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The human gut microbiome dysbiosis plays an important role in the pathogenesis 
of Parkinson’s disease (PD). The bidirectional relationship between the enteric 
nervous system (ENS) and central nervous system (CNS) under the mediation 
of the gut-brain axis control the gastrointestinal functioning. This review article 
discusses key mechanisms by which modifications in the composition and function 
of the gut microbiota (GM) influence PD progression and motor control loss. 
Increased intestinal permeability, chronic inflammation, oxidative stress, α-synuclein 
aggregation, and neurotransmitter imbalances are some key factors that govern 
gastrointestinal pathology and PD progression. The bacterial taxa of the gut 
associated with PD development are discussed with emphasis on the enteric 
nervous system (ENS), as well as the impact of gut bacteria on dopamine production 
and levodopa metabolism. The pathophysiology and course of the disease are 
associated with several inflammatory markers, including TNF-α, IL-1β, and IL-6. 
Emerging therapeutic strategies targeting the gut microbiome include probiotics, 
prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT). The 
article explored how dietary changes may affect the gut microbiota (GM) and the 
ways that can affect Parkinson’s disease (PD), with a focus on nutrition-based, 
Mediterranean, and ketogenic diets. This comprehensive review synthesizes current 
evidence on the role of the gut microbiome in PD pathogenesis and explores 
its potential as a therapeutic target. Understanding these complex interactions 
may assist in the development of novel diagnostic tools and treatment options 
for this neurodegenerative disorder.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative condition defined by the 
degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) that causes 
a variety of motor and non-motor symptoms (1). PD is becoming a severe public health 
concern with a global prevalence of roughly 6.1 million people in 2016 and a projected to 
be  twice by 2040 (2). PD shows complex etiology, which includes both hereditary and 
environmental factors that contribute in the disease pathogenesis (3). Study reported that 
mutations in genes such as SNCA, LRRK2, PARK7, PINK1, and PRKN have been linked to 
familial forms of PD, whereas genome-wide association studies revealed over 90 risk loci for 
idiopathic PD (4). The human gut microbiome (HGM), which contains around 1014 bacteria, 
play crucial role in sustaining host health and affecting physiological systems such as the 
central nervous system (CNS). Gut-brain axis (GBA) is a bidirectional communication 
network between the gastrointestinal tract (GIT) and CNS, involving nervous, immune, and 
endocrine systems (5, 6). The gut microbiota (GM) present in the gastrointestinal tract (GIT) 
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plays crucial role in maintaining the health of host by regulating cells 
in local as well distance organs, including brain (7). GBA facilitates 
bidirectional transmission that enables two-way communication 
between the gut and the host’s neurological system. Information is 
transmitted through brain networks, hormones and the immune 
system to facilitate the intestinal microbiota (8). According to 
epidemiological research, PD patients frequently experience 
gastrointestinal symptoms (GIS) such as constipation due to changes 
in the autonomic nervous system that slow down the movement of 
food through the digestive tract. (9). This finding is consistent with 
Braak’s theory, which postulates that PD disease may begin in the 
enteric nervous system (ENS) and then travel down the vagus nerve 
to the CNS (10). Molecular and cellular research has shown that Gut 
dysbiosis (GD) influences PD progression by various pathways, 
including GBA, Toll-like receptors (TLR), Humoral immunity 
response (HIR), α-synuclein accumulation and hypothalamic–
pituitary–adrenal (HPA) axis (11). GD interferes with the local and 
systemic inflammatory states that result in compromised intestinal 
epithelial barrier integrity (IEBI). Simultaneously, GD causes 
disruptions in permeability of the brain parenchyma, which leads to 
neuroinflammation and neuronal cell malfunction (12). The 
progression of PD is increasingly linked to TLR-mediated immune 
responses, which result from the persistent activation of gut TLRs 
caused by microbial dysbiosis. There are studies indicating the 
involvement of TLR2 and TLR4 in PD pathogenesis (13). TLR2 and 
TLR4 are expressed by various cell populations throughout the 
gastrointestinal barrier, where they are activated in response to 
microbial byproducts and endogenous substances. Within the 
epithelial barrier, intestinal epithelial cells (IECs) and enteroendocrine 
cells (EECs) express TLR2 and TLR4, while in the submucosa, 
macrophages and dendritic cells do the same (14, 15). Smooth muscle 
cells in the muscular layer of the gut and throughout the enteric 
nervous system (including subepithelial and myenteric neurons and 
glia) also express these receptors. Apart from their role in innate 
immunity, TLR2 and TLR4 also regulate homeostasis and permeability 
of gut (16). The expression of TLR2 is influenced by gut microbes, and 
TLR2 is capable of detecting bacterial components such as lipoteichoic 
acid, lipoproteins, peptidoglycans, and bacterial amyloid (for example, 
curli protein) (17). Curli protein binds to and activates TLR2, leading 
to an increase in intracellular α-syn, which in turn triggers a 
neuroinflammatory response through the TLR2/MyD88/NF-κB 
pathway (18, 19). Similarly, the activation of TLR2 in the brains of PD 
patients leads to elevated levels of proinflammatory cytokines and 
microglial recruitment, intensifying neuroinflammation and α-syn 
expression. A strong correlation between these pathologies is indicated 
by the high TLR2 immunoreactivity observed in most α-syn-positive 
Lewy bodies (20, 21). Furthermore, a higher number of TLR4-
expressing cells are observed in the colonic tissues of PD patients 
compared to healthy controls (22). HIR system is recognized to be one 
of the feasible pathways through which GD affects the brain, leading 
to the onset of PD (23). Highlighting the cooperative state of the 
microbiota and the innate mucosal immune system is crucial. The gut 
wall immune system comprises diverse immune cell populations such 
as IgA-producing plasma cells, γδT cells, and CD4+ T cells with a 
dominant Th1 or Th2 phenotype (24).

Recent research has indicated that the CD4+ T-cell population in 
the intestinal mucosa includes numerous Th-17 cells that generate 
Interleukin-17, as well as T-regulatory cells. Furthermore, it has been 

documented that there are IL-22-producing NK-22 cells present (25). 
α-synuclein is a protein that naturally occurs in healthy nerve cells and 
is primarily located in presynaptic terminals, where it helps regulate 
the function of synaptic vesicles and the release of neurotransmitters. 
Its molecular mass is around 14 kDa and consists of 140 amino acids 
(26, 27). Aggregation of α-synuclein and misfolding of normal cellular 
prion proteins (CPP), are important mechanism in PD pathogenesis 
(28). Accumulation of α-synuclein causes disruptions in cellular 
processes, which results in loss of dopamine-motor producing 
neurons and symptoms (29).

