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Bioactive peptides hold significant potential for enhancing human health, however, 
their limited oral bioavailability poses a substantial barrier to their widespread use 
in the food and pharmaceutical industries. This article reviews the key factors 
influencing the absorption efficiency of oral bioactive peptides, including issues 
related to bitter taste perception, challenges in gastrointestinal environmental 
stability, and limitations in transmembrane transport. Furthermore, it highlights 
the latest technologies, such as osmotic technology, chemical modification, and 
advanced delivery systems, and discusses their advantages in enhancing the stability 
of bioactive peptides and facilitating intestinal absorption. In addition, the application 
and challenges of common delivery systems such as liposomes, emulsions, polymer 
nanoparticles, and hydrogels in oral bioactive peptide delivery are also discussed. 
This paper aims to provide a theoretical foundation for scientific research and 
practical applications of oral delivery of bioactive peptides, thereby promoting 
the further development of bioactive peptides in the context of human health.
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1 Introduction

Bioactive peptides are a class of compounds composed of natural amino acids arranged 
in various combinations, sequences, and spatial conformations. These peptides exhibit diverse 
physiological activities that are beneficial to the body’s functions. Typically, bioactive peptides 
range in size from 2 to 20 amino acid residues and have smaller molecular weights compared 
to proteins, but their bioactivity is often greater than that of proteins (1). Traditional protein 
digestion theory suggests that proteins can only be absorbed and utilized after being broken 
down into amino acids upon entering the body (2). However, recent studies have demonstrated 
that small-molecule peptides are absorbed more readily than proteins. Absorption channels 
for bioactive peptides exist in the small intestine, allowing these peptides to be  directly 
absorbed and utilized by the body, with an absorption rate that surpasses that of proteins and 
amino acids. The bioactivity of bioactive peptides is reflected in various aspects, exhibiting 
regulatory functions such as antihypertensive, antihyperlipidemic, antihyperglycemic, anti-
cholesterol, antiviral, and anticancer effects (3).

Although bioactive peptides have the potential to become functional foods and even 
drugs, their low bioavailability and low activity caused by oral administration are an urgent 
problem to be solved. The biological activity of a bioactive peptide depends largely on its 
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chemical structure, including amino acid composition, molecular 
weight, amino acid sequence, and peptide spatial conformation (4). 
Oral administration of bioactive peptides need to overcome multiple 
barriers (such as complex enzymatic decomposition in the 
gastrointestinal tract, changes in pH, adsorption of small intestinal 
mucus, obstruction of small intestinal mucosal cells, etc.) before they 
can be absorbed and utilized by the human body. These barriers may 
cause changes in the sequence and spatial structure of bioactive 
peptides, resulting in the loss of biological activity of bioactive 
peptides. Furthermore, these barriers can hinder the absorption and 
utilization of bioactive peptides, significantly decreasing the amount 
that enters systemic circulation and performs biological functions in 
targeted areas.

Currently, various strategies have been developed to enhance the 
bioavailability of bioactive peptides in the human body. These 
strategies include chemical structure modifications, permeation 
enhancers, and colloidal delivery systems, such as liposomes, 
emulsions, biopolymer nanoparticles, and hydrogels (132). Each of 
these approaches has its own advantages and disadvantages. For 
instance, chemical modifications can significantly improve the 
stability of bioactive peptides; however, they may alter the original 
chemical structure of the peptides, potentially affecting their biological 
activity and even leading to the production of harmful substances (5). 
Although intestinal permeation enhancers (PEs) show good 
absorption-promoting effects, excessive use can compromise the 
integrity of the intestinal barrier, and the stability of permeation 
enhancers in the gastrointestinal tract also requires careful 
consideration by researchers (6). Encapsulating bioactive peptides 
using colloidal delivery systems is considered the most promising 
approach, as it can mask bitterness and overcome many challenges 
encountered during oral administration, but there are still some 
problems such as low encapsulation efficiency, poor stability, and poor 
targeting (7).

In summary, improving the bioavailability of orally delivered 
bioactive peptides requires a thorough analysis of the advantages and 
limitations of current delivery strategies. Unfortunately, to date, there 
remains a lack of systematic collation and comprehensive reviews 
addressing these issues in the relevant literature. Therefore, this review 
comprehensively examines the challenges associated with the oral 
delivery of bioactive peptides, introduces the advantages and 
disadvantages of existing oral delivery systems, and summarizes the 
future development trends of these systems. The aim of this review is 
to provide a valuable reference for subsequent studies on bioactive 
peptide delivery systems through this in-depth analysis.

2 Obstacles to oral administration of 
bioactive

The oral delivery of bioactive peptides presents several challenges. 
First, some bioactive peptides may possess a pronounced bitter taste, 
which can significantly impact patients’ acceptance of oral 
administration. Second, the digestive tolerance of bioactive peptides 
within the gastrointestinal tract poses another major challenge for 
their oral delivery. The variable pH gradient and the complex digestive 
enzyme system of the gastrointestinal tract can severely affect both the 
structural integrity and the functional stability of bioactive peptides. 
Additionally, the intricate defense system formed by the mucus layer, 

epithelial cells, and microbial community in the gastrointestinal tract 
is a critical factor limiting the oral bioavailability of these peptides. 
Furthermore, the unique physicochemical and structural properties 
of bioactive peptides can also significantly influence their efficacy in 
oral delivery.

2.1 Bitter taste barrier

Bioactive peptides from natural sources are very limited, so most 
bioactive peptides are produced by enzymatic hydrolysis of proteins. 
However, proteolysis can not only produce biologically active peptides, 
but also produce some peptides with a pronounced bitter taste. 
Generally speaking, bitter taste in food products is not accepted by 
consumers. The bitterness produced by the hydrolysis process limits 
the application of active peptides in the food industry, so how to 
reduce the bitterness is an extremely important issue. The bitter taste 
of peptides is related to hydrophobic amino acids (8) and their relative 
molecular masses (9). As early as 1997, Kuhfeld et al. (10) extracted 
peptides with molecular weights less than 4,000 Da from dried 
sausages, graded the extracts for sensory evaluation, and found that 
the higher the intensity of bitterness, the higher the concentration of 
hydrophobic amino acids in the extracts. Henriksen et  al. (11) 
extracted bitter peptides from commercially available soy protein 
hydrolysates. The analysis showed that the bitterness of soy peptides 
was mainly associated with the presence of medium molecular weight 
peptides in the range of 1,000–4,000 Da, and the bitterness of peptide 
fractions less than 1,000 Da was lower than that of high molecular 
weight fractions.

