR (95% 
CI)

p OR (95% 
CI)

p

S-O (ESPEN&EASO)

Model 1 Model 2 Model 3 Model 4

TyG 2.74 (2.22,3.39) <0.0001 1.93 (1.51,2.47) <0.0001 1.94 (1.53,2.46) <0.0001 1.81 (1.36,2.42) <0.001

TyG-WCR 1.47 (1.39,1.56) <0.0001 1.43 (1.34,1.54) <0.0001 1.43 (1.33,1.53) <0.0001 1.44 (1.35,1.54) <0.0001

TyG-WHtR 3.37 (2.89,3.92) <0.0001 3.77 (3.13,4.53) <0.0001 3.70 (3.08,4.44) <0.0001 4.01 (3.21,5.00) <0.0001

TyG-WAR 1.31 (1.26,1.36) <0.0001 1.34 (1.28,1.40) <0.0001 1.33 (1.27,1.40) <0.0001 1.35 (1.28,1.43) <0.0001

TyG-BMI 1.01 (1.01,1.02) <0.0001 1.02 (1.01,1.02) <0.0001 1.02 (1.01,1.02) <0.0001 1.02 (1.01,1.02) <0.0001

TyG-WC 1.94 (1.79,2.11) <0.0001 2.05 (1.85,2.27) <0.0001 2.03 (1.83,2.25) <0.0001 2.12 (1.87,2.41) <0.0001

BRI 1.62 (1.53,1.72) <0.0001 1.80 (1.66,1.95) <0.0001 1.79 (1.65,1.94) <0.0001 1.81 (1.65,1.99) <0.0001

HOMA-IR 1.13 (1.09,1.17) <0.0001 1.14 (1.10,1.18) <0.0001 1.14 (1.10,1.18) <0.0001 1.12 (1.07,1.17) <0.0001

LAP 1.01 (1.01,1.02) <0.0001 1.01 (1.01,1.02) <0.0001 1.01 (1.01,1.02) <0.0001 1.01 (1.01,1.02) <0.0001

Model 1 was unadusted. Model 2 was adjusted for age, gender, ethnicity, marriage and education. Model 3 was adjusted for age, gender, ethnicity, marriage, education and LDL. Model 4 was 
adjusted for age, gender, ethnicity, marriage, education, LDL, smoke, drink, hyperyension, diabetes, energy-intake, protein-intake, total fat-intake. S-O, Individuals with body composition 
characteristics of sarcopenic obesity; ESPEN&EASO, The European Society for Clinical Nutrition and Metabolism and the European Association for the Study of Obesity; WCR, Waist-to-calf 
circumstance ratio; WHtR, Waist-to-height circumstance ratio; WAR, Waist-to-arm circumstance ratio; BMI, Body Mass Index; WC, Waist Circumference; TyG, Triglyceride-Glucose index; 
BRI, body roundness index; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; LAP, Lipid Accumulation Product.
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adjusting for all covariates in the aforementioned Model 4, we found that 
the nonlinear relationships between TyG, TyG-WC, TyG-BMI, 
TyG-WCR, TyG-WHtR, TyG-WAR, HOMA-IR, BRI, LAP, and SO were 
all statistically significant (p values for all <0.001; p values for 
nonlinearity <0.05).

3.4 Binary logistic regression analysis 
combined with Lasso regression analysis to 
screen predictor variables

The statistical analysis procedures have been previously detailed 
in the statistical methods section. The results of the univariate and 
multivariate Logistic regression analyses are presented in Table 2. 
Following univariate analysis, Logistic regression was performed to 
distill the data, identifying 16 variables. Subsequently, Lasso regression 
was conducted with the addition of a penalty coefficient, followed by 
10-fold cross-validation, as shown in Figure 2. Utilizing one standard 

error of the mean as the threshold, we selected the number of variables 
represented by the rightmost dashed line, ultimately identifying five 
variables. Due to collinearity between BRI and WHtR, we elected to 
retain WHtR for model construction, and the Hosmer-Lemeshow test 
resulted in a significance of 0.497, indicating good model fit within the 
training set.