Changes in the makeup or function of gut bacteria could 
compromise the intestinal barrier, allowing prions to travel from the 
gut to the brain. Studies observed that gut bacteria produce 
metabolites such as lipopolysaccharides (LPS), and short-chain fatty 
acids (SCFAs) that are directly associated with the α-synuclein 
aggregation process (30). It has been demonstrated that LPS of Gram-
negative bacteria can cause α-synuclein aggregation and set off 
inflammatory reactions (31). Gram-negative bacteria like Escherichia 
coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Helicobacter 
pylori stimulate TLR4, triggering immune responses that lead to the 
production of pro-inflammatory cytokines, chemokines, and oxidative 
factors. Increased blood endotoxins influence inflammatory cytokines 
that triggers the blood–brain barrier (BBB) and circumventricular 
organs (CVO), which in turn activate microglia, leading to loss of 
synapses and neurons. Moreover, Study conducted on mouse model 
reported that LPS can downregulate occluding (a protein in tight 
junction) in the intestinal epithelial cells and upregulate TNF-α, which 
promotes the expression of α-synuclein (32, 33).

Several research studies suggested that altered GM plays a crucial 
role in accelerating oxidative stress, inflammation and DNA damage. 
These factors may contribute to PD development (34). The comparison 
between germ-free and conventionally raised mice through whole-
genome bisulfite sequencing revealed that the presence of commensal 
microbiota in the intestinal epithelium influences TET2/3-dependent 
DNA methylation changes at the regulatory elements of specific genes, 
which helps in the maintenance of gut balance. Thus, microbiota 
driven epigenetic reprogramming is crucial for preserving intestinal 
homeostasis (35). The acute gut inflammation caused by dextran 
sodium sulfate (DDS), exposure of the intestinal epithelium to 
microbiota results in abnormal DNA methylation and chromatin 
modifications at regulatory elements, similar to those seen in colitis 
(36). Study reported that early-life inflammatory stressors can increase 
gut permeability via downregulating E-cadherin expression (an 
epithelial junction protein), mediated by elevated expression of 
MicroRNA-155 (37). However, compounds possess antioxidant and 
anti-inflammatory properties such as cinnamon and turmeric have 
been found to shown protective effects by modulating E-cadherin-2 
expression (38). A study observed that amino acids containing 
selenium such as selenocysteine and its derivative selenocystine, 
Alpha-methyl selenocysteine [(αMe)Sec] could improve 
DSS-triggered oxidative stress and intestinal inflammation in 
mice (39).

Increased intestinal permeability in PD patients has been linked 
to altered microbial populations, which cause bacterial metabolites 
and inflammatory mediators to translocate into the systemic 
circulation. This leaky gut characteristic might be part of the low-grade 
chronic inflammation (40). Research has demonstrated the 
importance of volatile SCFAs, specifically butyrate, in maintaining the 
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integrity of the intestinal barrier. Due to a lack of SCFAs, α-synuclein 
can move from the stomach to the brain more readily, which 
heightened intestinal permeability and the pathological dissemination 
of the protein (41). Metagenomic studies demonstrated a clear 
distinction in GM makeup between PD patients and healthy controls. 
Difference between PD patients and healthy controls include a 
reduction in bacterial community that produce butyrate such as 
Faecalibacterium prausnitzii, and a rise in mucin-degrading species 
such as Akkermansia muciniphila (42). Rise of mucin degrading 
bacteria and decline of essential butyrate producing bacteria in gut 
environments might have profound effects on immunological 
response, host metabolism and the production of neurotransmitters 
(43). Dietary interventions such as nutritional supplements or specific 
diets are commonly used in clinical practices to restore essential gut 
flora and treat neurodegenerative disorders. For instance, a 
Mediterranean diet (Plant-based foods and essential fats) or a 
nutritious diet including fruits, vegetables, and fish seems to help 
maintain or decelerate cognitive decline (44).

Nevertheless, probiotics, prebiotics, and fecal microbiota 
transplantation (FMT) have been proposed microbiome-based 
treatments that have shown promise in preclinical models and early 
clinical studies (45). Studies demonstrated that the administration of 
certain probiotic strains reduces α-synuclein aggregation and motor 
impairments in the PD mouse model (46). Similar to this, Goya et al. 
(47) found that the probiotic strain PXN21 of Bacillus subtilis inhibits 
α-synuclein aggregation and clears aggregates in an established 
Caenorhabditis elegans model of synucleinopathy. Prebiotics has been 
shown to improve the immune function of the host, reduce gut 
inflammation, strengthen the colon, and decrease allergic reactions. 
However, ingesting prebiotics does not directly impose these effects; 
rather they provide their benefits in an indirect manner. It has been 
observed that prebiotics improve the mucosal barrier by promoting 
the growth of probiotics, which in turn can increase epithelial defense 
mechanisms (48).

The FMT has demonstrated remarkable efficiency in restoring the 
healthy GM and other diseases caused by GM perturbation, 
particularly Clostridium difficile infection. Some studies have found 
that FMT is safe and can improve motor and non-motor symptoms of 
PD (49, 50). An initial uncontrolled study with 6 PD patients, 
administering donor FMT through colonoscopy was found to be safe 
and led to enhanced motor and non-motor symptoms of PD after 
6 months. However, long-term investigations with extensive 
randomized controlled trials are needed to evaluate the effectiveness 
and overall safety (50). A clinical pilot study suggests that FMT in 
mouse model of PD reduced GM alterations and decreased 
inflammation by activating microglia and astrocytes in the brain 
region of substantia nigra (SN) (51). Another study of PD mouse 
model induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) revealed that FMT is capable of reducing expression of alpha-
synuclein, inhibiting microglia activation and blocking TLR4/P13K/
AKT/NF-KB signaling in the SN (52). These pathways significant role 
in the neuroinflammatory processes associated with PD. Inhibition of 
these pathways through interventions like FMT may offer therapeutic 
benefits in managing PD symptoms and slowing its progression.