Since the middle of the 20th century, the research on the removal 
of the bitterness of short protein peptides has gradually increased, and 
the most common method is masking. Fan et al. (12) used a variety of 
masking agents for removing bitterness from soy protein hydrolysates, 
among which xylitol, sucrose, and α-maltodextrin had significant 
debittering effects. In addition, bitterness can also be  removed by 
destroying the structure of bitter peptides by enzymatic hydrolysis 
(13), which is widely used in industry because of its high efficiency 
and no loss of nitrogen. Saha et  al. (14) used aminopeptidase to 
hydrolyze soybean protein isolate with a bitterness value of 3.6 to 
reduce its bitterness value to 0.4 reducing its bitterness value to 0.4. It 
is worth noting that the plastein reaction, the reaction in which 
protease promotes the formation of a gel-like substance from high-
concentration protein hydrolyzate under suitable conditions, is an 
effective debittering method (15, 16). Peptide condensation during 
plastein reactions can help reduce the bitterness intensity of 
polypeptides. However, the plastein reaction is not yet applied in 
industry and needs further exploration.

2.2 Barriers of orally administered bioactive 
peptides in the gastrointestinal tract

2.2.1 Biochemical barrier
Two major types of biochemical barriers exist for orally 

administered peptides: variable pH and gastrointestinal proteases 
(Figure 1). Orally administered bioactive peptides travel through the 
oral cavity to the stomach, then to the duodenum, jejunum, ileum, and 
finally to the colon and rectum (17). Although digestion begins in the 
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oral cavity, due to the extremely short oral action time, the oral cavity 
not typically cited as a major factor hindering the absorption and 
utilization of orally administered bioactive peptides. The main factors 
affecting the absorption and utilization of oral bioactive peptides 
mainly come from the stomach and small intestine. The first thing to 
overcome when taking bioactive peptides orally is the variable pH of 
the gastrointestinal tract. The pH value of gastric juice is 1.5–3.5, that 
of the duodenum is about 5–6, and that of the jejunum and terminal 
ileum rises to 7–8 (18). Variable pH gradients have a great impact on 
the physiological efficacy of some bioactive peptides. The antioxidant 
activity of the pentapeptide ATSHH from whitefish protein will show 
a significant decrease trend under acidic conditions (pH = 2) (19).

In addition, after the bioactive peptides reach the stomach, they 
will stimulate the gastric mucosa to secrete pepsin from the gastric 
lining cells. Pepsin can hydrolyze the polypeptide with aromatic 
residues such as phenylalanine, tryptophan, and tyrosine. Bioactive 
peptides hydrolyzed by pepsin will lose their inherent biological 
activity. After the bioactive peptide enters the small intestine through 
the stomach, the trypsin and chymotrypsin present in the small 
intestine will also specifically hydrolyze the peptide chain (20). The 
hydrolysis of the above enzymes will change the structure and activity 
of the bioactive peptide. Li et al. (21) performed in vitro simulated 
digestion experiments on rice protein hydrolyzate and found that the 
anti-hypertensive IC50 (half maximal inhibitory concentration) value 
of rice protein increased from 140 to 180 μg/mL in the presence of 
digestive enzymes (pepsin and pancreatic enzymes), indicating that 
the anti-hypertensive activity of rice protein hydrolyzate was 
significantly reduced. In addition, after the bioactive peptides reach 
the stomach, they will stimulate the gastric mucosa to secrete pepsin 
from the gastric lining cells. Pepsin can hydrolyze the polypeptide 
with aromatic residues such as phenylalanine, tryptophan, and 
tyrosine. Bioactive peptides hydrolyzed by pepsin will lose their 
inherent biological activity. After the bioactive peptide enters the small 

intestine through the stomach, the trypsin and chymotrypsin present 
in the small intestine will also specifically hydrolyze the peptide chain 
(20). The hydrolysis of the above enzymes will change the structure 
and activity of the bioactive peptide. Li et al. (21) performed in vitro 
simulated digestion experiments on rice protein hydrolyzate and 
found that the anti-hypertensive IC50 (half maximal inhibitory 
concentration) value of rice protein increased from 140 to 180 μg/mL 
in the presence of digestive enzymes (pepsin and pancreatic enzymes), 
indicating that the anti-hypertensive activity of rice protein 
hydrolyzate was significantly reduced.

2.2.2 Mucus and epithelial barrier
After bioactive peptides are digested in the stomach and 

successfully reach the small intestine, the intestinal mucus layer 
covering the intestinal surface is one of the main factors limiting the 
bioavailability of oral bioactive peptides. The intestinal mucus layer is 
a kind of intelligent hydrogel with high viscoelasticity and 
adhesiveness, which contains highly branched polysaccharides and 
negatively charged mucin (22). The intestinal mucus layer plays a 
protective role by forming a sieve-like structure on itself. This 
structure can effectively prevent 10–200 nm particles from passing 
through the mesh, and has the function of selectively transmitting 
nutrients (23). Mucin, glycolipids, and glycoproteins in the mucus 
layer act as both barriers and transmit signals (24). When bioactive 
peptides reach the intestinal mucus layer, their further diffusion may 
be affected by mucin adhesion.

After bioactive peptides pass through the mucus layer and 
reach the surface of epithelial cells, the epithelial cells located 
under the mucus are another major factor limiting the 
bioavailability of oral bioactive peptides. The small intestine 
epithelial cells are a continuous monolayer that separates the 
intestinal lumen from the underlying lamina propria. There is a 
tight junction (TJ) between adjacent epithelial cells, which only 

FIGURE 1

Gastrointestinal disorders affecting peptide absorption.
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allows small molecules such as water and ions to pass through. In 
addition, the small intestine cell membrane acts as a barrier to 
prevent extracellular substances from freely entering and exiting 
the cells by selectively absorbing nutrients (25). Based on the above 
reasons, the small intestinal epithelium is impermeable. Bioactive 
peptides need to pass through the TJ or intestinal epithelial cell 
membrane to reach the bloodstream and ultimately bind to the 
target to exert physiological activity. However, most bioactive 
peptides cannot effectively penetrate intestinal epithelial cells due 
to the lack of targeted carrier proteins on the intestinal epithelial 
cell membrane, which seriously affects the bioavailability of 
bioactive peptides.

