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Drug-induced liver injury (DILI) has become a serious public health issue worldwide. 
Many drugs (chemotherapy drugs, fever-reducing medications, nonsteroidal anti-
inflammatory drugs, immunosuppressants, antibiotics, antivirals, and antineoplastic 
drugs, etc.) may cause liver damage and potentially lead to acute liver failure 
(ALF). There is an urgent need to develop effective treatment programs for DILI. 
Here, the epidemiology, pathogenesis and molecular mechanisms of DILI, the 
reported functional foods and dietary bioactive constituents, such as phenols, 
flavonoids, glycosides, terpenes, and carotenoids, isolated from food (legumes, 
nuts, grains, fruits, spices and vegetables, etc.) and their protective mechanisms 
against DILI are summarized and classified. Research shows that antipyretic and 
analgesic drugs (such as acetaminophen) are the most common causes of drug-
induced liver injury (DILI). Compounds derived from food, particularly flavonoids, 
have been extensively studied for their ability to alleviate liver damage caused by 
acetaminophen. They exert significant hepatoprotective effects by preventing 
mitochondrial dysfunction and oxidative stress, as well as inhibiting inflammation. 
However, reducing the toxicity of food-derived compounds and improving their 
solubility and bioavailability in the treatment of drug-induced liver injury remain 
current and future challenges to address. Future research on and application of 
anti-DILI dietary bioactive compounds are also needed. Overall, this review may 
provide insights into the potential use of functional foods and dietary bioactive 
compounds in the treatment of DILI.
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1 Introduction

Drug-induced liver injury (DILI) is increasingly significant and contributes to acute liver 
failure (ALF) and acute hepatitis. In the Western world, acetaminophen (APAP, also known 
as paracetamol) overdose is the most common cause of drug-induced ALF. However, in Asia, 
anti-tuberculosis treatment and traditional herbal medicines are major sources of DILI and 
drug-induced ALF, especially in India and China (1). Many drugs are known to cause DILI, 
such as chemotherapy drugs, antipyretics, NSAIDs, immunosuppressants, antibiotics, antiviral 
drugs (2–4), and anticancer drugs (5, 6). Therefore, DILI is considered a serious health issue 
and has attracted global attention in the fields of toxicology, public health, nutrition, and 
food science.
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For hundreds of years, many foods and edible plants have been 
believed to have therapeutic effects on disease. Currently, an increasing 
number of such foods have been successfully developed as functional 
food products. Many dietary bioactive compounds, such as carotenoids, 
flavonoids, saponins and terpenes, have preventive and therapeutic 
effects on DILI due to their strong antioxidant, anti-inflammatory, anti-
apoptotic, autophagy-inducing and ferroptosis-inhibiting effects (7). 
Given the rising global incidence of DILI, identifying natural therapeutic 
interventions such as functional foods and bioactive compounds has 
become an urgent area of research. Nevertheless, issues such as drug side 
effects, low solubility, and bioavailability urgently need to be addressed 
in food-derived compounds against DILI. This review discusses the 
reported liver-protective effects of dietary bioactive compounds on 
DILI, with a particular focus on their potential role in APAP-induced 
liver injury, in addition, we also discuss the limitations or negative 
effects of food-derived active ingredients on DILI, as well as possible 
solutions. We believe this review will provide new insights to further 
explore food-derived compounds in preventing and managing DILI.

2 Epidemiology and etiology of DILI

Epidemiological data on DILI have been reported from different 
countries and regions around the world. The incidence of DILI varies 
due to factors such as the research cohort and its design, population 
distribution and immigration status, disease diagnostic criteria, and 
types of drugs used (Figure 1). The incidence of DILI can be traced 
back to the epidemiological survey database of the general population 
research database (GPRD) of the early 1990s. According to published 
retrospective studies, the incidence of DILI in the UK, Sweden and 
Spain is approximately 2.4 cases, 2.3 cases and 3.42 cases per 100,000 
people annually, respectively (8). However, in Asia, the incidence of 

DILI in the general population is approximately 12 cases per 100,000 
individuals each year in South Korea (9) and in China, with an 
estimated rate of 23.8 cases per 100,000 individuals (10). In a 
prospective study based on the French population, the annual 
incidence rate of DILI was estimated to be 13.9 per 100,000 residents 
(11). Additionally, a prospective study monitoring approximately 
930,000 residents of Delaware in the United  States reported an 
incidence rate of 2.7 per 100,000 adults for DILI (12).

Research has shown that there are significant regional and 
temporal differences in the pathogenic factors of DILI in Asia, Europe, 
Latin America, and the United States. APAP is the main cause of DILI 
in British and American populations, while traditional Chinese 
medicine and dietary supplements are the main causes of DILI in 
Asian populations (13). An increasing amount of epidemiologic data, 
especially from recent cohort studies, have revealed that hepatotoxicity 
is caused by antineoplastic drugs (5, 6), which include traditional 
chemotherapeutic agents, tyrosine kinase inhibitors (TKIs), immune 
checkpoint inhibitors (ICIs), and immunomodulators used for 
multiple sclerosis and anti-tumor necrosis factor (anti-TNF) drugs 
(14–22). These drugs are often associated with immune-related 
adverse events that play a role in mediating hepatotoxicity, 
representing an important yet understudied category of 
pharmaceuticals. Overall, while APAP remains the primary cause of 
DILI in Western populations, traditional medicines and supplements 
are more prevalent in Asia, underscoring the diverse etiology of 
DILI globally.

3 Pathogenesis and molecular 
mechanisms of DILI

Drugs that can cause hepatotoxicity include NSAIDs, cancer 
medications, antituberculosis drugs, antibiotics, antifungal agents and 
antipsychotic medications. In recent years, detailed research has been 
conducted on the possible molecular mechanisms of DILI caused by 
different types of drugs (Figure 2). Among them, the most frequently 
studied drug that causes intrinsic DILI is APAP (19).

3.1 Mitochondrial dysfunction

Mitochondrial dysfunction plays a central role in the hepatotoxic 
effects of drugs like APAP. Drugs that are metabolized by cytochrome 
P (CYP enzymes), particularly CYP1A2, CYP2C9 and CYP3A4, are 
more likely to produce reactive metabolites and lead to liver toxicity. 
The parent drug transforms into reactive metabolites during phase 
I metabolism by incorporating specific functional groups that react 
strongly with proteins, such as hydroxyl, carboxyl, amino, or thiol 
groups (19). Reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) are produced when drugs interact with proteins and 
lipids in cell membranes through oxidative stress (20). Moreover, they 
can disrupt the cellular redox balance, trigger apoptosis of lymphocyte 
signaling (21), and cause inflammation by releasing proinflammatory 
cytokines (22). APAP is metabolized by p450 proteins (primarily 
CYP2E1 and CYP1A2) to form the reactive metabolite n-acetyl-p-
benzoquinone imide (NAPQI), which is rapidly coupled to glutathione 
(GSH) (23). When hepatic GSH levels are limited, free unconjugated 
NAPQI reacts with sulfhydryl groups on cysteine and lysine residues 
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to produce NAPQI protein adjuncts (APAP protein adjuncts), which 
are thought to be  key to the onset of hepatotoxicity, leading to 
oxidative stress, mitochondrial dysfunction, and causing hepatocyte 
necrosis and inflammation and immune response (13, 21, 22, 24). Due 
to the mitochondrial dysfunction caused by APAP hepatotoxicity, the 

removal of damaged mitochondria through mitophagy is an important 
mechanism for APAP-induced ALF (25).

When mitochondria are significantly stimulated, abnormalities in 
mitochondrial structure and function can occur in the following ways: 
morphological and structural changes, abnormal energy metabolism, 

FIGURE 1

Global prevalence of drug-induced liver injury (DILI). The map gradient color indicates the prevalence of DILI on different continents. Created using 
SmartDraw.com.

FIGURE 2

Molecular mechanisms of drug-induced liver injury (DILI). The molecular mechanisms of DILI include: (1) mitochondrial dysfunction; (2) oxidative 
stress; (3) bile salt export pump (BSEP) inhibition; (4) immune and inflammation response-mediated hepatotoxicity; and (5) apoptosis, autophagy and 
ferroptosis. Created with BioRender.com.
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increased levels of reactive oxygen species (ROS), damage to 
mitochondrial DNA, and abnormal mitophagy (26–28). The PTEN 
induced putative kinases 1 (PINK1)/Parkin pathway, activated by 
phosphatase and tensin homolog (PTEN) genes, regulates functions 
such as the generation of autophagosomes, mitochondrial division, 
and fusion with lysosomes during autophagy. In short, in response to 
various stimuli, PINK1 targets damaged mitochondria from the inner 
mitochondrial membrane to the outer membrane and then recruits 
Parkin to eliminate the damaged mitochondria. Importantly, 
inhibiting PINK1/Parkin increases the hepatotoxicity of APAP by 
impairing liver autophagy, suggesting that PINK1/Parkin-mediated 
autophagy may be crucial for reducing APAP toxicity (29, 30). Further 
research indicates that the dietary compound chlorogenic acid (CGA) 
promotes the co-localization of translocase of outer mitochondrial 
membrane 20 (Tom20) and microtubule-associated protein 1 light 
chain 3 (LC3II) in mitochondria, significantly increasing the levels of 
genes and proteins associated with mitochondrial autophagy (PINK1, 
Parkin, LC3II/LC3I), while significantly decreasing the levels of p62 
and Tom20. This suggests that CGA may activate PINK1/Parkin-
mediated mitochondrial autophagy in APAP-induced liver injury, 
thereby inhibiting APAP hepatotoxicity (31) (as shown in Figure 2).