This review article aims to deliver an extensive overview of the 
state of knowledge on the involvement of GM in PD pathogenesis and 
the developing avenue of microbiome-based therapeutics. Moreover, 
it examines the molecular pathways that trigger GBA in PD patients, 

assess the safety and effectiveness of several microbiome-targeted 
therapies, and address the obstacles and potential paths forward in 
this domain. Furthermore, this review also emphasizes on the 
potential of microbiome-based therapies for transforming the 
neurodegenerative pathways and therapeutic approaches in 
PD treatment.

2 Effect of the gut microbiome on 
neural interactions

The majority of the microbial species accommodated in the 
human body are found in the large intestines, where they can disrupt 
the availability and absorption of nutrients and may impact the 
homeostasis of the host system (53). The ENS communicates with the 
autonomic nervous system (ANS) and CNS through sensory and 
motor neurons as well as neurotransmitters. The vagus nerve’s afferent 
and efferent fibers are the primary source of the neurological circuitry 
that mediates this connection (54). Neurotransmitters such as 
dopamine, acetylcholine, serotonin, and some neuroactive chemicals 
such as short-chain fatty acids (SCFAs), can communicate with the 
brain via endocrine system (55). Colon biopsies performed on PD 
patients showed accumulation of α-synuclein in the colon’s enteric 
neurons before diagnosis of motor symptoms, which suggests 
α-synuclein may aggregate in the ENS before its dissemination to the 
brain (56). Moreover, as previous studies suggested that alterations in 
GM elevate oxidative stress, promoting α-synuclein aggregation 
within the intestines. The aggregated α-synuclein migrates to the brain 
through vagal or systemic pathways. Increased intestinal permeability 
could lead to systemic inflammation and BBB disruption, which may 
activate microglia in the brain (57). The binding and internalization 
of pre-formed fibrils (PFFs) to receptors, neurexin1β or Lymphocyte 
Activation Gene 3 (LAG3) activate microglia (Figure 1). Microglial 
cells show increased expression of LAG3, their activation leads to 
increased oxidative stress, resulting in neuroinflammation. This 
neuroinflammation facilitates further aggregation and propagation of 
α-synuclein contributes to neurodegeneration and the progression of 
PD (58). Microbial peptides and metabolic products are important for 
microglia function in the CNS, disturbance in microbiota producing 
essential metabolic products poses severe impact on inflammatory 
balance, which influences the progression and development of PD (59, 
60). Microorganisms such as Bacteroides vulgatus, Parabacteroides 
distasonis, Lactobacillus salivarius, and various Clostridium species, 
have been reported to alter the neuroinflammatory signaling that 
impacts the functioning of the brain (61). Research indicated that GM 
has a role in instigation of inflammation through activation of CD4+ 
T cell responses (62). On activation CD4+ T cells differentiate into 
Th1 and Th17 subtypes, releasing cytokines like IL-17 and IFN-γ, 
these cytokines further stimulate neutrophils and macrophages, 
resulting in the onset of intestinal inflammation (63). The 
inflammation initiated by Th1 and Th17 cells further promotes 
α-synuclein aggregation within ENS and its eventual transference to 
CNS (64) (Figure  1). Some findings from colonic biopsies of PD 
patients showed increased pro-inflammatory markers such as TNF, 
IL-5, and IFN-γ (65). The research demonstrated that CD4+ T cells 
are responsible for neurodegeneration, as CD4+ T lymphocytes have 
been found as key mediators in dopaminergic neuronal death in the 
MPTP mouse model of PD (66). In contrast, the absence of CD4+ T 

https://doi.org/10.3389/fnut.2024.1496616
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Alam et al. 10.3389/fnut.2024.1496616

Frontiers in Nutrition 04 frontiersin.org

cells in immunodeficient mice resulted in reduced neuronal 
death (67).

3 Association between Parkinson’s 
disease and gut microbiota

The individuals with early-stage PD were found to have structures 
of α-synuclein in their colons that suggest the disease might originate 
in the gut first (68). The gastrointestinal issues in PD patients often 
begin before the onset of PD, which indicates a connection between 
intestinal disorders and the neurological diseases (69). Helicobacter 
pylori is a common bacterium that colonizes gastric mucosa and 
causes severe gastrointestinal issues in the gut (70). Studies have 
shown a significant correlation between the presence of H. pylori and 
the worsening of motor symptoms in PD patients (71). Research has 
indicated that the quantity of fecal tyrosine decarboxylase (TyrDC) is 
positively correlated with levodopa dose, whereas there is an inverse 
association between plasma levodopa levels and the presence of 
bacterial TyrDC genes in PD patients’ jejunum (72). Enterococcus 
faecalis is able to decarboxylate both levodopa and tyrosine; therefore, 

PD patients with high levels of Enterococcus faecalis experience 
decreased serum concentrations of levodopa (73). The presence of 
Enterococcus faecalis and its TyrDC-coding genes can therefore predict 
individual differences in levodopa metabolism within the complex gut 
microbiome (74). Above mentioned studies make Enterococcus faecalis 
is a key factor in levodopa bioavailability, thus targeting this bacterium 
could be a potential strategy to enhance the effectiveness of levodopa 
in treating PD.

Sulfate-reducing bacteria belonging to the genus Desulfovibrio 
(DSV) are anaerobic microorganisms which generate energy via 
reducing sulfate and producing a significant amount of sulfide (75). 
DSV is chiefly found in the human gut and is associated with 
inflammatory bowel disease (IBD) (76). Research using case control 
studies has confirmed that people with PD had higher relative 
abundances of Desulfovibrionaceae bacteria in their gut. DSVs are 
strongly associated with the onset and progression of PD (77). DSVs 
actively generate hydrogen sulfide (H2S) through sulfate reduction by 
utilizing sulfate as an electron acceptor during the respiration and 
increase H2S production, which causes severe damage to the CNS 
(78). H2S releases mitochondrial cytochrome c into the cytoplasm, 
which induces the production of α-synuclein free radicals and its 

FIGURE 1

Gut microbiota alterations and their role in Parkinson’s disease (PD) progression. In PD, α-synuclein accumulates in enteric neurons before motor 
symptoms, with altered gut microbiota (GM) increasing oxidative stress and promoting α-synuclein aggregation. This aggregation may migrate to the 
brain via vagal and systemic pathways, leading to intestinal and systemic inflammation, blood–brain barrier (BBB) dysfunction, and microglial activation. 
Microbial species such as Bacteroides vulgatus, Parabacteroides distasonis, and Lactobacillus salivarius influence neuroinflammatory signaling. GM-
induced CD4+ T cell activation triggers Th1/Th17 differentiation, cytokine release, and inflammation, promoting α-synuclein aggregation and its 
transference to the CNS. Elevated pro-inflammatory markers (TNF-α, IL-5, IFN-γ) are found in PD colonic biopsies.

https://doi.org/10.3389/fnut.2024.1496616
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Alam et al. 10.3389/fnut.2024.1496616

Frontiers in Nutrition 05 frontiersin.org

polymerization (79). Furthermore, H2S is also associated with 
disruption of iron metabolism by increasing cytoplasmic iron level, 
which is critical for CNS homeostasis (80). Higher amounts of DSV 
have been found in the stool samples of PD patients, almost every 
stool sample from PD patients had positive results for the DSV-specific 
(FeFe)-hydrogenase gene (81). The quantity of DSV bacteria in fecal 
samples correlates with the severity of PD; hence, variations in DSV 
levels may serve as a preliminary marker of the advancement of PD.