2.3 Physical and chemical properties of 
peptides

The physicochemical properties of peptides are one of the 
important factors affecting the bioavailability of orally delivered active 
peptides. The molecular weight and structural characteristics of the 
peptides can affect their absorption. Compared with short-chain 
peptides with smaller molecular weights, long-chain peptides are 
more sensitive to gastrointestinal proteases, which results in long-
chain peptides being more easily degraded and absorbed by 
gastrointestinal digestive enzymes (26, 131). Research by Chen and Li 
(27) showed that the stability of casein-derived peptides with different 
molecular weights varies in simulated gastrointestinal tracts. Peptides 
with a molecular weight greater than 3 kDa are more likely to 
be degraded during gastric digestion than peptides with molecular 
weights less than 3 kDa (27). In addition, studies have shown that 
some short peptides with smaller molecular weights can 
be transported across intestinal cells through peptide transporters 
expressed in the intestine, while oligopeptides can be  passively 
transported and absorbed into the body through hydrophobic regions 
or tight junctions of membrane epithelial cells (28, 130). However, 
long-chain peptides typically need to be  absorbed through 
endocytosis. Therefore, short-chain peptides are more easily absorbed 
and utilized by the body.

In addition, the structural characteristics of peptides also play a 
crucial role in the stability of oral bioactive peptides. The amino acids 
sequence and structure of bioactive peptides can affect the stability of 
peptides during digestion, thereby affecting their bioavailability. 
Savoie et al. (29) found that high levels of proline and glutamic acid in 
peptide sequences can enhance the resistance of peptides to pepsin 
and trypsin. Udenigwe (30) research showed that bioactive peptides 
with a higher β-sheet structure ratio are more sensitive to heat 
treatment. In addition, the charge of the peptide has been shown to 
affect the transport of peptides. For example, peptides with neutral 
amino acid residues can be preferentially recognized by oligopeptide 
transporter 1 (PepT1) (31). PepT1 is a transporter protein present on 
the brush like border membrane of the small intestine epithelium. The 
research of Wang and Li (32) showed that in addition to PepT1 
mediated transport pathway, bioactive peptides can also cross small 
intestinal epithelial cells through endocytic transport and paracellular 
transport. For example, positively charged hydrophobic antioxidant 
casein peptides can be transported via endocytosis, whereas negatively 
charged hydrophilic peptides need to be  transported via 
paracellular pathways.

2.4 Absorption mechanism of peptides

After successfully overcoming multiple obstacles such as the 
variable pH environment of the gastrointestinal tract, enzymatic 
hydrolysis by gastrointestinal digestive enzymes, and adhesion/
pre-cleavage of the intestinal mucus layer, bioactive peptides still need 
to overcome the obstruction of the small intestinal epithelial cells to 
enter the blood circulation system, which is the prerequisite for the 
physiological functions of bioactive peptides in vivo. There are three 
main modes of transmembrane transport of bioactive peptides 
(Figure 2): vector transport, cell bypass transport, and endocytosis 
transport (33).

2.4.1 Carrier-mediated transport pathway
The carrier-mediated transport pathway primarily relies on 

oligopeptide transporters (34). The important feature of transporters 
is that they can select peptides. Transporters have been found to 
recognize and transport over 8,000 different peptides (35). There are 
two main types of transporters: PepT1 and PepT2. Both PepT1 and 
PepT2 can be used for the transport of dipeptides and tripeptides (36). 
Currently, there are more studies on PepT1 than PepT2 on the 
transport of polypeptides. PepT1 is mainly expressed in intestinal 
epithelial cells and is responsible for the transport and absorption of 
bioactive peptides. As mentioned in the section on the 
physicochemical properties of peptides, the charge of peptides affects 
the mode of transport, and PepT1 preferentially recognizes peptides 
with neutral charge and high hydrophobicity, and preferentially binds 
residues rich in non-polar amino acids. Fan et al. (37) studied the 
transport modes of IW, IWH, and IWHHT peptides in Caco-2 cells, 
which further verified that PepT1 preferred to select small peptides 
with high hydrophobicity. Table 1 summarizes the transport pathways 
of different bioactive peptides through the Caco-2 cell model, aiming 
to provide a solid experimental basis for subsequent research and 
product development.

2.4.2 Paracellular transport pathway
The paracellular transport pathway is currently the most reported 

passive absorption pathway for bioactive peptides with more than 
tripeptides (38). The driving force for oligopeptide transport comes 
from the electrochemical gradient formed by protons as high-energy 
electrons are transferred along the respiratory chain, and the diffusion 
process does not require a carrier or energy consumption (39). The 
paracellular transport pathway is mediated through the TJ between 
epithelial cells, a tight biological barrier with selective permeability 
(40). It has been shown that TJ tends to transport negatively charged 
peptides and is selective for positively charged peptides (41), and 
bioactive peptides with small hydrophilic molecular weights are more 
inclined to this transport mode (42). In general, when the molecular 
diameter of a bioactive peptide exceeds 15 Å, the peptide cannot 
undergo paracellular transported. However, it is still possible for 
bioactive peptides with larger molecular sizes to diffuse through TJ if 
their structures have high conformational flexibility (43). Chiasma has 
successfully developed an oral formulation of octreotide, named 
Mycapssa®, utilizing its innovative Transient Permeation Enhancer 
(TPE™) technology. In this approach, sodium caprate serves as an 
osmotic enhancer, inducing the reversible opening of tight junctions 
between intestinal epithelial cells to facilitate the paracellular transport 
of peptides. The successful development of Mycapssa® not only 
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strongly confirms the feasibility of the paracellular transport strategy 
for the oral delivery of peptide drugs but also paves the way for further 
research into the oral delivery of bioactive peptides (44).

2.4.3 Endocytic transport pathway
Endocytic transport is an energy-dependent transcellular 

transport pathway and is the main transport pathway for long-chain 

peptides. In this pathway, bioactive peptides are transported into cells 
through the formation of vesicles formed by invagination of the cell 
membrane (45). Bioactive peptides with smaller molecules can enter 
the blood circulation through carrier transport and paracellular 
pathways, while most large molecule peptides need to be transported 
through endocytosis. The study by Xu et  al. (46) showed that 
17-peptide (casein 193–209) can be  completely absorbed by the 

FIGURE 2

Several transmembrane transport pathways of bioactive peptides.

TABLE 1 Transport pathway of bioactive peptides through Caco-2 cells.