3.2 Oxidative stress

Mitochondrial dysfunction disrupts energy metabolism, 
triggers oxidative stress, and subsequently causes hepatocyte 
toxicity. The liver is an important source of ROS, which can 
be  generated by the ingestion of APAP. When excessive APAP 
exceeds the phase II reaction pathway, excess NAPQI depletes GSH, 
disrupting mitochondrial electron transport chain complexes I/II 
and causing electrons to leak from the ETC to O2, forming O2

− (32). 
NAPQI interacts with mitochondrial target DNA and proteins, as 
well as with protein adducts, leading to oxidative stress and 
mitochondrial dysfunction (24, 25). Excessive APAP generates 
NAPQI, which also leads to nitration of protein tyrosine residues, 
inducing the production of peroxynitrite (ONOO−) by inducible 
nitric oxide synthase (iNOS) (33). ONOO− is produced in 
mitochondria and is detoxified by reacting with GSH. Due to 
excessive reactions depleting GSH, ONOO− accumulates. The high 
reactivity and strong oxidative action of ONOO− cause mtDNA 
damage and the opening of membrane pores (34). Excess ONOO− 
can also directly react with carbon dioxide to produce peroxynitrite 
(ONOOCO2

−), which further decomposes to generate •CO3
− and 

OH• radicals, which react with metal centers, leading to hepatocyte 
toxicity (35, 36). Previous studies have shown that t Kaempferol 
administration downregulated the expression of cytochrome P450 
2E1 (CYP2E1) and upregulated the expression of 
UDP-glucuronosyltransferase family 1 member A1 (UGT1A1), 
thereby inhibiting the formation of thiobarbituric acid reactive 
substances (TBARS) and 3-nitrotyrosine (3-NT). This also restores 
the activities of superoxide dismutase (SOD), glutathione peroxidase 
(GPx), and catalase to normal levels, maintains normal glutathione 
levels, and reduces c-Jun N-terminal kinase (JNK) and extracellular 
regulated protein kinases (ERK) phosphorylation. Kaempferol 
administration inhibited JNK shifts to the mitochondria and 
lowered a mitochondrial permeability transition, which reduces 

mitochondrial oxidative stress and mitochondrial dysfunction that 
leads to nuclear DNA damage, thereby protecting the liver against 
propacetamol-induced injury (37) (as shown in Figure 2).

3.3 Immune and inflammation 
response-mediated hepatotoxicity

The immune and inflammation response is also crucial in drug-
induced liver injury (DILI). Prolonged exposure to drugs can lead to 
inflammation and drug-induced autoimmune hepatitis (DIAIH), or 
acute liver toxicity. The mitochondrial dysfunction triggers cell 
necrosis; subsequently, necrotic hepatocytes release various 
endogenous damage-associated molecular patterns (DAMPs) (38). 
The activation of liver macrophage inflammasomes induced by 
DAMPs can occur through the toll-like receptor (TLR) pathway (39). 
When Toll-like receptors (TLRs) are bound by their ligands, they 
trigger the formation of inflammasomes, leading to transcriptional 
activation of pro-IL-1β and the release of active IL-1β and IL-18, 
suggesting that inflammasome activation is the beginning of sterile 
inflammation (40). The innate immune system is further activated by 
the release of IL-1β and IL-18, resulting in increased production of 
proinflammatory cytokines or chemokines (41). This concept is 
supported by elevated levels of inflammatory factors in plasma in 
patients who overuse APAP (42, 43) or in laboratory animals who 
overdose APAP (44, 45).

Furthermore, in the immune response mediated by APAP 
hepatotoxicity, Kupffer cells form the first line of defense by 
recognizing DAMPs released from necrotic liver cells. Upon 
activation, these cells release cytokines such as IL-6, interferon (IFN), 
tumor necrosis factor (TNF), and chemokines (46). These cytokines 
recruit and activate neutrophils and monocytes, upregulating 
adhesion molecules on liver sinusoidal endothelial cells (LSECs) and 
hepatocytes. By inducing the expression of inflammatory mediators 
and adhesion molecules, they assist neutrophils in adhering and 
transmigrating within the sinusoids, adhering to target cells and 
relying on oxidative stress to regulate the aggregation of immune cells, 
leading to hepatocyte death (47, 48). Additionally, Gerussi et  al. 
suggested that the host adaptive immune system is primarily 
influenced by factors such as HLA polymorphisms, which affect the 
presentation of hapten peptides or novel antigens and play a critical 
role in the occurrence and development of specific DILI (49) (as 
shown in Figure 2).

3.4 Apoptosis, autophagy and ferroptosis

Programmed cell death, such as apoptosis, autophagy, and 
ferroptosis, is one of the important mechanisms of drug-induced 
liver injury. As mentioned above, drugs metabolized by CYP 
enzymes, especially CYP1A2, CYP2C9, and CYP3A4, are more 
likely to produce active metabolites and cause liver cell death, 
mainly through apoptosis, autophagy, and ferroptosis. Apoptosis 
of liver cells is directly involved in the pathogenesis of liver toxicity. 
Increasing studies show that acetaminophen (APAP) induces the 
translocation of B-cell lymphoma-2 (Bcl-2) family proteins, 
including the upregulation of the pro-apoptotic protein Bax, 
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downregulation of the anti-apoptotic protein Bcl-2, and activation 
of caspase-3, thereby promoting hepatocyte apoptosis (50–53).

The activation of autophagy may lead to autophagic cell death and 
regulate apoptotic cell death by modulating Bcl-2 family proteins. 
Bcl-2 proteins not only reduce apoptosis by countering proapoptotic 
proteins but also interact with Beclin-1 to hinder autophagy. Proteins 
like Bcl-2, Bcl-XL, and Bcl-B bind to Beclin-1, blocking its association 
with the phosphatidylinositol 3-kinase catalytic subunit type 3 
(PI3KC3) complex and inhibiting autophagy. BNIP3 (BCL2/
adenovirus E1B protein-interacting protein 3) induces apoptosis by 
sequestering Bcl-2 family proteins, facilitating the release of 
proapoptotic mediators through Bax/Bad, and disrupting Bcl-2 family 
proteins interaction with Beclin-1. Bcl-2 family proteins can 
coordinately regulate autophagy and apoptosis. Additionally, caspases 
cleave and inactivate Beclin-1 during apoptosis, which may lead to the 
suppression of autophagy by apoptosis-effector molecules (54).

During the autophagy process, autophagosomes assemble under 
the influence of stress signals and fuse with lysosomes to form 
autolysosomes, which degrade carriers such as incorrectly folded 
proteins and damaged organelles (55). Recent studies have shown that 
APAP-induced inhibition of autophagy leads to hepatic lipotoxicity and 
exacerbated inflammatory reactions; using liver-protective drugs can 
activate autophagy to reduce hepatic lipotoxicity and inflammation 
while preventing drug-induced liver damage (53, 55–58). Research by 
Yuan and others found that in the liver tissue of mice injected with 
APAP, there was an increase in the expression of Bax, BNIP3, and 
caspase-3 proteins, a significant increase in the LC3 II/LC3 I ratio, and 
a decrease in Bcl-2 protein expression. Treatment with alpha-mangostin 
(α-MG) reversed these changes, suggesting that the excessive activation 
of autophagy and apoptosis induced by APAP injection may 
be suppressed by α-MG treatment (53). This result further confirms 
that autophagy and apoptosis are jointly regulated by Bcl family proteins.

Furthermore, glutathione peroxidase 4 (Gpx4) is a central 
regulatory factor in ferroptosis, and Gpx4 is directly or indirectly 
inhibited when GSH is depleted, leading to lipid peroxidation and 
eventually inducing ferroptosis (59). Recent studies have shown that 
there is significant cell death and lipid peroxidation in the livers of mice 
treated with APAP, accompanied by reduced expression of Gpx4 and 
decreased levels of GSH. However, the ferroptosis inhibitor Fer-1 
significantly alleviated the aforementioned changes induced by 
APAP. This evidence strongly supports the involvement of ferroptosis in 
the mechanism of AILI and suggests that ferroptosis may be one cause 
of AILI (60–64). Cai and colleagues found through in vitro and in vivo 
studies that APAP treatment disrupted iron homeostasis, damaged 
mitochondrial structure, and downregulated gene and protein 
expression levels of solute Carrier Family 7 Member 11 (SLC7A11), 
GPX4, ferritin heavy chain 1 (FTH1), and ferritin light polypeptide 1 
(FTL1). However, administering the dietary compound astaxanthin 
(ASX) reversed these changes. Ultimately, these results indicated that 
while APAP challenge increased ferroptosis, ASX intervention enhanced 
the ability to resist it intervention enhanced the ability to resist it 
intervention enhanced the ability to resist it (64) (as shown in Figure 2).

3.5 Bile salt export pump (BSEP) inhibition

The inhibition of BSEP results in the accumulation of toxic bile 
salts in hepatocytes, leading to cholestatic liver cell injury. BSEPs are 

protein transporters that transport bile acids out of liver cells, playing 
a crucial role in eliminating drugs from the liver and secreting bile 
salts into bile. Inhibition of BSEP expression can result in the buildup 
of cytotoxic bile acids within the liver, which can damage liver cells 
and possibly progress to cirrhosis (65). Drugs associated with 
cholestatic and mixed cholestatic-hepatocellular injuries, including 
cyclosporine, ritonavir, rosiglitazone, saquinavir, troglitazone, 
ketoconazole, pioglitazone, lovastatin, haloperidol, atorvastatin, 
cerivastatin, bosentan, and chlorpromazine, demonstrated strong 
inhibition of BSEP activity (66, 67). This is due to their ability to 
inhibit liver transporters and induce DILI by inhibiting BSEP. Elevated 
levels of hepatotoxic drugs in the bloodstream can increase the risk of 
liver damage, often as a result of organic anion-transporting 
polypeptide 1B1 (OATP1B1) inhibition by drugs such as cyclosporine 
A (68), gemfibrozil (68) and tyrosine kinase inhibitors (TKIs) 
(pazopanib) (69). Inhibited efflux transporters cause the accumulation 
of toxic metabolites, leading to liver damage (as shown in Figure 2).

4 The effects and its molecular 
mechanisms of functional foods and 
diet-derived compounds against DILI

This review includes an assessment of functional foods and their 
crude extracts reported between 2004 and 2022 for their preventive 
and therapeutic effects on DILI caused by food, as shown in Figure 3. 
Additionally, the review isolates bioactive components from food with 
therapeutic and preventive effects against DILI, mainly including 
phenolics, flavonoids, glycosides, terpenes, and carotenoids, 
categorizing other types of food-derived bioactive components within 
functional foods and crude extracts, as shown in Figure 4.

4.1 Foods

Plenty of foods have been widely reported to reduce DILI, with 
APAP being a prominent example. In vivo and in vitro experimental 
animal model studies provided evidence that many kinds of food, such 
as legumes, seed, fruit, vegetable, spices and oil, have strong 
hepatoprotective effects, as outlined in Figures 3, 5 and Table 1.

4.1.1 Legumes and seeds
The water-extract from adzuki bean (Vigna angularis) hulls (70) 

and Sophora viciifolia fruit (71) was found to attenuate cetaminophen 
(APAP)-induced damage in rat liver by decreasing serum aspartate 
aminotransferase (AST) activity, restore hepatic glutathione (GSH) 
content and hepatic glutathione reductase (GSR) and catalase (CAT) 
activities, exert antioxidant defense (70, 71).