4 Inflammatory processes and their 
impact on Parkinson’s disease

The aging-related inflammatory conditions are known as 
Inflammaging, which are significantly influenced by the GM 
alterations (82). Intestinal inflammation and PD are closely related, as 
evidenced by the elevated expression of inflammatory cytokines in the 
intestinal tissues of PD patients (83). Higher levels of pro-inflammatory 
cytokines and glial cell markers were observed, and stool samples had 
higher concentrations of inflammatory mediators such as TNF-α, 
IL-1β, IL-6, and IFN-γ in PD patients’ colon biopsy tissues, which 
indicate gastrointestinal inflammation (84) (Figure 2). It has been 
found that there is a change of anti-inflammatory bacteria in PD 

patients. A study revealed substantial reduction in Blautia, 
Coprococcus, and Roseburia genera in stool samples of PD patients 
(85). The systemic sub-inflammatory state of PD is induced by the 
relative abundances of Verrucomicrobia and Bacteroides which are 
linked to higher plasma levels of TNF-α and IFN-γ (86) (Figure 2). 
Young Pink1 knockout mice experience severe dyskinesia and striatal 
dopaminergic axon loss when exposed to Gram-negative bacteria that 
cause mild intestinal symptoms in adulthood. It suggests a strong 
interaction between intestinal microbes and intestinal inflammation 
in addition to a genetic predisposition to PD (87).

5 Toll-like receptor signaling in 
Parkinson’s disease

Toll-like receptors (TLRs) are transmembrane pattern 
recognition receptor proteins that both preserve intestinal 
homeostasis and trigger the innate immune response by identifying 
invading microbial and viral components (88). A strong correlation 
between TLRs and PD has been shown in several investigations. 
TLR2 and TLR4 are overexpressed in the blood and brain tissues of 
patients with PD (89). TLR2, which identifies a variety of bacterial 
products, including lipoteichoic acid, lipoproteins, peptidoglycans, 

FIGURE 2

Role of inflammatory cascades in Parkinson’s disease. The stool sample from the PD patient showed diminished population of anti-inflammatory 
microbiota such as Blautia, Coprococcus, and Roseburia. Furthermore, the sample from gastrointestinal mucosa also exhibited low population of anti-
inflammatory bacteria such as Faecalibacterium. Studies suggest that these both conditions are linked to higher concentration of the inflammatory 
markers such as TNF-α, IL-5, and IFN-γ in PD patients. The inflammatory markers further triggers α-synuclein production which exacerbates the ailing 
condition.
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and bacterial amyloids like curli protein, can be expressed in response 
to the GM (13) (Figure 3). The binding to TLR2 raises intracellular 
α-synuclein levels, which in turn activates the TLR2/MyD88/NF-κB 
signaling cascade that causes a neuroinflammatory response (18). The 
activation of TLR2 in the brains of PD patients, results in elevated 
levels of pro-inflammatory cytokines and the migration of microglia 
along with intensification of neuroinflammation combined with 
elevated production of α-synuclein (20) (Figure 3). The majority of 
α-synuclein Lewy bodies possess high TLR2 immunoreactivity, 
suggesting a robust relationship between these pathologies (21). The 
colonic tissues of PD patients have shown to have more TLR4-
expressing cells than those of healthy controls. The TLR4 signaling 
pathway is actively involved in the inflammation observed in the 
brains and intestines of PD patients. It is capable of recognizing 
endogenous chemicals and LPS from Gram-negative bacteria (90). 
TLR4 plays a crucial role in the removal of α-synuclein and triggers 
the microglial reactions (91). The effects of rotenone on intestinal 
barrier integrity, colonic α-synuclein levels, GFAP expression in the 
myenteric plexus, microglial activation in the nigrostriatal pathway, 
loss of dopaminergic neurons, and motor dysfunction are greatly 
attenuated in the presence of TLR4 (92).

6 Parkinson’s disease and its 
association with inflammatory bowel 
disease (IBD)

Several systematic reviews and studies mentioned that the risk of 
acquiring PD is greater in people with inflammatory bowel disease 
(IBD) (93). In comparison to healthy control, patients suffering with 
IBD show a reduced abundance of Firmicutes and a greater prevalence 
of Enterobacteriaceae (94). Several genetic risk factors that are 
common to both PD and IBD have been found via research into their 
association. PD and IBD are linked to mutations in the leucine-rich 
repeat kinase 2 (LRRK2) gene, which is implicated in microbial 
immunological signaling (95). There is strong evidence that LRRK2 is 
involved in immune cells and inflammatory illnesses (96). Research 
on animals suggests that Lrrk2 p.G2019S mice had more severe colitis 
than controls, which results in decreased motor function and death of 
dopaminergic neurons (97). LRRK2 mutations greatly worsen the 
inflammation in the brain and colon further influencing 
immunological responses and neuronal survival. Even during the 
prodromal period, when LRRK2 expression in the colon is noticeably 
raised, increased expression of LRRK2 has been observed in colon 