Bioactive peptides Function Source Transport pathways Ref

IRW Anti-hypertensive, Anti-oxidant Ovotransferrin PepT1, TJs (111)

IPP, LKP Anti-hypertensive Bovine milk β-casein PepT1, TJs (112)

VPP Anti-hypertensive Fermented milk TJs (113)

IQW Anti-hypertensive Ovotransferrin PepT1, TJs (114)

LSW Anti-hypertensive, Anti-inflammatory Soybean protein PepT1, TJs (115)

YPI Anti-hypertensive Whey protein PepT1 (116)

IW Anti-hypertensive Myogenic fibers of hens PepT1 (37)

IWH Anti-hypertensive Myogenic fibers of hens PepT1, TJs (37)

IWHHT Anti-hypertensive Myogenic fibers of hens TJs (37)

RVPSL Anti-hypertensive Ovotransferrin TJs (117)

VLPVP Anti-hypertensive Genetic engineering isolation TJs (118)

HLPLP Anti-hypertensive β-casein TJs (119)

VY Anti-hyperglycemic Black bean sauce PepT1, TJs (120)

VPLVM Anti-hyperglycemic Broccoli PepT1, TJs (121)

LPEW Anti-hypertensive Fermented milk Transcytosis (122)

GLLLPH Anti-oxidant Corn Gluten TJs, Transcytosis (123)

YFCLT Anti-oxidant Corn Gluten TJs, Transcytosis (123)

LAPSLPKPKPD Anti-hypertensive Egg yolk protein Transcytosis (124)

β-casein 193–209 Immunomodulatory Bovine milk β-casein Transcytosis (45)

YWDHNNPQIR Anti-oxidant Canola protein Transcytosis (46)
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Caco-2 cell monolayer model, and its absorption process is mainly 
carried out through endocytosis transport. The first step in endocytic 
transport is the interaction of polypeptides with the cell membranes. 
Since the cell membrane is composed of a lipid bilayer, endocytic 
transport is considered an ideal pathway for the transport of lipophilic 
peptides. The anti-oxidant peptide YWDHNNPQIR is transported 
across the Caco-2 cell monolayer via endocytosis, primarily because 
it is composed of hydrophobic amino acids (47). Xiao et  al. have 
innovatively designed and prepared a hybrid liposome system named 
mExos@DSPE-Hyd-PMPC. This system significantly improves drug 
encapsulation efficiency and enhances endocytic transport efficacy by 
effectively integrating functional liposomes with milk-derived 
exosomes (mExos). Notably, this hybrid liposome exhibits adaptive 
surface characteristics, enabling it to intelligently adjust its 
physicochemical properties based on the pH microenvironment of the 
intestinal mucosal surface. This adaptability facilitates a more efficient 
endocytic transport process (48).

Notably, research has demonstrated that the hydrophilicity and 
charge state of bioactive peptides play a significant role in their transport 
within the body (49). The charge can influence the interactions of 
bioactive peptides with cell membranes, transport carriers, and other 
molecules in the gastrointestinal environment. Table 2 summarizes the 
relationship between various transport mechanisms and the properties 
of peptides. However, it is important to emphasize that hydrophilicity 
and charge state are not the only factors determining the transport 
pathways of bioactive peptides. The transport pathways are also 
influenced by several other factors, including molecular weight, peptide 
structure, hydrophobicity, the gastrointestinal environment, and the 
selection of transport carriers (133).

3 Oral delivery systems for bioactive 
peptides

As mentioned above, the oral administration of bioactive peptides 
encounters numerous barriers in the human body, which significantly 
diminish their bioavailability. Therefore, the development of effective 
oral delivery systems to enhance the bioavailability of bioactive 
peptides is imperative. An ideal oral delivery system should ensure 
that the bioactive peptide maintains its integrity before reaching the 
site of absorption and promotes targeted release at the desired site of 
absorption. Currently, several prominent oral delivery technologies 
have been extensively studied and applied to overcome the barriers 
associated with bioactive peptides delivery in the human body. These 
oral delivery technologies include permeation promotion 
technologies, chemical structural modifications, colloidal delivery 
systems, etc.

3.1 Permeation promotion technology

One of the biggest obstacles to oral administration of bioactive 
peptides is the poor permeability of intestinal epithelial cells to 
bioactive peptides. Permeation enhancers (PEs) are substances that 
can temporarily increase intestinal permeability and promote the 
penetration of bioactive peptides through the intestinal epithelium 
(47). Currently, over 250 substances have been investigated in clinical 
research as PEs for the oral delivery of bioactive peptides, such as 

surfactants, fatty acids, bile salts, and cell-penetrating peptides (50). 
Based on their mechanisms of action, PEs are mainly divided into two 
categories (51). The first category mainly acts on the TJ between 
epithelial cells and achieves paracellular transport of bioactive 
peptides by opening the TJ between epithelial cells. The second 
category is to promote the transmembrane transport of bioactive 
peptides by increasing the permeability of the cell membrane. Table 3 
lists some typical PEs and their respective mechanisms of action. It is 
worth noting that some specific PEs can act on both pathways at the 
same time, such as sodium decanoate, bile salts and chitosan. In 
addition, although PEs are generally considered safe and non-toxic, 
the additive dosage of PEs still needs to be strictly controlled when 
using them. Excessive use of PES can cause excessive changes in the 
permeability of intestinal epithelial cells, which will eventually induce 
local inflammation or long-term damage to intestinal epithelium (52). 
For example, calcium chelators can cause Ca2+ depletion in the body, 
thereby damaging actin filaments, altering adherens junctions and 
reducing cell adhesion (53).

Cell-penetrating peptides (CPPs), as an important branch of 
penetration enhancers, are mainly polypeptides ranging from 5 to 30 
amino acids, which transport bioactive peptides across the membrane 
by penetrating the cell membrane or endocytosis (54). Currently, 
researchers have designed or identified more than 100 peptides that 
can effectively promote the transport of biological macromolecules 
across cell membranes. In practical applications, nucleotides, bioactive 
peptides, and other biologically active substances are prone to lose 
their activity in the systemic circulation. Encapsulating such 
substances in nanoparticles can greatly enhance their stability in vivo. 
However, the presence of the cell membrane hinders the uptake of 
bioactive substances by target cells. CPPs provide researchers with a 
new direction of exploration. Studies have shown that combining 

TABLE 2 Relationship between different transport modes and peptide 
properties.