In APAP-induced liver injury of rat or mice model, fruit like 
Opuntia robusta and Opuntia streptacantha (72), fruits of Phyllanthus 
emblica (73), Citrus microcarpa Bunge (flavonoids, tannins, and 
glycoside) (74), Musa paradisiaca L. (75, 76), Annona muricata Linn. 
(77), Coccinia indica (78), Red Jujub (79), Lycium barbarum 
L. (wolfberry) (80), Terfezia Boudieri (B3 vitamin; quinic acid; 
chlorogenic acid; quercetin-3-o-rhamonoside) (81), Anneslea 
fragrans (82), Citrus aurantium L. (83), Tigernut (Cyperus esculentus 
L.) (84), soursop fruit extract (SSFE) (85), Macadamia Nut (Protein 
Peptides) (86), Guava Fruit (Polysaccharide) (87) and Seabuckthorn 
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Berry (Polysaccharide) (88) showed hepatoprotective activity against 
APAP-induced liver damage. The hepatoprotection effect offered by 
these foods was reflected by the significant decrease in serum liver 
function markers levels, such as AST, ALT, alkaline phosphatase 
(ALP), total bilirubin (TBIL) and reduction of any gross 
morphological injury to the rat’s liver. Importantly, treatment of rats 
or mice with fruits ameliorated and restored cellular antioxidant 
status and oxidative stress (OS)-antioxidant parameters, such as 

decreased lipid peroxidation (LPO), inhibited malonaldehyde 
(MDA), restored GSH, increased CAT, Superoxide Dismutase (SOD), 
and GSR, and glutathione peroxidase (GPx) levels (72–88). In 
addition, ethanol-aqueous (AFE) and hot-water (AFW) extracts from 
Anneslea fragrans exerts activated nuclear factor erythroid 2-related 
factor 2 (Nrf2) pathway to increase the hepatic antioxidant properties 
(82). AFE and AFW extracts exerted anti-inflammation role by 
suppressing the JNK/p38/ERK/NF-κB pathways (82). Moreover, AFE 

FIGURE 3

Foods with anti-drug-induced liver injury (DILI) effects. Adzuki bean reproduced by Sanjay Acharya, licensed under CC BY-SA 3.0 via Wikimedia 
Commons. Amorphophallus paeoniifolius reproduced by Aruna, licensed under CC BY-SA 3.0 via Wikimedia Commons. Anneslea fragrans 
reproduced from Tony Rodd, licensed under CC BY-NC-SA 2.0. Annona muricata Linn reproduced from Fpalli, licensed under CC BY-SA 3.0 via 
Wikimedia Commons. Auricularia delicata reproduced from Dick Culbert, licensed under CC BY 2.0. Benincasa hispida reproduced from Judgefloro, 
licensed under CC BY-SA 4.0 via Wikimedia Commons. Brassica oleracea L. reproduced by Forest & Kim Starr, licensed under CC BY 3.0 via 
Wikimedia Commons. Choy Sum (Yellow Chinese) reproduced from Anna Frodesiak, licensed under CC0 via Wikimedia Commons. Cissus 
quadrangularis reproduced from Dinesh Valke, licensed under CC BY-SA 2.0 via Wikimedia Commons. Citrofortunella microcarpa reproduced by 
David J. Stang, licensed under CC BY-SA 4.0 via Wikimedia Commons. Citrus aurantium reproduced from Genet (Diskussion) at German Wikipedia, 
licensed under CC BY-SA 3.0. Coccinia grandis reproduced by Abdullah AL Shohag, licensed under CC BY-SA 2.0 via Wikimedia Commons. 
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FIGURE 4

The mechanisms against drug-induced liver injury (DILI) of foods. The molecular mechanisms against DILI include the anti-inflammation, anti-oxidative 
defense, anti-opoptosis, improve lipid metabolism and alliviate dysbiosis. Created with BioRender.com.

FIGURE 5

Diet-derived bioactive compounds with anti-drug-induced liver injury (DILI) effects.
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TABLE 1 Foods for the prevention and treatment of drug- induced liver injury.

Bioactive component/
extract

Model Dose (time) Changes of biological markers Molecular mechanisms Authors (Ref.)

Adzuki bean
AAP-induced liver damage in F344/

DuCrj rats
5% of diet (4 weeks)

Serum AST↓, hepatic PCOOH and PEOOH↓; 

hepatic GSH, GSR and CAT↑

Anti-oxidative stress
Han et al. (70)

Sophora viciifolia fruit APAP-induced liver injury mice 125, 250, 500 mg/kg (7 days)

ALT and AST↓; SOD, CAT, GSH-Px and GSH↑; 

pathological liver lesions↓; TNF-α, NF-κB and IL-6 

mRNA↓; Nrf2, HO-1 and GCLC↑; CYP2E1↓; Nrf2 

and Keap1↑

Anti-oxidative stress; anti-

inflammation; Keap1-Nrf2 

pathway↑

Qi et al. (71)

Opuntia robusta and Opuntia 

streptacantha
APAP-induced ALF of Wistar rats 800 mg/kg (5 days)

AST, ALT and ALP↓; liver GSH↑; glycogen↑; leakage 

of LDH and cell necrosis↓; superior to NAC
Anti-oxidative stress

González-Ponce et al. 

(72)

Fruits of Phyllanthus emblica
Acetaminophen induced hepatic 

damage in Wister rats
100–200 mg/kg (4 h) Blood cell count restored; necrosis of hepatocytes↓ Anti-oxidative stress Malar et al. (73)

Citrus microcarpa Bunge/

flavonoids, tannins, and glycoside
APAP-induced liver damage in SD rats 4,000 mg/kg (8 days) ALT, AST and AP levels Anti-oxidative stress Franchesca et al. (74)

Musa paradisiacaL. APAP-induced liver damage in SD rats 10% of diets (60 days) ALT, AST↓; liver necrosis and regeneration↑ Anti-oxidative stress Iweala et al. (75)

Musa paradisiacaL.
APAP induced hepatic toxicity in 

albino rats
200 mg/kg (15 days)

Lipid peroxidation and accumulation of free 

radicals↓
Anti-oxidative stress Radhika et al. (76)

Annona muricata Linn. APAP-induced liver damage in SD rats 1 g/kg and 2 g/kg (15 days)
AST, ALT and ALP↓; TP and ALB↑; SOD, GPx, 

CAT and GHS↑; LPO↓
Anti-oxidative stress Menon et al. (77)

Coccinia indica
Acetaminophen induced hepatotoxicity 

in rats
200, 400 mg/kg (7 days) AST, ALT, ALP and TBIL↓, similar to silymarin Anti-oxidative stress Sanapala et al. (78)

Red Jujub
APAP-induced liver damage in Wistar 

rats
70, 140, 280 mg/kg (10 days) ALT and AST↓ Anti-oxidative stress Tedyanto et al. (79)

Lycium barbarum L. (wolfberry) APAP-induced DILI in BALB/c mice 0.026 g (5 days) AST, ALT and TBA↓; YAP1/FXR↑; CYP7A1↓
balance of intestinal microbiota↑; 

bile acids↓
Lu et al. (80)

Terfezia Boudieri (Edible Desert 

Truffle Specie)/B3 vitamin; quinic 

acid;chlorogenic acid;quercetin-3-

o-rhamonoside

Acetaminophen-induced liver injury in 

rats
125 mg/kg (4 days)

Necrosis and injury areas, inflammatory cells and 

Kuppfer cells infiltration in the sinusoid capillaries

Anti-oxidative stress; anti-

inflammation
Nouiri et al. (81)

Anneslea fragrans
APAP-induced acute liver injury in 

mice/HeG2 cells

AFE and AFW (200 or 600 mg/kg)

(14 days pre)/(AFW and AFE at 50 and 

150 μg/mL) (24 h)

AST and ALT↓; GSH↑; SOD, CAT, HO-1 and NQO-

1↑; NO, TNF-α, IL-1β, IL-6 and Bcl-2↓; Bax↑; 

caspase-3/9↓

Anti-oxidative stress (Nrf2 

pathway↑); anti-inflammation 

(JNK/p38/ERK/NF-κB pathways↓); 

anti-opoptosis

Hu et al. (82)

Citrus aurantium L.
APAP-induced liver injury in Kunming 

mice/BRL-3A cell
6 g/kg (7 days)/62.5 mM (24 h)

AST and ALT↓; GSH↑; TG↓; P53, BAX and 

Caspase3↓, p-MKK, p-JNK1 and PUMA↓

anti-opoptosis (AMPK-SIRT1, 

JNK1 signaling pathways; 

SIRT1-p53 pathway↓); reversing 

disorder of liver lipid metabolism

Shu et al. (83)

(Continued)
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TABLE 1 (Continued)

Bioactive component/
extract

Model Dose (time) Changes of biological markers Molecular mechanisms Authors (Ref.)