FIGURE 3

Toll-like receptor (TLR) signaling in relation to Parkinson’s disease. Microbial components such as lipoproteins, peptidoglycans, and lipoteichoic acid, 
which serves as ligand for the receptor. After their binding, TLR receptors are overexpressed as observed in PD patients. The binding triggers formation 
of α-synuclein. Production of α-synuclein triggers TLR2/MyD88/NF-κB signaling cascade which in turn leads to expression on pro-inflammatory 
factors such as TNF-α, IL-5, and IFN-γ. These pro-inflammatory factors further aggregate the α-synuclein accumulation. The α-synuclein and pro-
inflammatory factors via enteric nervous system reaches the brain and cause neuro-inflammation and microglia migration. Microbial migration is also 
one of the contributing factors to the neuroinflammation.
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biopsies from PD patients, with expression levels corresponding with 
disease severity (98). The NOD2 gene has been repeatedly linked to 
PD susceptibility in studies that have linked it to Crohn’s disease (CD) 
closely (93). A study indicated that intronic single nucleotide 
polymorphism (SNPs) of NOD2 has been linked to PD risk (99). 
Moreover, the CARD15 gene SNP, linked to CD, is overexpressed in 
PD patients (100). Similar underlying processes are indicated by other 
known risk loci for both PD and IBD, which include lysosomal 
dysfunction (e.g., GALC and GPR65) and immunological response 
and microbial induction (e.g., the HLA locus) (101). Therapeutically, 
research has demonstrated that there is a correlation between IBD and 
PD. Individuals with IBD who were treated with anti-TNF biologics 
as part of their chronic anti-inflammatory regimen had a 78% lower 
risk of developing PD than those who did not get this medication 
(102). This indicates that PD may be prevented in part by suppressing 
peripheral inflammation.

7 Gut microbiota-based therapies for 
Parkinson’s disease

7.1 Probiotics, prebiotics, synbiotics, and 
postbiotics in PD management

Probiotics are live microorganisms that provide health benefits to 
the host when administered in sufficient amounts. Probiotics have 
gained much attention in the context of neurodegenerative diseases 
such as PD (103). The logic for their use in PD stems from the growing 
evidence that GD and altered GBA communication contribute to the 
disease pathogenesis. Probiotics possess strains of Lactobacillus and 
Bifidobacterium which are potential microorganisms that can restore 
microbial balance in the gut, ultimately reducing inflammation and 
improving GI functions, which are often impaired in PD patients 
(104). A study demonstrated that PD patients receiving a multi-strain 
probiotic supplement exhibited improvements in constipation and 
reduced levels of pro-inflammatory markers in the gut (105). Another 
study found that probiotic supplementation can modulate GM 
composition and potentially slow down the disease progression by 
reducing systemic inflammation (106). Probiotics also show beneficial 
effects through the production of short-chain fatty acids (SCFAs), 
these short-chain fatty acids possess anti-inflammatory properties and 
play a role in maintaining intestinal barrier integrity (107). Despite all 
of the beneficial data, the efficacy and potential of probiotics remain 
an area of research. Ongoing studies aim to refine the selection of 
bacterial strains, treatment duration, and dose requirements in 
different scenarios to maximize clinical benefits.

Prebiotics are non-digestible fibers that stimulate the growth and 
activity of beneficial gut bacteria. Prebiotics have been utilized as 
potential therapeutic agents in combating neurodegenerative 
disorders like PD (108). Prebiotics such as inulin, 
galactooligosaccharides (GOS), fructooligosaccharides (FOS) are 
known for promoting the growth and numbers of beneficial bacteria 
such as Bifidobacteria and Lactobacilli (109). These bacteria play vital 
roles in sustaining gut health and reducing inflammation in the gut. 
Studies suggested that prebiotics can influence the GBA and offer great 
neuroprotection in PD patients (110). A study demonstrated that 
prebiotics mimic probiotics as they also enhance the production of 
short-chain fatty acids (SCFAs) and possess anti-inflammatory 

properties that can strengthen the intestinal barrier function (111). By 
strengthening the gut integrity, prebiotics hinder the translocation of 
pro-inflammatory molecules and α-synuclein aggregates from the gut 
to the brain, which is a process in PD progression (112). Moreover, 
prebiotics administration in PD patients helps in restoration of gut 
microbial diversity, which often reduced due to dysbiosis in GM (113). 
Prebiotics treatment with sufficient doses has shown promising results 
in reducing gastrointestinal discomfort and systemic inflammation in 
PD patients (114). Synbiotics is a combination of both probiotics and 
prebiotics which is used as an advanced therapeutic approach for GBA 
dysfunction and other gastrointestinal disorders (115). Unlike 
probiotics or prebiotics, the synbiotics enhance the survival and 
activity of beneficial bacteria synergistically, thereby improving 
colonizing and growth of beneficial microbes in gut (116). Synbiotics 
have also been utilized to stimulate microbiota growth while 
increasing neuroprotective metabolites production such as SCFAs and 
butyrate (117). Research has shown that synbiotics administration in 
PD significantly reduces oxidative stress and neuroinflammation by 
influencing metabolic pathways of the gut microbiome (118). Another 
study highlighted that synbiotics may modulate the 
neuroinflammatory markers such as TNF-α and IL-6 that are found 
to be elevated in the case of PD (119). Proper calculated dosage of 
synbiotics offers a protective effect against neuronal damage. Unlike 
probiotic and prebiotic supplement administrations, the use of 
synbiotics potentially supports long-term gut microbial stability and 
provides sustained benefits for both gastrointestinal and central 
nervous system health (120). Postbiotics are the bioactive compounds 
that are produced by the fermentation of probiotics, it has attained 
great attention for their potent therapeutic role in several diseases, 
including neurodegenerative disorders such as PD (121). They consist 
of microbial metabolites such as short-chain fatty acids (SCFAs), 
lipopolysaccharides, enzymes, and peptides (122). It has been reported 
that SCFAs, chiefly butyrate, possess a neuroprotective effect, they 
promote anti-inflammatory pathways and enhance mitochondrial 
function in neuronal cells (123). These non-viable constituents employ 
beneficial effects on the host as they actively modulate immune 
responses by that inflammation is reduced, supporting the gut barrier 
integrity (124). The research highlights the importance of available 
interventions such as probiotics, prebiotics, synbiotics, and postbiotics. 
Several studies indicated the great promise of these components in 
alleviating the microbial dysbiosis that is implicated in PD patients. 
These microbiome-targeted interventions improve gut microbial 
balance, reduce inflammation, and support neuroprotection with no 
side effects (125, 126).