Transport 
pathways

Characteristics

Peptide 
molecular size

Water 
affinity

Electric 
charge

PepT1 Dipeptide or tripeptide Hydrophobic Neutral charge

TJs Short-chain peptides Hydrophilic Negative charge

Transcytosis Long-chain peptides Hydrophobic
Positive electric 

charge

TABLE 3 Typical PEs for three different mechanisms.

Categories Mechanism PEs Ref

1

Opens the paracellular 

pathway to facilitate 

transcellular transport

EDTA (125)

Citric acid (125)

2

Increasing cell membrane 

permeability to facilitate 

transcellular transport

SNAC (126)

3

Simultaneous 

enhancement of both 

pathways

Bile salts (127)

Sodium caprate 

(C10)
(128)

Chitosan (129)
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CPPs with nanoparticles can further enhance the transcellular delivery 
of bioactive peptides and effectively improve the uptake of bioactive 
substances by target cells. Knoll et al. (55) developed a new type of 
CPP-modified nanostructured lipid-based carrier, and experimental 
results demonstrated that this new type of coated nanocarrier can 
improve the uptake of bioactive substances by cells. The in vivo toxicity 
of CPPs is not yet fully understood, but a small number of published 
animal studies and several CPP formulations approved for clinical 
trials demonstrate the general safety profile of CPP molecules at study 
doses (56). Nevertheless, no CPP-encapsulated drugs have entered 
clinical trials, and further research is needed to evaluate their in vivo 
delivery effects (Table 4).

3.2 Chemical structural modifications

Bioactive peptides are a type of molecules that are relatively easy 
to modify in chemical structure. Chemical modification can 
significantly improve the stability of bioactive peptides. The more 
commonly used chemical modification methods are PEGylation and 
cyclization (57). PEGylation is a chemical modification technique that 
involves the covalent attachment of polyethylene glycol (PEG) 
molecules to biological macromolecules, such as proteins and 
peptides. This process aims to optimize the physicochemical 
properties and biological characteristics of these biomolecules. For 
bioactive peptides, the incorporation of PEG can significantly enhance 
their water solubility, thereby improving their solubility in 
physiological environments, which is essential for effective absorption 
and distribution. Furthermore, PEG, being an inert polymer, 
effectively protects peptide drugs from enzymatic degradation, leading 
to a substantial increase in the retention rate and bioavailability of 
bioactive peptides. Additionally, the increase in molecular weight 
resulting from PEGylation reduces the renal clearance rate of peptide 
drugs, thereby prolonging their half-life in the body and decreasing 
the frequency of administration (58). Zhou et al. (59) demonstrated 
that when the HM-3 peptide was modified with methoxy-PEG-
aldehyde, its half-time was extended by 5.86 times in male SD rats. 
Wang (60) similarly showed that after pegylation, the CPU-HM 
peptide exhibited higher in vivo activity and a longer half-time.

Cyclization is another commonly used method for chemical 
modification of bioactive peptides. By creating a cyclic structure, 
cyclization eliminates the exposed N- and C-terminals in peptide 
molecules, rendering them less susceptible to enzymatic degradation 
(61). Desmopressin is an analog obtained by cyclization of vasopressin, 
which is more resistant to enzymatic degradation than vasopressin 

(62). Similarly, cyclized opioids exhibit longer half-life and higher 
metabolic stability (63). In addition, cyclic structural peptides have 
better permeability than linear structural peptides. The cyclic structure 
is more compact than the linear structure, which reduces the collision 
of the cyclic structure peptide in the solution and ultimately allows it 
to pass through the epithelial barrier faster (64).

In addition to debittering, the plastein reaction mentioned above 
also provides a feasible method for the modification of peptides. 
Studies have shown that plastein reactions can enhance the activity of 
angiotensin-converting enzyme (ACE) inhibitory peptides. Song et al. 
(65) used plastein reactions to modify hazelnut peptides, and the 
results showed that the ACE inhibition rate of the modified products 
was significantly improved. Similarly, Jiang et  al. (66) employed 
plastein reaction to modify ACE inhibitory peptides derived from sea 
cucumbers, and found that the modified peptide showed significantly 
enhanced thermal stability, and the thermal transition temperature of 
the modified peptide increased from 120°C to 134°C. These studies 
indicate that plastein reaction is a promising strategy to induce 
structural modifications to improve the biological activity of peptides. 
However, the application of plastein reactions in peptide modification 
is not immature at present, and research on peptide sequence changes 
after plastein reactions is relatively limited. Regardless, when 
modifying the chemical structure of bioactive peptides to improve 
their bioavailability, it is necessary to pay attention that the 
modification process cannot affect the original functions of the 
bioactive peptides and to avoid the generation of harmful substances.

3.3 Colloidal delivery system

Due to the susceptibility of bioactive peptides to loss of 
physiological activity under different pH values and the action of 
digestive enzymes in the body, using a delivery system to encapsulate 
bioactive peptides can effectively eliminate the bitter taste while 
improving the stability of peptides in systemic circulation. Colloidal 
delivery systems have been widely applied in the delivery of bioactive 
peptides. Common colloidal delivery systems include liposomes, 
emulsions, polymer nanoparticles, and hydrogels, as illustrated in 
Figure 3.

3.3.1 Liposomes
Liposomes are a kind of spherical closed vesicle formed by 

concentric phospholipid molecules linked end to end through 
hydrophobic interactions, which can protect the loaded materials 
from being broken down by enzymes and improve their bioavailability 
in the body (Figure 3a) (67). Gong et al. (68) the bioavailability of 
peanut peptides was effectively improved after being encapsulated in 
nanoliposomes. The main reason is that the nanoliposomes prepared 
in this study exhibited good stability under different pH conditions 
and different morphologies, which allows the peanut peptides 
encapsulated in the nanoliposomes to retain a relatively complete 
structure and high ACE inhibitory activity. Compared with other 
delivery systems, liposomes have the advantages of easy encapsulation, 
large encapsulation capacity, and minimal residual organic solvents. 
Liposomes can encapsulate both hydrophobic and hydrophilic 
bioactive peptides. Hydrophobic peptides can be embedded within the 
phospholipid bilayer, while hydrophilic peptides can be encapsulated 
in the aqueous core (69).

TABLE 4 Advantages and disadvantages of four delivery systems.