Tigernut (Cyperus esculentus L.)
Acetaminophen-induced 

hepatotoxicity in rats
500, 1,000, and 2,000 mg/kg (14 days) GST↑ Anti-oxidative stress Onuoha et al. (84)

Soursop fruit extract (SSFE)
APAP-induced liver injury in Wistar 

albino rats
300 mg/kg (7 days)

ALT, AST, ALP and TBIL; MDA, nitrites and 

nitrates↓; GSH, SOD, CAT, GSR and GPx↑; HO-1; 

TNF-α, IL-1β↓ and iNOS mRNA↓; Bax and Bcl-2↑, 

TGF-β↓; release of cytochrome c↓

Nrf2 defense pathway (Nrf2 /HO-

1pathway↑); anti-inflammation 

(NF-κB pathway↓)

Al-Brakati et al. (85)

Macadamia nut protein peptides APAP-induced liver injury in mice 320 mg/kg and 640 mg/kg (14 days)

ALT, AST and ALP↓; GSH, SOD and GPx↑; HO-1; 

TLR4, NF-KB, IL-1β and TNF-α gene↓; TNF-α, 

IL-6↓

Anti-oxidative stress; anti-

inflammation; TRL4/NF-κB 

pathway↓

Shan et al. (86)

Guava Fruit (polysaccharide)
paracetamol -induced liver injury in 

SD rats
200 g/kg and 400 g/kg (15 days)

ALT, AST and ALP↓; GSH, SOD and GPx↑; TNF-α 

and IL-6↓

Anti-oxidative stress; anti-

inflammation
Alias et al. (87)

Seabuckthorn (polysaccharide) APAP-induced liver injury in mice 100 mg/kg and 200 mg/kg (30 days)

ALT and AST↓; GSH, SOD, SOD-2 and GPx↑; NO 

and iNOS↓; JNK phosphorylation↓; Bcl-2/Bax↑; 

Keap-1↓; Nrf-2↑

Anti-oxidative stress; anti-

inflammation; anti-apoptosis; 

Nrf-2/HO-1-SOD-2 signaling 

pathway↑

Wang et al. (88)

Cactus cladode extract (Opuntia 

ficus-indica)

MTX-induced liver injury of Wistar 

rats
0.4 g/kg (10 days)

Hematocrit, hemoglobin and white blood cells↑; 

biochemical serum parameters↑
Anti-oxidative stress Akacha et al. (89)

Hibiscus sabdariffa calyx/

Flavonoid-rich aqueous fraction

Streptozotocin-induced diabetic Wistar 

rats
1,750 mg/kg (15 days)

GSH, CAT, SOD and GPx↑; AST, ALT and ALP; 

hepatic fibrosis and glycogen deposition↓
Anti-oxidative stress Adeyemi et al. (90)

Dried leaves of Ficus carica
Rifampicin-Induced Hepatic Damage 

in Rats
200 mg/100 g (10 days) SGPT and SGOT↓; cytoarchitecure was restored Anti-oxidative stress Gond et al. (91)

Jackfruit (polysaccharides)
Cyclophosphamide-induced liver 

injury mice

50 mg/kg, 100 mg/kg and 200 mg/kg 

(7 days)

CAT, SOD and GPx↑; MDA↓; TNF-α, IL-6, IL-2 and 

IFN-ɣ↓; p-p65/p65 and p-p38/p38↓; κB-α and 

p-JNK/JNK↑

Anti-oxidative stress; anti-

apoptosis; MAPK pathway↓; NF-

κB/p65 inflammatory pathway↓

Cheng et al. (92)

Trianthema portulacastrum L. 

(Aizoaceae)

Acetaminophen and thioacetamide 

induced hepatotoxicity in albino rats
100, 200 mg/kg (10 days) SGOT, SGPT, ALP and BRN↓; TP↑ Anti-oxidative stress Kumar et al. (93)

Moringa oleifera
Antitubercular drug-induced liver 

damage in rats
150, 200, 250 mg/kg (45 days) LPO↓ Anti-oxidative stress Pari et al. (94)

Moringa Oleifera Lam
Acetaminophen-induced liver injury in 

albino rats
500 mg/kg (7 days) TBIL, ALT, AST and ALP↓; ALB↑ Anti-oxidative stress Selim et al. (95)

Luffa cylindrica Linn
Isoniazid + rifampicin induced 

hepatotoxic in rats model
300, 350 mg/kg (21 days)

TP↑; ALP, AST, ALT, TBIL and γ-GT↓; hepatocytic 

necrosis and inflammation↓

Anti-oxidative stress; anti-

inflammation
Pal et al. (96)

Amorphophallus paeoniifolius 

tubers/carbohydrates, proteins, 

steroids and flavonoids

Acetaminophen induced liver damage 

in rats
300 mg/kg (4 days) GOT, GPT, ALP and TBIL↓ Anti-oxidative stress Hurkadale et al. (97)

(Continued)
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TABLE 1 (Continued)

Bioactive component/
extract

Model Dose (time) Changes of biological markers Molecular mechanisms Authors (Ref.)

Pulps of Benincasa hispida
Nimesulide-induced hepatotoxicity 

model in rats
50 mg/kg (14 days)

GOP, GPT and ALP↓; SOD and CAT↑; GSH and 

LPO↓
Anti-oxidative stress Das et al. (98)

Bras sica oleracea L./

obtucarbamate, N-(4-hydroxy 

phenyl) acetamide, and p-hydroxy 

benzoic acid

Acetaminophen-induced liver injury in 

rat
1 g/kg (7 days)

GPT and sGOT↓; damaged structural integrity of 

the liver↓
Anti-oxidative stress Hashem et al. (99)

Yellow Chinese chive extract 

(YCE)
APAP-induced hepatotoxicity in mice 25, 100 mg/kg (7 days) HO-1, NQO1, GPx and xCT expression↑

Anti-oxidative stress (Nrf2 

pathway↑)
Kawakami et al. (100)

Dandelion APAP-induced liver injury in rats 1 g/kg (14 days)
AST, ALT, LDH and ROS↓; GSH and GPx↑; TNF -α, 

COX-2, CYP2E1, MAPK, JNK and NF-KB p65↓

Anti-oxidative stress; anti-

apoptosis; anti-inflammation; 

MAPK and NF-κB pathways↓

Wang et al. (101)

Dandelion
APAP-induced liver injury in Kunming 

mice

(120, 250, 500, 

1,000 g/120 mL) × 0.5 mL/10 g; (7 days)

ALT, AST, AKP, TNF-α and IL-1β↓; MDA↓; GSH 

and SOD↑; COX-2 and iNOS↓; Bax, caspase-9 and 

JNK protein↓; hepatocytenecrosis, inflammatory cell 

infiltration and congestion

Anti-oxidative stress; anti-

apoptosis; anti-inflammation; JNK 

pathway↓; Nrf-2/HO-1 pathway↑

Zheng et al. (102)

Dandelion (polysaccharides) APAP-induced liver injury in mice
200, 100, 50 mg/kg, 3 times daily for 

2 days

AST, MDA and ROS↓; GSH, SOD and CAT, GPX↑; 

Nrf2, HO-1 and NQO1↑

Anti-oxidative stress; Nrf2-Keap1 

pathway↑
Cai et al. (103)

Sweet basil (Ocimum basilicum 

L.)/phenolic, flavonoid

Acetaminophen-induced liver injury in 

Wistar rats
200 mg/kg (7 days)

Antioxidant enzymes↑; LPO↓; serum transferase 

enzymes↓
Anti-oxidative stress Branislava et al. (104)

Auricularia delicata
Acetaminophen-induced hepatic 

injury in rats
150 mg/kg (5 days)

Mitochondrial-targeted antioxidant effect of 

chlorogenic acid
Anti-oxidative stress Wangkheirak et al. (105)

Radishes (RJ) and turnips (RG) APAP-induced liver-damaged mice
500, 1,000 mg/kg RJ; 500, 1,000 mg/kg 

RG; (4 weeks)

Inflammation cell infiltration↓; ALT, AST and 

MDA↓; GHS, SOD and CAT↑; Nrf-2 and HO-1↑; 

BAX↓ and BCL-2↑

Anti-oxidative stress; anti-apoptosis Hwang et al. (106)

Zinglber officinale L. 

(Zingiberaceae)/6-gingerol, 

8-gingerol and zingerone

Adriacycin-induced liver injury in 

wistar albio rats
24 mg (3 times/week × 6 weeks)

AST, ALT and MDA↓; SOD↑; leucocytes infiltration, 

cytoplasmic vasculization and fat infiltration↓

Anti-oxidative stress; anti-

inflammation
Sakr et al. (107)

Zinglber officinale L. 

(Zingiberaceae)/6-gingerol, 

8-gingerol and zingerone, vitamin 

E

APAP-induced liver injury in wistar 

albio rats

Ginger 100 mg/kg; Vitamine E 75 mg/

kg for 14 days

AST, ALT, TBIL, Arginase, LPO and MDA↓; SOD↑; 

TAGs↑
Anti-oxidative stress Abdel-Azeem et al. (108)

Solanum torvum leaves/phenolic 

fraction

APAP- induced liver injury in C57BL/6 

mice
600 and 1,200 mg/kg (18 h) ALT and AST↓; GSH↑; TBARs↑ Anti-oxidative stress de Souza et al. (109)

(Continued)
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and AFW extracts alleviated apoptosis via regulating Bcl-2, Bax, and 
caspase-3/9 protein expressions (82). Furthermore, fructus aurantii 
can prevent APAP-induced liver injury by regulating 
glycerophospholipid metabolism, fatty acid synthesis, and 
glycerolipid metabolism (83). In addition, fructus aurantii exhibits 
hepatoprotective effects against APAP-induced liver necrosis by 
inhibiting PUMA and reversing hepatic lipid metabolism disorders 
(83). In addition, soursop fruit extract (SSFE) pretreatment alleviated 
liver injury through regulation of hepatic Nrf2/HO-1 (Heme 
Oxygenase 1) and downregulation of NF-κB and transforming 
growth factor-β (TGF-β) (85).

Literature reports that excessive exposure to acetaminophen 
(APAP) inactivates endogenous antioxidants, stimulates ROS, alters 
mitochondrial permeability, and depletes ATP, ultimately leading to 
liver damage. Nrf2 is a transcription factor that can bind to the 
antioxidant response element (ARE), regulating the expression of 
various intracellular antioxidants and detoxifying molecules, 
including HO-1. Overexpression of HO-1 has been reported to 
be  associated with increased Fe2+ release and exacerbated iron-
mediated ROS production. High doses of APAP may activate the 
NF-κB pathway by enhancing ROS production. NF-κB is considered 
the main transcription factor promoting the expression of 
pro-inflammatory cytokines and other mediators in inflammatory 
and oxidative responses. The APAP-induced liver injury rat model 
established by Ashraf Y et al. has confirmed that the expression of 
Nrf2, HO-1, NF-κB, iNOS, TNF-α and IL-1β and hepatic TGF-β were 
increased in the liver of APAP-intoxicated rats (85). However, using 
SSFE pretreatment, the levels of oxidants (MDA and nitrate/nitrite) 
were reduced, GSH content was increased, and the activities of 
antioxidant defense enzymes (SOD, CAT, GSR, and GPx) were 
activated. In addition, SSFE pretreatment regulated the expression of 
HO-1 and activated Nrf2  in liver tissue. Meanwhile, SSFE 
pretreatment led to a decrease in levels of TNF-α and IL-1β, as well 
as downregulation of iNOS and NF-κB expression. Furthermore, 
SSFE pretreatment could downregulate the abnormal expression of 
TGF-β induced by APAP, demonstrating significant protective effects 
against APAP toxicity (85).