7.2 Fecal microbiota transplantation as a 
treatment for Parkinson’s disease

Fecal microbiota transplantation (FMT) is one of the 
comprehensive methods for GM restoration that involves the transfer 
of healthy GM from donors into PD patients (127). This practice has 
historical roots, a Chinese physician Ge Hong, employed this method 
to treat acute diarrhea and gastroenteritis (128). The FMT method is 
gaining significant attention for PD patients, although its clinical 
application is not yet very popular and accepted. There have been 
limited data and case studies to show strong outcomes (49). Some 
research suggested that the FMT method can reduce gastrointestinal 
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consequences and improve both motor and non-motor symptoms in 
PD (129). A case study from China showed significant improvements 
in constipation and tremors associated with PD when FMT is followed 
(130). Another study also found that FMT administration through 
colonoscopy improved motor and non-motor symptoms after 
6 months (129). A study of 2,010 patients for more than 3 months 
observed that FMT is a safe and effective therapy for treating 
gastrointestinal diseases (131). Moreover, this FMT method has 
shown great promise in improving sleep quality, anxiety, and 
depression in people suffering from PD (132). Studies on animals 
suggest that the FTM method can also be beneficial for PD patients, 
as this alters the microbial composition and modulates the immune 
response, which suppresses pathogen toxicity (133). In specified 
research it has been shown that FMT from the healthy mouse donor 
rectified GD in PD mouse model by increasing beneficial bacteria 
such as Firmicutes and Clostridiales (134). Moreover, the FMT therapy 
in PD mouse model enhanced physical performance and increased 
striatal serotonin and dopamine levels (135).

7.3 Dietary modification for management 
of Parkinson’s disease

Dietary understanding and its adjustments are an important 
approach for the management of PD. As the disease progression is 
linked to gastrointestinal dysfunction, inflammation, and GM 
alterations, several nutrition-based interventions play an essential role 
in improving both motor and non-motor symptoms associated with 
PD (136). Current research suggests that dietary modification with 
quality nutrition intake can reduce inflammation and enhance the 
quality of life (137). The Mediterranean and ketogenic diets, along 
with nutrients such as omega-3 fatty acids, vitamin D, and dietary 
fiber offer potential therapeutic benefits for PD progression and 
improving patient’s quality of life (138). The Mediterranean diet is the 
most recommended diet in management of PD, as this contains a high 
content of antioxidants, polyphenols, and omega-3 fatty acids (139). 
The Mediterranean diet, rich in vegetables, fruits, olive oil, whole 
grains, and fish, has been extensively studied for its neuroprotective 
effects (140). Mediterranean diet intake helps slow down the PD 
progression by reducing inflammation and promoting gut health by 
increasing microbial diversity (141). A thorough research analysis 
revealed that the Western diet exacerbated PD progression due to the 
poor quality of fiber, whereas the Mediterranean diet, high in fiber and 
polyphenols alleviated the symptoms of PD (142). A nutritious diet, 
like Mediterranean diet, has been demonstrated to increase beneficial 
gut flora, which is most required for maintaining gut health. Also, the 
Mediterranean diet can be  used by gut flora to make essential 
metabolites such as SCFAs, these metabolites improve ENS function, 
thereby enhancing gastrointestinal motility (143). The ketogenic diet 
is very popular and has shown great promise in PD management. As 
the ketogenic diet contains moderate amounts of protein with high fat 
and low carbohydrate (144). Ketogenic diet helps reduce oxidative 
stress and improve mitochondrial function, which are compromised 
in PD patients (145). The ketogenic diet increases ketone bodies such 
as beta-hydroxybutyrate, which provides an alternate energy source 
to neurons, thus offering neuroprotection and reduced 

neuroinflammation (146). Clinical trial data have shown that the 
ketogenic diet can improve both motor and non-motor symptoms in 
PD patients and enhance the quality of life (147). Along with 
Mediterranean and ketogenic diet, several nutrients have also been 
investigated thoroughly for their potential role in PD. Increased intake 
of Omega-3 fatty acids has been evident in reducing 
neuroinflammation and slower neurodegeneration in PD patients 
(148). A study found that PD patients given high dietary Omega-3 
fatty acids exhibited less oxidative stress, reduced production of 
α-synuclein, and improved cognitive function (149). Moreover, 
supplementation of Omega-3 fatty acids has been an excellent 
therapeutic approach to reintroducing beneficial gut flora (150). 
Similarly, the vitamin D effect was investigated in PD management, 
and found that vitamin D supplementation improved gut health, 
behavior, and cognition in PD patients (151). Caffeine is a natural 
stimulant found in coffee, tea, and various other foods and has been 
studied for its neuroprotective role, especially in PD (152). 
Epidemiological and experimental studies suggest caffeine helps 
improve motor symptoms and reduce the risk of PD progression 
(153). A related study highlighted that caffeine inhibits adenosine 
A2A receptors, found in the striatum (a region in the brain that 
controls movement), which enhances dopaminergic neurons to 
maintain the level of levodopa (154). Caffeine protects neurons from 
oxidative damage via increasing antioxidant enzymes, which reduce 
the production of reactive oxygen species (ROS) (155). Moreover, 
caffeine has been shown to inhibit chronic inflammation, its anti-
inflammatory nature downregulates the pro-inflammatory cytokines 
and microglial activation, thereby protecting neuronal damage (156). 
Dietary fiber intake regulates gastrointestinal dysfunction, which is a 
prevalent issue in PD patients. Adequate fiber intake is of utmost 
benefit for gut environment and tackling gastrointestinal problems. 
Fiber-rich foods modulate GM and induce SCFA production to 
enhance anti-inflammatory properties (157).