Categories Advantages Disadvantages

Liposomes
Adjustable structure Lack of stability

Surface modifiable High production cost

Emulsion High bioavailability Structural instability

Polymer nanoparticles
Structural stability Complex preparation

Surface modifiable Potential toxicity

Hydrogel
Biocompatible

Mechanical strength
Controlled release
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However, liposomes also have some limitations. Firstly, the 
phospholipid membrane of liposomes is sensitive to adverse factors 
such as high temperature, enzymes, and ionic strength. These adverse 
factors may cause the liposomes to decompose during storage or 
before reaching the small intestine, causing the bioactive peptides 
wrapped inside to leak out in advance (70). To overcome this 
limitation, researchers have found that surface modification of 
liposomes with polymers such as chitosan, pectin, and polyethylene 
glycol can effectively improve the stability and sustained release ability 
of liposomes (71). Ramezanzade et  al. (72) developed a novel 
composite nano-carrier of triphosphorus sodium cross-linked 
chitosan coated liposomes, and differential scanning calorimetry 
showed that this composite nano-carrier had better thermal stability 
than ordinary liposomes. Wu et al. (73) used sodium alginate (SA) to 
coated liposomes containing DPP-IV inhibitory collagen peptides and 
found that compared with uncoated liposomes, SA-coated collagen 
peptide liposomes exhibited higher storage stability, gastrointestinal 
stability and transcellular permeability. Secondly, due to the large size 
structure of liposomes, they may not be  absorbed by intestinal 
epithelial cells, and the penetration mechanism of liposomes is not yet 
clear. Therefor the best approach is to choose vesicles as small as 
possible for the delivery of active substances, with particle diameters 
below 100–200 nm (Figure  4) (74). Additionally, cationic charged 
liposomes are often chosen to deliver bioactive substances because 
they are more easily attracted to the negatively charged mucus layer. 
Cuomo et  al. (75) employed liposomes for the oral delivery of 
all-trans-retinoic acid and observed that cationic liposomes could 
interact with saliva in the oral cavity, which carries a net negative 
charge. Importantly, when cationic liposomes were coated with 

mucoproteins from oral saliva, the charge on the cationic surface 
interaction changed from positive to negative. This prevented the 
liposomes from being attracted to the negatively charged mucus layer 
during other stages of digestion, providing further protection for the 
loaded molecules.

3.3.2 Emulsion
An emulsion is a thermodynamically unstable colloidal dispersion 

formed by two immiscible liquids (usually oil and water), in which 
one liquid is dispersed as small droplets in the other liquid (76). 
According to their structural characteristics, emulsions can be divided 
into single-layer emulsions (water-in-oil, oil-in-water) (Figure 3b) and 
multi-layer emulsions (water-in-oil-in-water, oil-in-water-in-oil) 
(Figure  3c) (77). As a complex multi-phase system, multi-layer 
emulsion has various system types, among which W1/O/W2 is the 
most commonly used in food. The main structural state of W1/O/W2 
type emulsions is that small water droplets (internal water phase, W1 
phase) are trapped in larger oil droplets, and are subsequently 
dispersed in the external water phase (W2 phase). Multi-layer 
emulsions are complex multiphase systems. W1/O/W2 type is more 
common in food, where small water droplets (inner aqueous phase, 
W1 phase) are trapped in larger oil droplets, which are then dispersed 
in the outer aqueous phase (W2 phase) (78). Like singlelayer 
emulsions, the formation of multilayer emulsions also requires the 
addition of emulsifiers. Previous studies have found that the type of 
emulsifier can affect the stability of multilayer emulsions. Jo et al. (79) 
found that the hydrophilic and lipophilic balance value of the 
emulsifier can significantly affect the stability of W1/O/W2 emulsion 
loaded with collagen peptides, and emulsifiers with significant 

FIGURE 3

Colloidal delivery system structure. Liposomes (a); Emulsions (b,c); Polymer nanoparticles (d); Hydrogels (e).
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amphiphilicity can make W1/O/W2 emulsion more stable. Ying et al. 
(80) used polyglycerol ricinoleate and modified starch as emulsifiers 
to successfully prepare an emulsion system with a soybean peptide 
encapsulation rate of more than 80%. The results of in vitro simulated 
gastrointestinal digestion showed that the emulsion system showed 
strong resistance to the decomposition of pepsin, and the retention 
rate of soybean peptide was higher than 70% after simulated gastric 
digestion. In some cases, even with the addition of emulsifiers, the 
properties of multilayer emulsions are still not stable enough. This is 
because the system has two interfaces with a large interfacial area, 
making the multiphase structure prone to destruction during storage 
(81). Currently, there are various methods to stabilize the structure of 
multiple emulsions. One effective method to improve the stability of 
multiple emulsions is to add proteins or polysaccharides to limit the 
movement of components. For example, the addition of gelatin to 
multiple emulsions could significantly improves their stability (82). 
Furthermore, studies have shown that emulsion delivery systems not 
only improve the gastrointestinal stability of peptides, but also have 
the characteristics of masking the bitter taste of bioactive peptides 
(79). Gao et al. (83) used water-in-oil high internal phase emulsions 
(W/O HIPE) to encapsulate bitter peptides and found that W/O HIPE 
had a significant masking effect on the bitter taste of peptides.

Although both single-layer emulsions and multi-layer emulsions 
need to be  stabilized by adding emulsifiers, some synthetic low 
molecular weight surfactants still need to be  considered for their 
potential harm to the human body (84). Specifically, surfactants with 
a high HLB (Hydrophilic–Lipophilic Balance) value may disrupt the 
skin barrier due to their strong interfacial activity, which can increase 

the skin’s permeability to harmful substances, leading to skin irritation 
and even triggering allergic reactions and skin inflammation. 
Secondly, during the preparation of emulsions, although surfactants 
are renowned for their emulsifying properties, there is also a risk of 
causing emulsion instability, such as phase separation, coalescence, or 
creaming. These instability phenomena not only affect the appearance 
and texture of the product but may also compromise its actual efficacy. 
Moreover, the interactions between surfactants and bioactive 
ingredients may lead to structural changes in the bioactive 
components, resulting in the loss of their original functions, which is 
crucial for maintaining the integrity of bioactive ingredients. 
Surfactants may interfere with the permeability and retention time of 
bioactive components, thereby affecting their distribution and 
metabolism within the organism, ultimately reducing their 
bioavailability and therapeutic effects (84). Therefore, researchers have 
been on the way to seek other safer methods to stabilize the emulsion 
structure. At this time, a special emulsion, Pickering emulsion, came 
into the attention of researchers. Cai et al. (85) found that the natural 
Pickering emulsion system formed by composite nanoparticles that 
interacted/conjugated antimicrobial peptide Parasin I with chitosan 
significantly improved the stability and antibacterial activity of Parasin 
I. The solid particles in Picorling emulsions are irreversibly adsorbed 
on the surface of the emulsion droplets and play a role in stabilizing 
the emulsion system. This characteristic of Picorling emulsion avoids 
the use of surfactants, so its advantage is that there is no need to 
consider the safety of surfactants in food systems (86). In view of the 
characteristics and high safety of Pickering emulsions, it has a large 
application space in the field of bioactive substance delivery, but its 

FIGURE 4

Liposomes deliver substances into cells through vesicle-based delivery.
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specific mechanism of action and application characteristics still 
require further extensive research.