Macadamia nut protein peptides, with Glu, Arg, Asp, Leu, Tyr, 
and Gly being the major amino acids, alleviated AILI in mice by 
inhibiting TLR4/NF-κB pathway-related gene (TLR4, NF-κB, 
IL-1β and TNF-α) activation (86). Furthermore, The protective 
effects of Seabuckthorn Berry polysaccharide extracts are 
associated with the activation of the Nrf-2/HO-1-SOD-2 signaling 
pathway (88).

4.1.2 Fruit
In other DILI rat models, through antioxidant activity 

mechanisms, fruit like cactus cladode extract (Opuntia ficus-indica) 
(89) alleviated MTX (methotrexate)-induced liver damage; hibiscus 
sabdariffa calyx/flavonoid-rich aqueous fraction inhibited 
chlorpyrifos-induced liver injury (90). Additionally, in the rifampicin-
induced rat liver injury model, dried leaves of ficus carica improved 
rifampicin-induced hepatotoxicity and exerted antioxidative defense 
functions (91). Artocarpus heterophyllus Lam. (jackfruit) 
polysaccharides (JFP-Ps) can protect against cyclophosphamide 
(Cp)-induced liver injury. Furthermore, JFP-Ps modulated immune 
responses through the mitogen-activated protein kinase (MAPK)/
NF-κB pathway associated with inflammation and cell apoptosis. T
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Metabolomics results indicate that the hepatoprotective effects of 
JFP-Ps are mainly related to tRNA biosynthesis, sphingolipid 
metabolism, purine metabolism, and the citric acid cycle (92).

4.1.3 Vegetables
Vegetables such as Trianthema portulacastrum L. (Aizoaceae) 

(93), Moringa oleifera (94, 95), Luffa cylindrica Linn (96), 
Amorphophallus paeoniifolius tubers (97), pulps of Benincasa hispida 
(98), Bras sica oleracea L. (99), yellow Chinese (100), dandelion (101–
103), sweet basil (Ocimum basilicum L.) (104), Auricularia delicata 
(105), radishes (RJ) and turnips (RG) (106), Zinglber officinale 
L. (Zingiberaceae) (107, 108), solanum torvum leaves (109), 
Codonopsis pilosula (polysaccharides) (110) were reported to enhance 
hepatic antioxidant activity through the modulation of antioxidant-
mediated mechanism by altering serum antioxidases activities and 
reduced GSH and LPO levels. Furthermore, research has found that 
yellow Chinese chive extract (YCE) can enhance the expression of 
Nrf2 and its target antioxidant enzymes in the liver of mice, including 
NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase 
(GPx), cystine/glutamate transporter (xCT), especially heme 
oxygenase-1 (HO-1). Vegetables like dandelion suppressed mitogen-
activated protein kinase (MAPK) and NF-κB pathways, inhibited 
activation of JNK pathway and activating the Nrf-2/HO-1 pathway to 
inhibit the occurrence of oxidative stress, inflammatory response and 
apoptosis (101, 102); polysaccharides from dandelion root (DRP) 
increased the Nrf2 and Keap1 and showed to have a protective effect 
against liver injury by activation of the Keap1-Nrf2 pathway (103). 
Phellinus linteus (polysaccharides) alleviates oxidative stress by 
activating the Nrf2 signaling pathway and inducing autophagy to 
protect against APAP-induced acute liver injury in mice. Luffa 
cylindrica Linn (91), dandelion (100), Zinglber officinale L. (107, 108) 
were found to inhibit inflammatory response through regulating 
cytokines level in serum and liver tissue, and liver inflammatory cell 
inflammation. In addition, gut microbiota, may also serve as a 
mechanism for Codonopsis pilosula (polysaccharides) (110) mediated 
remission of liver injury.

4.1.4 Beverages
For beverages, Pineapple vinegar (total phenolic content and gallic 

acid as the main functional components) was demonstrated to 
enhance antioxidant defense and suppress LPO and reduced the 
expressions of iNOS, NF-κB and the level of NO, and downregulated 
liver cytochrome P450 protein expression (111). Nipa vinegar, which 
is rich in polyphenolic acids, was found to contribute to anti-
oxidation, anti-inflammation and liver protection effects in 
paracetamol treated mice (112). In addition, the leaves of Lithocarpus 
polystachyus Rehd. protected liver against APAP-induced 
hepatotoxicity by inhibiting the PI3K/Akt (protein kinase B) mediated 
apoptosis signal pathway and inhibiting the NF-κB-mediated signaling 
pathway (113).

4.1.5 Spices
For spices, it was reported that Eel oil could activate Nrf2 and 

exert antioxidant defense and hepatoprotective activity by inhibiting 
SGPT, total bilirubin, MDA, and increasing GSH levels in rats (114). 
Moreover, Silkworm pupa oil attenuated hepatic injury induced by 

APAP, which attributed to the suppression of oxidative stress-
mediated NF-κB signaling and decreased in proinflammatory 
cytokines, including TNF-α, IL-6, and IL-12 (115).

4.2 Food-derived products for the 
treatment of DILI

A large number of food-derived products have been widely 
reported to reduce DILI, especially APAP-induced DILI (Figure 4). In 
vitro experiments and in vivo animal model studies have demonstrated 
that a single component of food-derived products, especially phenols, 
flavonoids, glycosides, terpenes and carotenoids, may be beneficial for 
the treatment of DILI (Table 2 and Figures 6A,B).

4.2.1 Phenols

4.2.1.1 Resveratrol (RESV)
Resveratrol (RESV) is a natural nonflavonoid polyphenol that is 

present in the fruits of many plants, such as grapes and peanuts. In a 
cat model of As2O3-induced liver injury, RESV treatment increased 
antioxidant enzyme activity and decreased As2O3-induced ROS and 
malondialdehyde (MDA) production. Additionally, RESV alleviated 
the decrease in the reduced GSH to oxidized GSH ratio and the 
arsenic retention in liver tissue caused by As2O3 (116). These findings 
elucidated that the protective effects of RESV on As2O3-induced 
oxidative stress and hepatotoxicity were realized through decreasing 
the retention of arsenic and improving the redox status of liver tissue 
(116). In the APAP-induced C56BL/6 mouse liver injury model, long-
term RESV treatment improved liver injury caused by APAP 
poisoning, restored tissue characteristics, ultrastructure and serum 
biochemical indicators [albumin and alanine aminotransferase 
(ALT)], and restored liver cell recovery indicators, such as Ck18- and 
F4/80-positive cells (117).

4.2.1.2 Gallic acid (GA)
Gallic acid (GA), a small phenolic acid, is a hepatoprotective 

active component of several food extracts, such as onion, date, berries, 
grape, apple, tea leaves and pomegranate. Increasing evidence 
supports the antioxidant and anti-inflammatory properties of GA 
through its influence on cytoprotective pathways. Experimental 
studies have shown that GA is beneficial for the treatment of liver 
damage caused by acetaminophen and antituberculosis drugs 
(isoniazid and rifampicin) (118, 119). GA treatment can significantly 
reverse the increase in liver enzyme markers and inflammatory 
mediators TNF-α and LPO induced by paracetamol and improve the 
measured antioxidant status of paracetamol-stimulated mice, 
suggesting that GA treatment has potential antioxidant and anti-
inflammatory effects (118). In a Wistar rat model of hepatotoxicity 
induced by isoniazid and rifampicin, GA effectively prevents the 
hepatotoxicity induced by isoniazid and rifampicin, improves 
oxidative stress balance by activating Nrf2, which led to increased level 
of GSH, PRDX6, GPx, SOD and CAT, and inhibits the NF-κB 
signaling pathway, downregulating the level of TLR, NOS2, IL-1β, 
IFN-ɣ, and high mobility group box-1 protein (HMGB)-1 in 
vivo (119).
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TABLE 2 Diet-derived bioactive compounds for the prevention and treatment of drug-induced liver injury.

Type Monomers Diets sources Model Does (time) Changes of biological markers Molecular mechanisms Authors (Ref.)

Phenols

Resveratrol Wine
As2O3-induced liver injury in 

cats
3 mL/kg (5 days)

Tissue ROS, GSH/GSSG↓; MDA↓; LPO↓; SOD, 

GPX and CAT↑; serum TBIL, CHE, AST and 

ALT↓; cytoplasmic vacuolization, focal necrosis 

and inflammatory cell infiltration↓; liver As2O3 

concentration↓; LPO↓

Anti-oxidative stress; anti-

inflammation
Zhang et al. (116)

Resveratrol Grapes and peanuts
In APAP-induced liver 

damage in C56BL/6 mice
10 mg/kg/d (60 days)

ALB↑; AST↓; Ck18-, F4/80+ cells and α-SMA+ cells 

was normalized; BCRP↓
Maintain of mitochondria function; de Moraes et al. (117)

Gallic acid

Berberry, 

pomegranates and gall 

nuts.

APAP-induced liver injury in 

Swiss albino mice
100 mg/ kg (4 h)

AST, ALT, ALP, TNF-α and LPO↓; SOD, CAT, GPx, 

GHR, GST and GSH↑

Antioxidant defense; anti-

inflammatation
Rasool et al. (118)

Gallic acid
Berberry,pomegranates 

and gall nuts.