3.5 Dynamic nomogram development and 
validation

After finalizing the variables for the sarcopenic obesity diagnostic 
model in American adults (Figure 3), we constructed the model using 
the ‘rms’ package in RStudio and plotted interactive nomograms with 
the ‘regplot’ package. We developed dynamic nomograms with the 
‘DynNom’ package, which were saved using the ‘DNbuilder’ package 
(for details, see Supplementary materials, DynNomApp). To further 
evaluate the predictive ability of the model, we plotted the ROC curve, 

FIGURE 1

(A) RCS analysis results for TyG and SO; (B) RCS analysis results for TyG-BMI and SO; (C) RCS analysis results for TyG-WAR and SO; (D) RCS analysis 
results for TyG-WC and SO; (E) RCS analysis results for TyG-WCR and SO; (F) RCS analysis results for TyG-WHtR and SO; (G) RCS analysis results for BRI 
and SO RCS analysis results of SO; (H) RCS analysis results of HOMA-IR and SO; (I) RCS analysis results of LAP and SO.
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calibration curve, DCA curve, and CIC curve, as shown in Figure 4. 
The area under the ROC curve (AUC) was 0.897, which was higher 
than that of the variables included in the model: TyG-WCR 
(AUC = 0.842), WHtR (AUC = 0.842), age (AUC = 0.742), and sex 
(AUC = 0.567). The calibration curve showed a Brier score of 0.045, 
indicating good predictive performance of the model, with an average 
absolute error of 0.005 for the mean calibration plot.

Subsequently, internal validation was conducted using the 
Bootstrap method, and the ROC curve along with the AUC frequency 
distribution plot were depicted, as shown in Figure 5. The calibration 
and DCA curves are presented in the Supplementary Figure S2, for 
details. The results indicate that the model’s AUC is well-distributed, 
ranging from 87.4 to 91.1%, while the Brier score ranges from 4.0 
to 5.0%.

TABLE 2 The results of the risk factor discovery model.

Characteristics Univariate analysis Multivariate analysis

OR 95% CI p OR 95% CI p

Age 1.05 1.04–1.06 <0.001 1.04 1.03–1.05 <0.001

PIR 0.88 0.81–0.96 0.003

Weight 1.03 1.02–1.04 <0.001 0.91 0.84–0.99 0.038

BMI 1.11 1.10–1.13 <0.001

WC 1.07 1.06–1.08 <0.001

CC 1.07 1.04–1.10 <0.001

AC 1.06 1.01–1.11 0.02 0.56 0.36–0.87 0.01

FBG 1.01 1.01–1.01 <0.001

TG 1.01 1.00–1.01 <0.001 1.01 1–1.02 0.073

LDL 1.00 0.99–1.00 0.02 0.99 0.99–1 0.015

IL 1.03 1.02–1.04 <0.001

Energy-intake (kcal) 1.00 1.00–1.00 <0.001

Protein-intake (gm) 0.99 0.99–0.99 <0.001 0.99 0.99–1.00 0.004

Total fat-intake (gm) 0.99 0.99–1 0.001

wBMI (kg/m) 1.07 1.06–1.08 <0.001

WCR 110.32 64.61–188.39 <0.001

WHtR 1.13 1.12–1.15 <0.001 3.34 2.25–4.96 <0.001

WAR 17.81 12.57–25.25 <0.001 0.00 0.00–0.53 0.029

TyG 2.55 2.05–3.17 <0.001

TyG-WCR 1.43 1.37–1.5 <0.001 1.26 1.14–1.4 <0.001

TyG-WHtR 3.37 2.92–3.89 <0.001 0.00 0.00–0.03 0.001

TyG-WAR 1.31 1.27–1.36 <0.001

TyG-BMI 1.01 1.01–1.01 <0.001 1.03 1.00–1.06 0.029

TyG-WC 1.95 1.79–2.11 <0.001 37.06 3.56–385.59 0.003

BRI 1.6 1.52–1.69 <0.001 0.12 0.05–0.29 <0.001

HOMA-IR 1.09 1.06–1.12 <0.001

LAP 1.01 1.01–1.02 <0.001 0.99 0.97–1 0.068

Sex 1.73 1.32–2.27 <0.001 3.43 2.11–5.59 <0.001

Ethnicity 0.89 0.77–1.02 0.104

Marriage 0.98 0.78–1.22 0.833

Education 0.83 0.71–0.98 0.023

Smoke 1.19 0.91–1.54 0.203

Drink 0.81 0.61–1.07 0.138

Hypertension 3.19 2.44–4.17 <0.001

Diabetes 1.03 1.02–1.04 <0.001 0.71 0.44–1.13 0.153

S-O, Individuals with body composition characteristics; PIR, Family income-to-poverty ratio; DXA, Dual-energy X-rays Absorptiometry; FM%, Fat mass%; BMI, Body Mass Index; WC, Wasit 
Circumference; CC, Calf Circumference; ALM, Appendicular Lean Mass; wBMI, Waist Body Mass Index; WCR, Waist-to-Calf Circumstance Ratio; WHtR, Waist-to-Height Ratio; WAR, 
Waist-to-Arm Ratio; TyG, Triglyceride-Glucose index; BRI, body roundness index; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; LAP, Lipid Accumulation Product.
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We proceeded with the validation using the validation set and the 
results are shown in Figure 6. The AUC was 0.853, and the calibration 
curve indicated a Brier score of 0.043, suggesting good predictive 
performance of the model. The mean calibration plot showed an 
average absolute error of 0.006. Additionally, we utilized the ‘roc.test’ 
package to assess the AUC, yielding a p-value of 0.068, which suggests 
no significant difference between the training and validation datasets. 
The Hosmer-Lemeshow test showed a significance level of 0.925, 
further confirming the model’s good fit.