8 Assessment of clinical trials, 
challenges, and future directions

Clinical trials investigations on microbiome based therapies for 
PD have shown promising outcomes. However, there is limited data 
and few clinical trials are there to support MBT in PD patients. One 
remarkable study directed at the Army Medical University (AMU) in 
China carried out a randomized, placebo-controlled trial involving 56 
participants suffering from mild to moderate symptoms of PD [Hoehn 
and Yahr (H&Y) stages 1–3]. H&Y scale classifies severity of PD 
associated motor symptoms (158). The clinical trial ran from February 
to December 2019. Participants were splits into two groups. First 
group received FMT while second group were given a placebo. The 
results suggested that FMT group improved PD related autonomic 
symptoms, which were measured by the Movement Disorder Society 
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). This trial 
also reported remarkable reduction in total scores at the end, which 
was (B = −6.56, p < 0.05). Moreover, FMT was found to improve GI 
disorders and a surge in microbial diversity within the gut (130). 
Thereby, FMT administration could enhance the effectiveness of 
existing PD treatments with no adverse effects.
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Another clinical trial was conducted at Ghent University Hospital 
between December (159) and December 2022, known as 
GUT-PARFECT trial. This double-blind placebo-controlled study 
included participants of 50–65 years age, and was experiencing early-
stage PD (H&Y stage 2). Participants were randomly divided to give 
nasojejunal FMT from either healthy donors or their own stool. After 
12 months results showed a significant decline in MDS-UPDRS score 
and improvement in both motor and non-motor symptoms in 
participants. This completed clinical trial is registered and can 
be found on ClinicalTrials.gov with (NCT03808389) (49). Moreover, 
a randomized double-blind placebo-controlled trial was conducted to 
evaluate the effects of probiotics on movement and metabolic factors 
associated with progression of PD. Total 60 participants were enrolled 
in the study, that were equally divided into two groups (n = 30 each 
group). First group received a daily dose of 8 × 10^9  CFU of 
probiotics, while other received a placebo for a period of 12 weeks. 
The MDS-UPDRS scores were recorded before and after the 
intervention. The results indicated that probiotic consumption led to 
a significant decrease in MDS-UPDRS scores compared to the 
placebo, that was recorded (−4.8 ± 12.5 vs. +3.8 ± 13.0, p = 0.01). 
Additionally, probiotic supplementation was associated with 
reductions in high-sensitivity C-reactive protein (−1.6 ± 2.5 vs. 
+0.1 ± 0.3 mg/L, p < 0.001). This trial suggests that a 12-week course of 
probiotic supplementation resulted in beneficial effects on both 
movement and other selected metabolic factors in individuals with 
PD (160). Thus, probiotics therapy could serve as a useful adjunct 
treatment for addressing the PD symptoms and associated metabolic 
disturbances. The clinical trial can be accessed on (ClinicalTrials.gov 
Identifier: IRCT2017082434497N4).

A recent clinical randomized trial study by Filip et al. assessed the 
safety and efficacy of colonic single-dose anaerobically prepared FMT 
in 45 PD patients with a follow-up period of 12 months. They 
concluded that FMT was found to be  safe, and did not result in 
significant improvements in PD symptoms compared to the placebo. 
Their placebo group showed significant increase in dopaminergic 
medication and clinical improvements (161). The outcome of this trial 
suggests additional investigations into the effects of bowel cleansing 
and donor microbiota composition to establish strong results. This 
clinical trial can be  found at clinicalTrials.gov Identifier: 
NCT04854291. A small study utilizing M-SHIME® (a simulator of the 
human intestinal microbial ecosystem) demonstrated that probiotic 
supplementation could significantly alter bacterial composition and 
improve gastrointestinal health in PD patients. Ghyselinck et al. (162) 
used M-SHIME® to determine the efficacy of probiotic 
supplementation in restoring bacterial composition in PD patients. 
They concluded that PD influenced by GD can be  treated with 
supplementation of properly formulated probiotics as a useful adjunct. 
Since their study was limited by small number of subjects (6 subjects: 
3 PD and 3 control) and shorter duration (48 h), the robust results 
could not be inferred (162).

The clinical implications of these findings are substantial, and 
suggest that targeting GM through FMT and other microbiome-
modulating therapies like prebiotics and probiotics may not only 
alleviate GI symptoms associated with PD but also enhance SCFAs, 
and anti-inflammatory cytokines (IL-6, IL-10) production, while 
decreasing pro-inflammatory cytokines and chemokines (MCP-1 and 
IL-8) (48). The increased level of anti-inflammatory factors greatly 

tackles with inflammation, and strengthens the gut barrier integrity 
leading to improve quality of life (QOL) (163). It is well acknowledged 
that microbiome based therapies have shown remarkable results in PD 
management. However, further large-scale clinical trial studies are 
necessary to strengthen and establish standardized treatment 
protocols for microbiome-based therapies in PD.

There are numerous obstacles linked to microbiome-driven 
treatments in PD. Microbiome therapeutics show promise in terms of 
success but often encounter several challenges. Identifying the right 
microbes to target the complexities of diseases is the primary obstacle 
in microbiome therapeutics (164). Various therapeutic approaches 
require different microbial strains, depending on their ability to thrive 
in the body. The colon and caecum are effectively colonized by 
Bacteroides sp. Lactobacillus sp. and E. coli Nissle are successful in 
populating the small intestine. Lactobacillus lactis lacks the ability to 
colonize the intestine (165). Therefore, the suitability of the probiotic 
used for treatment is determined by the disease biogeography. Before 
selecting them for treatment, it is essential to thoroughly characterize 
microbes based on their functional benefits. Additionally, microbiome 
therapeutic research studies were primarily carried out using rodent 
models and C. elegans model, which shows variability in various 
aspects (166). Thus efforts are required for large human trials. The 
stability and robustness of the clinically relevant microbial strains 
ensure successful microbiome therapeutics. Regulatory challenges for 
microbiome therapies are of great concern. There is a need for clear 
guidelines on safety and efficacy assessments on microbiome 
therapies. Use of FMT raises ethical questions regarding donor 
selection and the potential transmission of pathogens or other 
unintended consequences from donor microbiota (167). Thus 
establishing ethical frameworks for such therapies is crucial as they 
move toward clinical application.

Advancement of biotechnology and microbiomic therapies has 
encouraged the use of modulatory therapies in clinical settings. 
Although research efforts have established the efficacy of microbiome 
therapeutics, still more research is required to fully grasp the 
microbiome and how it interacts with the host in order to advance the 
concept of microbiome therapeutics into clinical trials and develop a 
roadmap for effective treatment. The use of bacterial suspensions may 
impose a risk to patients, through entry of pathogens within the 
recipient; thus, strategies to avoid contamination and risk need to 
be developed. Moreover, prior introducing bacteria to patients, it is 
necessary to conduct a thorough genomic analysis of the bacterial 
populations in order to distinguish disease-specific signature microbes 
from those found in healthy individuals. Efforts should be made to 
create pills containing only one type of microbe to enhance the 
immune response and improve patient treatment. Therefore, it is 
necessary for microbiome therapeutic companies to collaborate with 
pharmaceutical industries in order to enhance the effectiveness of the 
treatments. The findings from the clinical trials on gut bacteria should 
be further investigated for autoimmunity and neurological disorders 
in order to advance the field of microbiome therapeutics.