Isoniazid and rifampicin-

induced liver injury in Wistar 

Rats

50, 100 and 150 mg/kg 

(28 days)

Liver function enzymes↓; hepatic necrosis and 

inflammation↓; Nrf2↑

Anti-oxidant defense; anti-

inflammation; inhibited NF-κB/TLR-4 

axis↓

Sanjay et al. (119)

Capsaicin Chili peppers
APAP-induced liver injury in 

mice
1 mg/kg (3 days)

MDA↓; SOD and GSH↑; IL-6, IL-1β and TNF-α↓; 

BCL-2X, caspase-3 and cleaved caspase-3↓; BCL-

2↓

Anti-inflammation; anti-oxidant 

defense; anti-apoptosis; HMGB1/

TLR4/NF-κB signaling pathway↓

Zhan et al. (123)

Maltol Ginseng
APAP-induced liver injury in 

ICR mice

50 and 100 mg/kg 

(7 days)

ALT and AST↓; GSH and SOD↑; MDA↓; CYP2E1 

and 4-HNE↓; inflammatory infiltration and 

apoptosis↓; Bax↓, Bcl-2↑; TNF-α and IL-1β↓

Anti-inflammation;anti-oxidative 

stress; and anti-apoptosis; NF-κB 

pathway↓; PI3K/Akt signaling 

pathway↓

Wang et al. (127)

6’-O-

Caffeoylarbutin
Que Zui tea (QT)

APAP-induced liver injury in 

Kunming mice/HepG-2 cells

20 and 60 mg/kg 

(7 days); 20, 100 μM 

(24 h)

Intracellular ROS↓; cell apoptosis↓; SOD, CAT and 

GSH↑

Anti-inflammation;anti-oxidative 

stress; and anti-apoptosis
Wang et al. (128)

Caffeic acid Coffee

APAP-induced liver injury in 

ICR mice; liver L-02 cells, 

HepG2 cells

10 and 30 mg/kg 

(7 days)/25 and 50 μM 

(48 h)

ALT/AST↓; MPO and GSH↑; ROS↓; cell viability↑; 

Nrf2↑; HO-1and NAD(P)H: NQO1↑; Keap1↓; 

binding of Keap1 to Nrf2↓

Anti-oxidative stress Pang et al. (130)

Caffeic acid Coffee
APAP-induced liver injury in 

ICR mice
10 and 30 mg/kg (5 h)

Nrf2↑; HO-1↑; NAD(P)H:NQO1↑; PP2A-A and 

PP5↓; ERK1/2 phosphorylation↑

Anti-oxidative stress; Nrf2 

antioxidative signaling pathway↑
Pang et al. (131)

Cajaninstilbene 

acid
Pigeon pea

APAP-induced liver injury in 

C57BL/6 N mice
50 and 75 mg/kg (24 h)

ALT and AST↓; necrotic and apoptotic 

hepatocytes↓; PGC-1α, TFAM, LC3-II, PINK1 and 

mitochondrial Parkin↑; p62↓; AMPK; Sestrin2↑

Improve mitochondrial quality 

control; anti-oxidative stress; Sestrin2/

AMPK signaling pathway↑

Yan et al. (132)

Chlorogenic acid
Fruits, dietary 

vegetables

APAP-induced liver injury in 

ICR mice/HepG2 cells
20, 40 mg/kg (14 days)

ALT, AST and LDH↓; cell viability↑; PINK1, Parkin 

and LC3II/LC3I↑; p62 and Tom20↓

Activate mitophagy, anti-apoptosis. 

PINK1/Parkin signaling pathway↑
Hu et al. (31)

Genistein Soybeans
APAP-induced liver injury in 

mice

50, 100 and 200 mg/kg 

(4 h)

ALT, AST, LDH and MDA↓; GSH↑; UGTs and 

GPx↑; CYP2E↓

Activities of metabolism;antioxidant 

defense
Fan et al. (134)

(Continued)
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Type Monomers Diets sources Model Does (time) Changes of biological markers Molecular mechanisms Authors (Ref.)

Soy isoflavones Soybeans
APAP-induced liver injury in 

rats
120 mg/kg (2 weeks) ALT↓; GSH↑; CYP2E1 and CYP3A↓

Activities of metabolism and anti-

oxidant defense
Liu et al. (135)

Polyphenols Tofu
APAP-induced liver injury in 

albino rats
20 g/day (14 days)

ALP, ALT, AST and LDH↓; TCH and TBIL↓; TP 

and ALB↑
Anti-oxidant defense Yakubu et al. (136)

Guavinoside B Psidium guajava
APAP-induced liver injury in 

C57BL/6 mice/HepG2 cells

100 mg/kg 

(7 days)/30 μM (24 h)

Intracellular ROS↓; hepatocyte infiltration and 

necrosis↓; ALT, AST, ROS, MDA and TNF-α↓; 

SOD and GSH↑; Nrf2, GCLC and NQO1↑; p-JNK 

gene expression↓

Anti-oxidative stress; anti-

inflammation; Nrf2 and JNK signaling 

pathways↑

Li et al. (137)

Formononetin Legume
APAP-induced liver injury in 

BALB/c mice/LO2 cells

50 mg/ kg(7 days)/20 

and 40 μM (6 h)

AST and ALT↓; apoptotic cytes↓; inflammatory 

infiltration↓; Nrf2 protein↑; Nrf2 and antioxidant 

genes mRNA↑

Anti-oxidative stress; anti-

inflammation;anti-apoptosis
Jin et al. (138)

Heilaohusuin B Kadsura coccinea APAP-induced HepG-2 cells 5, 10 and 20 μM (18 h) Nrf2 and HO-1↑
Oxidative stress inhibition via 

activating the Nrf2 pathway
Yang et al. (139)

Dflavonois
Cynarin Illyrian thistle

APAP-induced liver injury in 

mice
25 m g/kg (2 h)

AST and ALT↓; NQO1, HO-1 and Nrf2↑; MDA↓; 

GPX4↓

Anti-oxidant defense; AMPK/SIRT3 

pathway↑
Zhao et al. (142)

Epicatechin
Grape, cola nuts, straw 

berries and red wine
STZ-induced diabetes in rats

15 and 30 mg/kg 

(35 days)
GSH↑; CAT, SOD and GPx↑ Anti-oxidative stress Quine et al. (144)

Epicatechin
Grape, cola nuts, straw 

berries and red wine

MTX-induced diabetes in 

rats

25, 50 and 100 mg/

kg(10 days)

ALT, AST, MDA, IL-1β, TNF-α and NO↓; GSH, 

CAT, SOD and GHx↑
Anti-oxidative stress Azadnasab et al. (145)

Epigallocatechin-

3-Gallate
Green tea

APAP-induced liver injury in 

rats

153 and 460 mg/kg 

(4 weeks)

CYP1A2, CYP2E1, CYP3A and UGT↓; AST and 

ALT↓; Bax/Bcl2 ratio↓; LC3B II/I ratio↑; GPx and 

NQO1↑; OATP1A1↓

Anti-oxidant defense; anti-opoptosis 

and enhanced autopsy
Yao et al. (147)

Mangiferin Mango
APAP-induced liver injury in 

C57BL/6 mice
25 mg/kg (24 h)

GSH↑; APAP-Cys adduct↓; p-JNK↓; AMPK↑; 

SOD↑; LPO↓; TNF-α, IL-6, MCP-1, CXCL-1 and 

CXCL-2 mRNA↓; mRNA and serum levels of 

IL-1β↓

Anti-oxidative stress; anti-

inflammation via JNK pathway
Chowdhury et al. (40)

Naringin

Grapefruit (C. 

paradisi), C. 

aurantium, and C. 

maxima

MTX-induced liver injury in 

rats; HepG2 cells

20, 40 and 80 mg/kg 

(2 weeks); 0.3 mM 

(48 h)

Serum ALT, AST, ALP and TBIL↓; liver MDA, 

NO↓, SOD, CAT, GPx, GR and GSH↑; hepatic IL-6 

and TNF-α↓

Anti-oxidative stress; anti-

inflammation
Elsawy et al. (148)

Naringin (NG)

Grapefruit (C. 

paradisi), C. 

aurantium, and C. 

maxima

CP-induced liver injury in 

rats

50 and 100 mg/kg 

(7 days)

Serum ALT, AST and ALP; SOD, GPx, CAT and 

GSH↑; MDA↓; TNF-α, NF-κB, IL-6, IL-1α, iNOS 

and COX-2↓; caspase-3 and LC3B↓; 8-OHdG↓

Anti-oxidant defense;anti-

inflammation, anti-apoptosis; promote 

autophagy

Caglayan et al. (149)

(Continued)

TABLE 2 (Continued)
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Naringin

Grapefruit (C. 

paradisi), C. 

aurantium, and C. 

maxima

CP-induced liver injury in 

rats

50, 100 and 200 mg/kg 

(14 days)

Serum and hepatic ALT, AST, GGT, ALP and 

LDH↓; liver MDA, HPx and NO↓; GHS, CAT, 

GSH, GSH-Px and GSR↑; CCL2, IFN-α1, IL-1β, 

IL-1R and TGF-β1↓

Antioxidant defense; anti-

inflammation
Akamo et al. (150)

Naringin

Grapefruit (C. 

paradisi), C. 

aurantium, and C. 

maxima

Doxorubicin-induced liver 

injury in BALB/c mice and 

AML-12 cells

30, 60, 120 mg/kg 

(1 weeks); 50, 100 and 

200 μM (24 h)

AST, ALT and MDA↓; SOD, GHS and CAT↑; 

SIRT1↓

Anti-oxidative stress; anti-

inflammation; anti-apoptosis
Xi et al. (151)

Naringin Grapefruit
Taxol-induced liver injury in 

Wistar rats

10 mg/kg (every other 

day for 6 weeks)

TBIL, AST, ALT, ALP, LDH and gamma-GT; ALB↑; 

LPO↓; GSH, SOD and GPx↑; alpha-fetoprotein and 

caspase-3↓

Anti-oxidative stress; anti-

inflammation; anti-apoptosis
Khaled et al. (152)

Naringin

Grapefruit (C. 

paradisi), C. 

aurantium, and C. 

maxima

Diclofenac-induced liver 

injury in Wistar rats
20 mg/kg (4 weeks)

Serum ALT, AST, LDH, ALP, GGT, TBIL, TNF-α 

and IL-17↓; liver LPO↓; liver p53 andcaspase-3 

mRNA↓; serum IL-4, liver GSH, GPx and SOD↑; 

histological, hydropic degeneration, cytoplasmic 

vacuolization, apoptosis, and focal necrosis, 

inflammatory cells’ infiltration↓

Anti-oxidative stress; anti-

inflammation; anti-apoptosis
Hassan et al. (153)

Naringin Citrus grandis (L.)