3.3.3 Polymer nanoparticles
Polymer nanoparticles are solid colloidal particles with an average 

particle size ranging from 10 to 1,000 nm (Figure  3d). Polymer 
nanoparticle delivery system is a kind of system that uses natural, 
semi-synthetic or synthetic polymer nanoparticles as delivery carriers 
to load bioactive substances through non-covalent methods such as 
electrostatic adsorption, hydrophobic interaction, hydrogen bonding 
and so on (87). Compared to lipid-based carriers and emulsions, 
polymer nanoparticles have a simple preparation process, smaller 
system size, better stability which can protect bioactive peptides from 
being decomposed in harsh gastrointestinal environments (88), 
thereby improving the oral bioavailability of bioactive peptides. 
Additionally, high lipid intake may in due obesity and cardiovascular 
diseases (89), while the commonly used materials of polymer 
nanoparticles are proteins, polysaccharides and their composite 
derivatives, such as gelatin, sodium alginate, chitosan, and their 
derivatives, etc. Thus, polymer nanoparticles are more healthier and 
easilier to be  accepted by consumers. Currently, various polymer 
nanoparticle delivery systems have been designed and applied to 
bioactive peptides delivery. Zhu et al. (90) used lysozyme-xanthan 
gum nanoparticles as carriers of selenium-containing peptides and 
prepared lysozyme-xanthan gum-selenopeptide composite 
nanoparticles. In vitro release test results showed that the composite 
nanoparticles successfully delayed the release of selenium-containing 
peptides and improved their in vitro antioxidant activity. Uhl et al. 
(91) developed a surface-modified PLA nanoparticles that can 
be loaded with liraglutide, which increased the oral bioavailability of 
liraglutide by 4.5-fold.

Some polymers can reversibly open TJs between intestinal 
epithelial cells, help bioactive peptides to be transported through the 
paracellular pathway, and promote the penetration and absorption of 
bioactive peptides, such as chitosan and its derivatives (92). In 
addition, chitosan also has good degradability and is one of the 
commonly used materials for constructing polymer nanoparticle 
delivery systems (93). Auwal et al. (94) used sodium tripolyphosphate 
cross-linked chitosan nanoparticles as the carrier to encapsulate 
ACE-inhibitory peptides, and found that not only the physical and 
chemical stability of the peptides was significantly improved in vitro, 
but also the ACE inhibitory effect of the peptides was significantly 
improved after simulated gastrointestinal digestion. Han et al. (95) 
prepared a pH-sensitive complex through the electrostatic self-
assembly of chitosan derivative N-trimethyl chitosan, peanut peptide, 
and sodium alginate. This complex exhibited a regular spherical shape 
with good stability, and the highest entrapment efficiency for peanut 
peptide reached 91%.

3.3.4 Hydrogel
Hydrogel is a highly cross-linked hydrophilic polymer with a 

three-dimensional network structure and abundant pores that can 
absorb and retain a large amount of water (96) (Figure 3e). A hydrogel 
system is a very effective delivery system for bioactive peptides, which 
can be  prepared by mixing bioactive peptides with a solution 
containing biopolymer molecules before gel formation, or also by 
loading bioactive peptides into a microgel after microgel formation 

(97). Ma et al. (98) developed a novel type of fish skin gelatin-based 
hydrogel that successfully loaded codfish peptides after gel formation 
and exhibited good mechanical properties and biocompatibility. 
Because different types of materials have greatly different molecular 
and physicochemical properties, the physical and chemical differences 
of materials have a greater impact on the encapsulation effect of the 
system. Therefore, when preparing hydrogels, materials need to 
be selected according to specific purposes and applications. Protein 
and polysaccharide are commonly used materials for the preparation 
of ingestible food-grade microgels. Huang et al. (99) used the emulsion 
template method to successfully loaded ACE inhibitory peptides into 
biopolymer microgels composed of chitosan and alginate, which 
effectively reduced the in vitro release rate of ACE-inhibitory peptides. 
Ma et al. (100) used hydrogel made of alginate and chitosan to contain 
sericin with anti-inflammatory activity, and animal experiments 
showed that sericin loaded by hydrogel could more effectively alleviate 
ulcerative colitis in mice. These experimental results indicate that 
hydrogels have great potential in oral delivery systems.