9 Discussion

The complex and multidimensional role of gut flora play 
important role in the onset and progression of PD. GM imbalance or 

https://doi.org/10.3389/fnut.2024.1496616
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://ClinicalTrials.gov
https://ClinicalTrials.gov
https://clinicalTrials.gov


Alam et al. 10.3389/fnut.2024.1496616

Frontiers in Nutrition 10 frontiersin.org

GD are strongly correlated with the progression and development of 
neurodegenerative disorders, specifically PD. Emerging research 
highlighted that GM alterations such as declined beneficial bacteria 
communities or increased harmful gut mucin-degrading species can 
initiate pathogenesis of several diseases, including PD (168). It has 
been well established that GM can affect brain trough GBA, which is 
a bidirectional communication between the gut and the brain, 
involving the immune, endocrine and nervous system. GM can affect 
brain through GBA in several ways that include neurotransmitter 
production, immune system modulation, ENS disruption and 
intestinal barrier modulation. Generally GM breaks down host’s food 
to fulfill its nutritional requirements, along with they generate 
metabolites like neurotransmitters or their precursors, which impact 
existed neurotransmitters level in brain. For instance, increase of 
Akkermansia, Catabacter, Lactobacillus, Bifidobacterium, 
Bifidobacteriaceae, Ruminococcaceae, Verrucomicrobiaceae, and 
reduction in Roseburia, Faecalibacterium, Prevotellaceae, Blautia, 
Coprococcus, and Lachnospira have been noted in individuals with PD 
(159, 169).

The presence of Enterococcus faecalis in PD patients is linked to 
the metabolism of l-DOPA and dopamine (170). In a PD mouse 
model study, it was found that giving berberine orally increases 
tyrosine hydroxylase activity in Enterococcus faecalis, leading to higher 
production of l-DOPA, a dopamine precursor. As a result, l-DOPA 
crosses the blood–brain barrier and gets converted into dopamine in 
the brain, which could reduce the symptoms associated with PD (171).

The increased levels of inflammatory cytokine and chemokine 
genes observed in the intestinal tissues of PD patients suggest a strong 
connection between PD and intestinal inflammation (85, 90). 
Furthermore, elevated levels of markers for glial cells (GFAP and 
Sox-10) and multiple pro-inflammatory cytokines are found in colon 
biopsy samples from individuals suffering from PD (65). Likewise, 
higher levels of different inflammatory substances (such as IL-1β, IL-6, 
IFN-γ, and TNF-α) found in the fecal samples of individuals with PD 
suggest the existence of inflammation in the gastrointestinal tract (84, 
172). These inflammatory alterations enhance the host’s vulnerability 
to immune dysfunction and autoimmune reactions (173).

It is a widely recognized fact that PD affects both the CNS and 
the ENS. Studies on individuals with PD and animal subjects have 
revealed damage to neurons and glial cells in the ENS (174). Multiple 
research teams have documented the presence of Lewy-like 
abnormalities in biopsied enteric neurons of individuals with 
PD. Degeneration of neurons in the myenteric plexus and submucosal 
plexus with α-synuclein deposits has been documented in individuals 
with PD (175). Several mechanisms have been put forwarded to 
explain GD-assisted PD development; one such mechanism includes 
increased intestinal permeability or the leaky gut, which is very 
prevalent in the case of PD.

When gut barrier is compromised, it allows some bacterial 
products and inflammatory mediators into the bloodstream that 
directly or indirectly influences inflammatory cascades in brain. 
Bacterial elements such as LPS and amyloid protein curli have been 
shown to enhance α-synuclein aggregation (176). Kelly et al. (177) 
found that administering low doses of LPS led to a gradual rise in 
α-syn expression, resulting in intestinal permeability, primarily in the 
large intestine of mice. E. coli and other Gram-negative bacteria are 
capable of producing curli fibers (178).

The molecular mimicry of PD may result from an extracellular 
amyloid generated by gut bacteria. For instance, curli, an amyloid 
protein possessing property of human disease-related amyloids is 
secreted by Escherichia coli through biosynthetic processes (179). 
Curli may trigger the innate immune system and facilitate α-syn 
accumulation, which exacerbate neuroinflammation (180).

Many therapeutic approaches that target GM have shown great 
promise in managing and treating PD. The clinical use of Probiotics, 
prebiotics, synbiotics, and postbiotics offers a potential solution for 
restoring gut microbial balance and improving gut health. Some 
beneficial bacteria such as Lactobacillus and Bifidobacterium are of 
great importance, as they are crucial in keeping the gut environment 
healthy by reducing oxidative stress and inflammation. Tsao et al. 
(181) showed that in a PD-like model, Lactobacillus salivarius 
AP-32 reduced oxidative stress and inflammation, raised serum 
antioxidant activity, and enhanced SCFAs levels in fecal samples. 
Wang et al. (182) observed that L. plantarum DP189, is able to slow 
down the neurodegenerative process induced by α-synuclein in the 
SN of PD mice by reducing oxidative stress, inhibiting 
proinflammatory reactions, and restoring GM. Marsova et al. (183) 
discovered that Lactobacillus is able to decrease the amount of 
oxidative stress (reactive oxygen species) in the PD nematode 
model by controlling the Nrf2/ARE pathway. The evolutionary basis 
underlies Nrf2’s role in controlling antioxidant defense, it remains 
highly conserved in all vertebrates. Mouse Nrf2 shows 83.4% DNA 
homology and 82.5% protein homology when compared to human 
Nrf2 (184).

The FMT is another well-documented method for restoring the 
gut ecosystem, despite its positive outcome; further extensive research 
is needed to determine its long-term effects on PD patients. The 
potential role of Mediterranean, ketogenic, and nutrition-based diets 
in PD has been well documented in various research studies. The very 
high inter-variability in GM composition creates challenges in the 
development of standardized microbiome-based interventions to 
achieve optimal efficacy in this case an individual’s unique microbial 
profile is necessary. Additionally, the interaction between 
microbiome-targeted therapies and traditional PD treatments require 
careful evaluation to ensure safety and maximize benefits. Research 
should focus more on identifying specific microbial signatures or 
metabolites that can serve as early biomarkers for PD detection. 
Long-term and large-scale clinical trials are essential to establish the 
efficacy of microbiome-based interventions in different stages of 
PD. As gut microbiome represents a fundamental frontier in PD 
experiments and research, while many scientific points remain 
unclear. A huge body of evidence supports the gut-brain axis, GD 
directly or indirectly impacts gastrointestinal environment, which 
impacts the neuronal functioning in the brain. Further comprehensive 
research focusing on untouched areas of GBA may provide a better 
management strategy for PD and significantly improve patients’ 
quality of life.
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