APAP-induced injury in 

primary hepatocytes and 

HepG2 cells

1, 10 and 100 mM 

(24 h pre 8 h)

Cell viability↑; ALT, AST and LDH↓; GSH and 

SOD↑; phase II enzymes (UGT1A1, UGT1A3, 

UGT1A6, SULT1A1, SULT2A1, GSTa1 and 

GSTm1)↓; significant loss of MMP, mitochondrial 

depolarization, and mitochondrial fission (fusion 

proteins Mfn1 and Opa1)

Anti-oxidative stress; AMPK/Nrf2 

pathway↑
Wu et al. (156)

Naringin
Grapefruit and other 

citrus fruits

APAP-induced liver injury in 

C57BL/6 mice

30, 60 and 120 mg/kg 

(7 days)

CHAC2 and Nrf2↑; CAT, SOD and GSH↑; 

proinflammatory cytokines↓; apoptotic pathways↑

Anti-oxidative stress, via CHAC2-

mediated activation of the Nrf2 

pathway; anti-inflammation

Zhai et al. (157)

Narirutin Citrus peels
APAP-induced liver injury in 

mice
50 mg/kg (24 h)

Serum GPT and GOT1/AST↓; SOD, CAT and 

GPx↓; CYC/Cyt c↓

Maintain mitochondrial function; 

anti-oxidative stress; PPP3/

calcineurin-TFEB-ALP axis↑

Fang et al. (161)

Apigenin Fruits and vegetables
APAP-induced liver injury in 

mice

20 and 80 mg/kg 

(7 days)

ALT, AST, MDA and MPO↓; GSH and ROS↑; 

SIRT1↑; deacetylated p53↑; p65↓

Anti-oxidative stress; anti-

inflammation; promote autophagy; 

NRF2 pathway↑; SIRT1-p53 axis↑

Zhao et al. (163)

Apigenin Fruits and vegetables
Acetaminophen-induced 

liver injury in mice

100 and 200 mg/kg 

(7 days)

Serum AST and ALT↓; liver necrosis↓; hepatic GR 

activity↑; GSH↑; MDA↓
Anti-oxidative stress Yang et al. (164)
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Kaempferol
Tea, tomatoes and 

grapefruit

INH- and RIF-induced liver 

injury in SD rat

1.89 and 3.78 mg/kg (2 

and 3 weeks)
CYP2E1↓; AST, ALT and GSP↓; GSH↑; MDA↓ Anti-oxidant defense Shih et al. (166)

Kaempferol
Tea, tomatoes and 

grapefruit

Propacetamol-induced liver 

injury in mice

62.5, 125 and 250 mg/

kg (30 h)

ALT, AST and DNA fragmentation↓; TBARS and 

3-NT; CYP2E1↓; UGT1A1, SOD, GPx, CAT and 

GHS↑; Nrf2 and GCLC↑; TNF-α and IL-6; 

phosphorylations of JNK and ERK↓; Bax/Bcl-2 

ratio and caspase 3 activation↓

Anti-oxidative stress; anti-

inflammatory; anti-apoptotic activities
Tsai et al. (37)

Kaempferol

Tea, tomatoes and 

grapefruit

APAP--induced liver injury 

in rat

250 g/kg (7 days) TNF-a, IL-6, caspase-3, ALT, AST and c-GT↓; GSH 

and SOD↑; MDA and ROS↓; Bcl-2↑; Bax and 

cleaved Bax↓; CYP2E1 and SIRT1↓; acetylation of 

all SIRT1 targets including PARP1, p53, NF-jB, 

FOXO-1 and p53↓

Anti-oxidant stress; anti-

inflammation; anti-apoptotic effects.

BinMowyna et al. (168)

Hesperetin Citrus fruits APAP-induced liver injury in 

mice/AML12 hepatocyte

5, 10 and 30 mg/kg 

(24 h, 3 times)/1, 3 and 

10 μM (24 h)

In vivo, ALT, AST, ALP and LDH↓; caspase3↓; 

GSH, SOD, CAT and HO-1↑; MDA↓; infiltration of 

macrophages and neutrophils; p38 and p65↑; 

TNF-α and IL-1β↓. In vitro, ROS production↓; 

MDA↓; GSH↑; HO-1↑

Anti-oxidant stress; anti-

inflammation; anti-apoptotic effects.

Wan et al. (170)

Alpha-

mangostin

Mangosteen (Garcinia 

mangostana)

APAP--induced liver injury 

in mice

100 and 200 mg/kg 

(24 h)

AST and ALT↓; GSH↑; MDA↓; TNF-α and IL-1β↓; 

LC3 and BNIP3↓; Bcl-2↑; Bax and cleaved caspase 

3 proteins↓; p62↓; p-mTOR, p-AKT and LC3 II /

LC3 I ratio↑

Anti-oxidant defense; anti-

inflammation; anti-apoptosis; 

activation of autopsy regulation of 

Akt/mTOR pathway

Yan et al. (172)

Alpha-

mangostin

Pericarp of 

mangosteen

APAP--induced liver injury 

in mice

12.5 and 25 mg/kg 

(7 days)

ALT and AST↓; GSH and SOD↑; MDA↓; 

Histologically, inflammation (Kupffer cell 

activation) and cell necrosis areas↓; IL-6, IL-1β, 

TNF-α and tissue mRNA expression↓; iNOS 

mRNA↑; IκB-α↓; phosphorylation of ERK, JNK, 

and p38↓

Anti-oxidant and anti-inflammatory 

properties mediated through NF-κB 

and MAPK signaling pathways.

Fu et al. (53)

Davallialactone Mushroom Inonotus 

xeranticus

APAP-induced liver injury in 

mice

10 mg/kg (6 h) GOT and GPT↓; ATP and GSH↑; peroxynitrite and 

4-HNE formations↑; GSH/GSSG ratio↑; ROS

Anti-oxidative stress; JNK/ERK 

signaling pathway↓

Noh et al. (173)

Saponarin Gypsophila trichotoma APAP-induced injury in rat 

hepatocytes

60–0.006 g/mL (1 h) Cell viability↑; LDH leakage and MDA↓; GSH↑ Anti-oxidant defense Simeonova et al. (174)

Saponarin Gypsophila 

trichotoma

APAP-induced liver injury in 

rat

80 mg/kg (7 days) MDA↓; LPO↓; GSH↑ Anti-oxidant defense Simeonova et al. (174)

Glycosides Amygdalin Bitter Apricot Seed Apap-induced liver injury in 

C57BL/6 mice

2.5 and 5 mg/kg (12 h) ALT/AST↓; tissue necrotic area↓; neutrophils and 

macrophages; IL-6, TNFa, and IL-1b↓; SOD↑; 

MDA↓

Anti-oxidant and anti-inflammatory 

properties; Nrf2/NQO1/HO1 

signaling pathway↑; JNK/RIP3/MLKL 

signaling↓

Zhang et al. (176)
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Ginsenosides Panax ginseng APAP-induced liver injury in 

mice

150 and 300 mg/kg 

(7 days)

AST, ALT and hepatic MDA↓; SOD and GSH↑; 

4-HNE↓; CYP2E1↓; TNF-alpha, IL-1, Bax, Bcl-2 

and COX-2↓; hepatocyte necrosis and 

inflammatory cell infiltration↓

antioxidant and anti-inflammatory 

properties; Nrf2/NQO1/HO1 

signaling pathway↑

Yang et al. (134); Xu 

et al. (178)

Ginsenosides 

Rg1/Rh1

Ginseng APAP-induced liver injury in 

mice

Rg1 (10, 20 and 30 mg/

kg) and Rh1 (10, 20 

and 30 mg/kg) (7 days)

GSH and SOD↑; MDA↓; GOT and GPT↓; TNF-α, 

IL-6, and IL-1β↓; Bax↓ and Bcl-2↑

Anti-oxidant defense; anti-

inflammation; anti-opoptosis

Bi et al. (179)

Ginsenosides 

Rg3

Ginseng APAP-induced liver injury in 

mice

5, 10 and 20 mg/kg 

(6 h)

ALT, ALP, AST and LDH↓; GHS and GPx↑; 

MDA↓; cell apoptosis and inflammatory 

infiltration↓

Anti-oxidant, anti-apoptotic and 

anti-inflammatory effects

Gao et al. (182)

Ginsenosides 

Rg3

Korea red ginseng APAP-induced liver injury in 

mice

10 and 20 mg/kg 

(7 days)

GSH↑; CYP2E1↓; MDA and 4-HNE in a dose-

dependent manner↓; LPO and ROS↓; hepatocyte 

necrosis, apoptosis and inflammatory infiltration of 

lymphocytes↓; Bax↓ and Bcl-2↑; IKKα, IKKβ and 

I-κBα↓

Anti-oxidant, anti-apoptotic and 

anti-inflammatory effects; NF-κB 

signaling; PI3K/AKT signaling.

Zhou et al. (183)

Ginsenosides 

Rg5

Black ginseng Acetaminophen-Induced 

Hepatotoxicity in Mice

10 and 20 mg/kg 

(7 days)

TNF-α, IL-1β, MDA, 4-HNE and CYP2E1↓; COX-

2 and iNOS↓; Bcl-2↑; Bax↓; caspase-3/8/9↓

Anti-oxidant, anti-apoptotic and 

anti-inflammatory effects

Wang et al. (52)

Ginsenoside Rk1 Ginseng APAP-induced liver injury in 

mice

10 and 20 mg/kg 

(7 days)

ALT, AST, TNF and IL-1↓; SOD and GHS↑; MDA, 

4-HNE and CYP2E1↓; Bcl-2↑ and Bax↓; tissue 

necrosis and inflammatory infiltration↓; 

3-nitrotyrosine↓

Anti-oxidation, anti-apoptosis, anti-

inflammation, and anti-nitrative 

effects

Hu et al. (184)

Ginsenoside Rk3 Panax notoginseng APAP-induced liver injury in 

mice

25 and 50 mg/kg 

(7 days)

AST and ALT↓; TNF-α, IL-6 and IL-1β↓; SOD and 

GHS↑; MDA↓; CYP2E1↓; Nrf2 and HO-1↑; LC3 

II/LC3 I, Beclin 1, ATG 5, ATG 7 and ATG 12↑; 

P62↓

Anti-oxidant; anti-inflammation; 

activate autophagy.

Qu et al. (58)

Ginsenoside Rb1 Panax ginseng APAP-induced liver injury in 

mice

10 mg and 20 mg/kg 

(1 weeks)

ALT and AST↓; GSH↑; TNF-α, IL-1β, iNOS and 

COX-2↓; phosphorylation of MAPK and PI3K/

Akt↓; NF-κB↓

Inhibit inflammatory response 

mediated by the MAPK and PI3K/Akt 

signaling pathways; antioxidant 

defense.

Ren et al. (185)

Compound K Fermented ginseng APAP-induced liver injury in 

rat

50 mg/kg (8 days) ALT and AST↓; genes related to JNK, GST↓; 

phosphorylation of JNK↓

Anti-inflammatory by inhibiting JNK 

signaling.