Ultimately, we utilized random forest analysis to determine the 
relative importance of variables, providing a clearer view of each 
variable’s contribution within the model, as depicted in Figure 7.

3.6 Sensitivity analysis

A sensitivity analysis was conducted to examine the impact of 
physical activity on the study outcomes. Furthermore, data pertaining 
to physical activity were extracted from the primary analytic dataset 
and incorporated as a continuous variable in multifactorial regression 
models. A total of 4,150 Americans were included in the study results, 
of whom 212 were diagnosed with SO. Univariate analyses 
demonstrated no statistical significance at p = 0.23 (see T2 for details). 

It was therefore prudent to include them in a multifactorial regression. 
The results demonstrated that, following adequate adjustment for 
covariates, the findings remained consistent with those of the main 
analysis (see T3 for details). As the one-way analysis was not 
statistically significant, it could not be  included in the model 
construction. Consequently, the results of the sensitivity analysis 
indicate that the conclusions drawn from this study are stable 
and reliable.

4 Discussion

Our study, for the first time, explores the correlation between 
insulin resistance and obesity indicators with SO patients, building 
upon existing literature. Utilizing RCS analysis, we  intuitively 
demonstrated the nonlinear relationships between these variables. The 
study found that as the TyG increases, the risk of SO shows a 
progressively increasing trend. However, when we multiply TyG by 
other obesity-related indicators (WC, BMI, WCR, WHtR, WAR) to 
form composite indicators, it is found that these composite indicators 
have a significantly positive correlation with the risk of SO. This 
positive correlation may stem from the composite indicators’ 
consideration of body morphology along with corresponding 

FIGURE 2

(A) LASSO selection path diagram: the vertical dashed line on the left side of the diagram indicates Log(λ) corresponding to the minimum error 
(lambda.1se), while the vertical dashed line on the right side of the diagram indicates that Log(λ) differs from the minimum error (lambda.min) by one 
standard error; (B) LASSO path diagram: curve of regression coefficients versus Log(λ) as the coefficient scores gradually decrease.

FIGURE 3

(A) Interactive nomogram; (B) Dynamic nomogram.
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FIGURE 4

(A) ROC graph; (B) Calibration graph; (C) DCA graph; (D) CIC graph.

adjustments, thereby endowing the TyG composite indicators with 
superior predictive power compared to the standalone TyG indicator. 
This finding is consistent with previous research outcomes (22).

As an effective measure of obesity, the significant positive 
correlation between an increase in BRI and the risk of SO persists after 
adjustment for all covariates. On the other hand, as an effective 
indicator of insulin resistance, the association between HOMA-IR and 
SO in the fully adjusted model (Model 4) shows a lower odds ratio 
compared to TyG and its composite indicators, suggesting that TyG, 
as a rapid and convenient measure of insulin resistance, may have 
superior predictive power to HOMA-IR, a finding that has been 
confirmed in previous research (21). Concurrently, another obesity 
indicator—LAP shows a lower odds ratio in Model 4 compared to 
BRI, and its nonlinear relationship with SO exhibits a more modest 
upward trend, which may imply that LAP’s performance in predicting 
SO is not as strong as that of BRI.

We constructed a nomogram to visually represent our diagnostic 
model, highlighting that advanced age, male, high WHtR, and high 