In addition, pH, temperature and other stimuli will lead to the 
morphological changes of some polymer hydrogels, which will 
eventually lead to the phase transition of hydrogels (101). The 
hydrogels with this phenomenon are called smart hydrogels, which 
can respond to environmental stimuli, also known as environmentally 
responsive hydrogels. Environmentally responsive hydrogels can make 
corresponding shrinkage and swelling changes when single or 
multiple changes occur in external temperature, pH, light, electric 
field, salinity and other conditions, ultimately achieving targeted 
release of bioactive peptides (102). The environmental responsiveness 
of smart hydrogels shows important application potential and value 
in the field of substance delivery. Specifically, some temperature 
responsive smart hydrogels can exhibit different morphologies 
through corresponding phase transitions at elevated or low 
temperatures depending on the ambient temperature. This 
temperature responsiveness allows the hydrogel to adjust the position 
and rate of drug release in response to fluctuations in body 
temperature or environmental temperature, resulting in precise 
delivery of internal embedding. For example, Chuang et  al. (103) 
cleverly designed a thermosensitive hydrogel based on the fact that 
tumor tissue is slightly hotter than normal tissue. This hydrogel will 
precisely undergo phase transition and release the embedded drug in 
the high temperature environment of the tumor site, allowing effective 
tumor treatment with minimal drug damage to normal tissues. In 
addition, there are some pH-responsive smart hydrogels that can 
adjust their morphology or properties according to changes in 
environmental pH, a property that enables the embedded material to 
respond to release in a specific pH environment, such as the slightly 
acidic environment of tumor tissue or the acidic environment of the 
stomach. Xie et  al. (104) designed a pH-sensitive hydrogel that 
expands and releases drugs in the acidic environment of the stomach, 
which could facilitate precision treatment of gastric ulcer sites. In 
addition to the temperature and pH response, some smart hydrogels 
can undergo morphological changes upon the induction of light, 
which are called photoresponsive hydrogels. In the treatment of skin 
diseases, Huiwen et al. (105) use photosensitive hydrogels to deliver 
drugs precisely to lesions, which can significantly reduce the damage 
of drugs to surrounding normal tissues and improve the accuracy and 
safety of treatment.
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Due to their unique environmental responsiveness, smart 
hydrogels have the ability to precisely regulate the drug release 
process, which makes them show broad application prospects in the 
field of drug delivery. Similarly, with appropriate design and 
preparation strategies, smart hydrogels are also suitable for 
quantitative, timed, and site-directed delivery of bioactive peptides. Ye 
et al. (106) found that the pH-responsive carboxymethyl cellulose/
polyvinyl alcohol hydrogel effectively prevented the release of soy 
peptides in the stomach and could basically achieve the directional 
release of soy peptides in the intestine. This precise delivery strategy 
not only enhances the retention rate of bioactive peptides but also 
significantly improves their bioavailability, thereby optimizing 
therapeutic effects. In addition, it needs to be  acknowledged that 
although smart hydrogels can effectively control the directional release 
of bioactive peptides, because the human body environment is 
complex and changeable, the changes and safety of smart hydrogels in 
the body need to be further studied.

Another, it needs to be acknowledged that hydrogels also have 
some disadvantages that are difficult to avoid. Typically, hydrogels 
are very porous and have weak structural strength, which allows 
bioactive peptides (especially small peptides) to easily diffuse out of 
them. At present, some studies have shown that improving the 
capture rate of bioactive peptides by hydrogels by ensuring that the 
pores are small enough or enhancing the interaction between 
bioactive peptides and the biopolymer network within the microgel 
(107). Two polymers with complementary properties can form a 
double crosslinked hydrogel to increase the stability of the hydrogel 
(108). Chen et  al. (109) successfully prepared strong gelatin 
hydrogels by dual-crosslinking gelatin with transglutaminase and 
carrageenan, which improved the mechanical properties and 
thermal stability of gelatin hydrogel. In addition, since hydrogels are 
mostly hydrophilic substances, they have certain limitations when 
embedding hydrophobic substances. Studies have found that 
polymerizing hydrogels with nanoparticles, micelles and 
cyclodextrins can significantly improve the encapsulation rate of 
hydrophobic substances in hydrogels. Shabkhiz et  al. (110) 
successfully encapsulated a β-cyclodextrin inclusion complex 
containing glycyrrhizic acid and thyme essential oil into alginate 
hydrogel beads, increasing the peptide encapsulation rate to 89%. 
However, there are few reports on the use of this technology in 
bioactive peptide entrapment, and further investigation is required. 
In summary, with the further development of smart hydrogel 
delivery systems, more innovative breakthroughs will be achieved in 
the application of smart hydrogels in the delivery of 
bioactive peptides.

4 Conclusions and outlook

Bioactive peptides have garnered significant attention from 
researchers due to their diverse physiological activities. However, the 
bioavailability of orally delivered bioactive peptides is severely 
restricted by the natural barriers of the gastrointestinal digestive 
system, as well as the physical and chemical properties of the peptides 
themselves. To enhance the stability and bioavailability of oral 
bioactive peptides within the gastrointestinal environment, various 
strategies have been explored, including chemical structure 

modification, the use of penetration enhancers, and colloidal delivery 
systems (such as liposomes, emulsions, biopolymer nanoparticles, and 
hydrogels). Nevertheless, each strategy presents distinct limitations in 
practical applications.

4.1 Limitations of delivery strategies

Although chemical modification can effectively enhance the 
stability of bioactive peptides, alterations in their chemical structure 
may reduce biological activity or even result in the formation of 
harmful substances. PEs possess a strong ability to promote 
absorption; however, inappropriate use can compromise the integrity 
of the intestinal barrier and significantly impact intestinal health. 
Liposomes, which mimic the structure of biological membranes, 
facilitate interactions with cell membranes, thereby offering substantial 
advantages in improving drug bioavailability and targeting. 
Nevertheless, liposomes exhibit poor structural stability and are 
susceptible to external factors that can lead to rupture, fusion, and 
leakage of their contents. Additionally, the drug loading capacity of 
liposomes is often suboptimal due to limitations related to molecular 
size, charge, and hydrophobicity. Emulsions can effectively enhance 
the solubility and stability of drugs, but they face challenges such as 
poor dispersion stability and low bioavailability. Polymeric 
nanoparticles have garnered considerable attention due to their 
controllable particle size, excellent stability, and biocompatibility. 
However, improvements are still needed in their drug loading capacity, 
drug release efficiency, and targeting capabilities. Smart hydrogels 
exhibit high environmental responsiveness; however, their stability 
within the digestive system and the controlled release of embedded 
materials restrict their practical applications.

4.2 Future research trends

Recent research indicates that a single delivery system is 
insufficient to overcome all delivery challenges. As a result, hybrid 
delivery systems that combine various delivery methods are 
anticipated to emerge as a major research focus in oral delivery 
moving forward. With consumers increasingly prioritizing safety and 
health, the main research emphasis for the oral delivery of bioactive 
peptides will be on discovering natural, edible, and biocompatible 
materials that have low toxicity to serve as delivery carriers. Moreover, 
current design approaches for oral delivery systems mainly 
concentrate on overcoming the gastrointestinal barrier, while the 
targeting features of these systems have not been thoroughly 
investigated. As a result, a key area of research in the oral delivery of 
bioactive peptides will focus on creating targeted homeostasis within 
these systems. Additionally, most existing data on the oral delivery of 
bioactive peptides has come from in vitro or animal studies, with a 
lack of relevant clinical data. To effectively evaluate the impact of oral 
delivery systems for bioactive peptides on human health, clinical 
studies are necessary to determine if prolonged use of these systems 
could result in unexpected side effects in vivo. With ongoing 
technological advancements, it is expected that new hybrid delivery 
systems will be  developed, leading to improved delivery of 
bioactive peptides.
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