TyG-WCR are significant risk factors for sarcopenic obesity in the 
United States population. Consensus published in 2022 on sarcopenic 
obesity suggests that obese and overweight individuals over the age of 
70 should be considered at risk for SO, as previous studies have shown 
a significant increase in the prevalence of sarcopenia with advancing 
age (29). Epidemiological data indicate a rising incidence of SO in 
older adults, with those aged 65 and above being at a higher risk (8). 
Prior research has linked the development of sarcopenic obesity to the 
crosstalk between adipose and skeletal muscle tissues associated with 
aging, which is considered one of the primary mechanisms (16). The 
accumulation of adipose tissue increases intramuscular fat infiltration, 
leading to an increase in intermuscular free fatty acids and a 
dysregulation of adipokines (30), particularly the shift from 
adiponectin to leptin/Monocyte chemoattractant protein-1 (MCP-1), 
also known as Chemokine ligand 2 (CCL2) (31). Alongside other 
adipokines, they can bind to CC chemokine receptor 2 (CCR2), 
cluster of differentiation 36 (CD36), and/or toll-like receptor 4 (32), 
further influencing the macrophage phenotype from an 
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anti-inflammatory (M2) to a pro-inflammatory (M1) state, M2 
macrophages, predominant in leaner individuals, play a role in 
improving glucose metabolism and maintaining insulin sensitivity, yet 
their specific efficacy depends on Transforming Growth Factor-beta 
(TGF-β) (33). Adipose tissue not only promotes the activation of 
pro-inflammatory Type 1 helper T cells (Th1) but also induces a shift 
in T lymphocyte types from the anti-inflammatory Th2 and Treg types 
to the pro-inflammatory Th1 and Th17 types. This transition is 
accompanied by the secretion of interferon-γ, further activating M1 
macrophages (34). In this pro-inflammatory environment, adipokines 
are activated, which not only induce muscle cell apoptosis but also 
affect the regulatory mechanisms of muscle atrophy activation 
proteins (16). Studies indicate that the transition between M1 and M2 
macrophages is closely related to the development of systemic IR (35). 
These findings provide theoretical support for our model, explaining 
the choice of TyG-WCR, adjusted for WCR, as an indicator of insulin 
resistance when applying Lasso regression analysis to address 
multicollinearity in composite indicators. This indicator, proposed in 
this study, takes into account the impact of WCR on insulin resistance, 
potentially offering a more accurate predictive tool. The study results 
show that as TyG-WCR increases, the risk of SO rises significantly, 
and its predictive power surpasses that of the standalone TyG 
indicator. This advantage may stem from WCR being a composite 
indicator of WC and CC, which not only considers early screening for 
central obesity (using WC as an indicator) (36), but also early 
screening for sarcopenia (using CC as an indicator) (37), thereby 
providing a reasonable explanation for our results. A high WHtR is 
considered a risk factor for SO in our study, consistent with previous 
research findings (38). The random forest algorithm, when assessing 
the relative importance of variables in the model, indicates that gender 
is not a key predictive factor. Nonetheless, the consideration of gender 

in our diagnostic model may provide value for gender-specific 
predictions. This is because the diagnostic criteria for SO set different 
thresholds for the same variables between genders, highlighting the 
importance of gender specificity in diagnostic and predictive 
models (6).

The robustness of the model was ensured through the scientific 
identification of key risk factors and the treatment of covariates. The 
predictive performance of the model was satisfactory when evaluated 
internally and in the validation set; however, further external 
validation of the model is necessary in the future. In addition, the 
variables included in the model are easily accessible basic indicators, 
which makes the model a potentially effective diagnostic model for 
sarcopenic obesity, facilitating future screening for the disease in parts 
of the country where instrumentation limitations exist.

It is essential to acknowledge the constraints of this study. Firstly, 
the cross-sectional data utilized in this study were employed solely for 
the construction of the diagnostic model. In the future, it is imperative 
to confirm and further develop our model using cohort studies for 
these variables in predicting disease occurrence. Secondly, the 
nomogram has only been internally validated; thus, further external 
validation is necessary to ensure its reliability and generalizability. It 
should be noted, however, that NHANES is a cross-sectional national 
survey conducted annually. Consequently, it would be beneficial to 
validate our model using the upcoming NHANES dataset in future 
studies. Third, it should be recognized that our dataset only contains 
information on the U.S. population. However, the U.S. is a multiracial, 
cosmopolitan country and a country of immigrants with multicultural 
backgrounds, which may result in the representation of different 
racial groups.

Nonetheless, our study reveals the association between insulin 
resistance and obesity indicators with SO and visualizes this 

FIGURE 5

(A) Bootstrap-based ROC graph; (B) AUC distribution graph based on Bootstrap method.
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FIGURE 6

(A) ROC graph; (B) Calibration graph; (C) DCA graph; (D) CIC graph.

relationship, laying a solid foundation for future research. 
We anticipate that our model will receive broader external validation 
in the future, to facilitate the development of early screening and 
prevention efforts for SO.

5 Conclusion

After adjusting for potential confounding factors in the US 
population, our study found that the TyG, as well as combinations of TyG 
with other obesity indicators (TyG-WC, TyG-BMI, TyG-WCR, 
TyG-WHtR, TyG-WAR), HOMA-IR, BRI, and LAP, were all significantly 
associated with SO. It is therefore recommended that these indicators 
be given full consideration in future studies, with a view to deepening our 
understanding of the risk factors associated with SO.

The utilization of nomograms or dynamic nomograms in 
diagnostic models by clinical staff enables the rapid identification of 
individuals at risk of SO. This ability to rapidly identify is of critical 

importance for enabling the early detection, intervention and 
treatment of SO. Furthermore, our study, based on a nationally 
representative dataset, highlights that the U.S. population of advanced 
age, males with high WHtR, and individuals with high TyG-WCR are 
key targets for focused attention and preventive measures.
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