Igami et al. (186)

Jujuboside B Ziziphi Spinosae 

Semen

APAP-induced liver injury in 

C57BL/6 J mice

20 and 40 mg/kg 

(7 days)

CYP2E1↓; pro-inflammatory cytokines↓; Nrf2 

nuclear translocation of Nrf2↑; HO-1 and NQO-1↑

Anti-oxidant defense and anti-

inflammation; regulation of the Nrf2-

STING pathway

Wang et al. (187)
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Terpenes Taraxasterol Taraxacum officinale APAP-stimulated liver 

damage in Kunming mice/

AML12 cells

2.5, 5 and 10 mg/kg 

(7 days)/5, 10 and 

20 μg/mL (12 h)

Serum AST and ALT↓; SOD, CAT and GSH↑; 

ROS↓; Nrf2 and HO-1↑; JNK phosphorylation↓; 

Bax/Bcl-2 ratio and caspase-3↓

Anti-oxidative stress; anti-

inflammatory response; anti-

apoptosis; Nrf2/HO-1 pathway↑

Ge et al. (189)

Kahweol Coffee APAP-induce liver damage in 

C57BL/6 N mice

20 mg/kg (36 h) LPO↓; GSH↑; Nrf2↑; NF-κB; infiltration of 

neutrophils and macrophages↓

Inhibit oxidative stress, ER stress, and 

inflammation.

Kim et al. (191)

γ-oryzanol 

(ORY)

Rice bran APAP-indued liver livery in 

mice/HL-7702 cells

7, 14 mg/kg (7 days); 5 

and 10 μg/ mL for 24 h

Nrf2↑; HO-1, NQO1, GCLC and GCLM↑; 

modulated the AMPK/GSK3β axis; NF-κB p65 

subunit↓; iNOS and COX-2↓; TNF-α, IL-1β, IL-6 

and NO↓

Anti-oxidant defense and anti-

inflammation; modulation of AMPK/

GSK3β/Nrf2 and NF-κB signaling 

pathways

Shu et al. (151); Gomes 

et al. (194)

Carotenoids Astaxanthin Crustaceans and fish APAP-induced liver injury in 

C57BL/6 mice/L02 liver cells

10 mg/kg (14 days)/ 

(25 and 50 μM) for 

24 h

ALT, AST and LDH↓; IL-1β and IL-6↓; MDA and 

LPO↓; Nrf2, HO-1,SOD and PHx4↑; LC3B/LC3A 

ratio↑; p62↓; SLC7A11, GPX4, FTH1 and FTL1↑

Anti-oxidation; anti-apoptosis; anti-

inflammation; inhibition of 

ferroptosis; activation of autophagy; 

maintain mitochondrial function, 

NF-κB pathway↓; Nrf2/HO-1 

antioxidant pathway↑

Cai et al. (64)

Astaxanthin Crustaceans and fish APAP-induced liver injury in 

C57BL/6 mice

30 and 60 mg/kg 

(14 days)

ALT, AST, hepatic necrosis, ROS generation and 

LPO↓; GSH and SOD↑; phosphorylation of JNK, 

ERK and P38↓; TNF-α and TRAF2↓

Anti-oxidation; anti-apoptosis; JNK 

signaling pathway↓

Zhang et al. (197)

Astaxanthin Crustaceans and fish DOX-induced liver injury in 

mice

50 and 100 mg/kg 

(21 days)

ALT, GOT, ALP and TBIL↓; MDA and ROS↓; 

SOD, CAT and GPX↑; Keap1↓; Nrf2↑; ERK↑

Anti-oxidant defense via modulating 

Keap1/Nrf2 signaling pathway

Ma et al. (198)

Lycopene Tomatoes APAP-induced liver injury in 

C57BL/6 mice

10 and 100 mg/kg (1 h) GSSG↓; tGSH and CAT↑; protein carbonylation↓; 

MMP-2↓

Anti-oxidant defense Bandeira et al. (200)

Torularhodin Red wine APAP-induced liver injury in 

C57BL/6 mice

9, 13. 5 and 18 mg/kg 

(10 days)

SOD, GSH-Px↑; MDA; TNF-α, IL-1β and IL-6↓ Anti-oxidation; anti-inflammation; 

regulation of PI3K/Akt/mTOR and 

Nrf2/HO-1 signaling pathway

Li et al. (202)
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4.2.1.3 Capsaicin (CAP)
Capsaicin (CAP) is an ingredient of chili peppers and has complex 

pharmacologic effects (120). Antunes et  al. found that oral 
supplementation with CAP attenuated oxidative stress and 
inflammation in a murine model of food allergy (121). Zhang et al. 
reported that CAP has antioxidative and anti-inflammatory effects on 
concanavalin A-induced hepatic injury in mice (122). Zhan et  al. 
established an APAP-induced model of ALI in mice and observed the 
protective effect of CAP on APAP-induced ALI (123). Research 
showed that CAP pretreatment significantly attenuated ALI and 
improved oxidative stress-associated indicators; CAP pretreatment 
downregulated the expression of proinflammatory cytokines through 
the HMGB1/TLR4/NF-κB signaling pathway; in addition, CAP 
pretreatment alleviated hepatocyte apoptosis by inhibiting the 
expression of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3 and 
cleaved caspase-3 (123).

4.2.1.4 Maltol (MAL)
Maltol (MAL) is a flavor enhancer, a natural antioxidant, and one 

of the Maillard reaction products of heated-processed ginseng (124). 
MAL was also found in roasted Korean ginseng roots (125). Wang 
et al. reported that MAL inhibited oxidative stress and pyroptosis and 
further reduced cisplatin-induced apoptosis. The results of this study 
indicated that MAL protects against cisplatin-induced intestinal 
toxicity by reducing the release of ROS and inhibiting the activation 
of apoptosis (126). In addition, Wang et al. investigated the protective 
effect and elucidated the mechanisms of action of MAL on APAP-
induced liver injury in vivo. These findings suggested that MAL has a 
significant liver-protective effect, which may be related to antioxidant 
defense, anti-inflammatory effects, and antiapoptotic effects, which 
may be achieved through the regulation of the PI3K/Akt signaling 
pathway (127).

4.2.1.5 6′-O-Caffeoylarbutin (CA)
6′-O-Caffeoylarbutin (CA) is an arbutin derivative and is the most 

abundant compound in Que Zui tea (QT). The protective effect of CA 
against acute liver damage induced by APAP was investigated in vivo 

and in vitro. The results showed that CA pretreatment could 
significantly reduce the level of liver functional enzymes in HepG2 
cells and mice induced by APAP, significantly improve the measured 
antioxidant status, and increase the amount of Nrf2 protein in the 
nucleus, improve ARE- dependent anti-oxidant protein expression 
and CA also alleviated the oxidative stress induced by APAP by 
activating the Nrf2 signaling pathway. Furthermore, CA pretreatment 
significantly reduced the release of proinflammatory cytokines 
induced by APAP, indicating that CA mitigated liver damage by 
inhibiting the inflammatory response (128).

4.2.1.6 Caffeic acid (CAF)
Caffeic acid (CAF), a polyphenolic compound, is commonly 

present in various edible plants, such as fruits, coffee, and honey. CAFs 
have been shown to reduce liver toxicity in rats by restoring liver 
enzymes (129). CAFs have also been shown to reduce APAP-induced 
liver damage by restoring GSH and liver enzymes while also reducing 
myeloperoxidase (MPO) activity, ROS levels, and histopathological 
damage. In addition, CAFs activate Nrf2 in liver cells by blocking 
Keap1 binding to Nrf2 (130). Moreover, CAFs help detoxify APAP-
induced liver damage by inhibiting ERK1/2-mediated Egr1 
transcriptional activation (131).

4.2.1.7 Other phenolic compounds
Other phenolic compounds of food origin, such as cajaninstilbene 

acid (CSA), a major stilbene compound extracted from pigeon bean 
[Cajanus cajan (L.) Millsp.] leaves. Without affecting APAP metabolic 
activation, CSA blocks the ongoing JNK-Sab ROS activating ring and 
alleviates oxidative stress (132). CSA was revealed to promote 
mitochondrial quality control, including mitochondrial biogenesis 
and mitophagy. Further mechanistic investigations showed that CSA 
alleviates APAP-induced oxidative stress and enhances mitochondrial 
quality control through sestrin2/AMPK activation, thereby protecting 
against AILI (132).

Chlorogenic acid (CGA), a polyphenolic compound, is abundant 
in coffee, apples, blueberries, tea, and honeysuckle (133); genistein, 
from soybean (134); daidzein, from soybean (135); polyphenols, from 

FIGURE 6

Diet-derived bioactive components and its mechanisms against drug-induced liver injury (DILI). (A) Mechanisms of Diet-derived active components in 
treating DILI: anti-apoptosis, promoting autophagy, and improving mitochondrial dysfunction. (B) Mechanisms of Diet-derived active components in 
treating DILI: anti-opoptosis and anti-inflammation. Phenols in purple; Flavonoids in pink; Glycosides in red; Terpenes in orange and Carotenoids in 
green. Created with BioRender.com.
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tofu (136); guavinoside B, from Psidium guajava (137); formononetin, 
from legume (138); heilaohusuin B, from Kadsura coccinea (139); and 
chebulinic acid, from Terminalia chebula fruit (140) were investigated 
and confirmed to inhibit oxidative stress, providing protective effects 
against drug-induced liver toxicity. In addition, guavinoside B (137) 
and formononetin (138) were found to exhibit anti-inflammatory and 
antiapoptotic effects of formononetin (138). Further mechanistic 
studies indicated that GAA (133), guavinoside B (137), heilaohusuin 
B (139), chebulinic acid (140), had potent hepatoprotective effects 
through the regulation of the Nrf2 signaling pathways. Furthermore, 
guavinoside B exerts protective effects via Nrf2 and JNK signaling 
pathways, which led to a decrease in intracellular ROS levels; the 
elevated levels of ALT, AST, ROS, MDA, and TNF-α induced by APAP 
were reduced, while the decreased levels of SOD and GSH were 
restored; the expression levels of Nrf2, GCLC, and NQO1 were 
upregulated, and the gene expression of p-JNK was downregulated 
(137); CGA has a significant protective effect against APAP 
hepatotoxicity via many mechanisms, including blocking the 
expression of CYP2E1 and CYP1A2 enzymes, alleviating 
mitochondrial damage in the liver, reducing mitochondrial heat shock 
protein 60 (HSP60) production, and inhibiting the MAPK, TLR3/4 
and NF-κB pathways (133). Long-term intake of CGA from food 
sources can trigger PINK1-dependent mitophagy (mitochondrial 
autophagy), thereby suppressing liver cell death to reduce APAP 
hepatotoxicity (31).

4.2.2 Flavonoids

4.2.2.1 Cynarin (Cyn)
Cynarin (Cyn), derived from hydroxycinnamic acid, is present in 

the food-derived Illyrian thistle (Onopordum illyricum L.), and it 
displays significant antioxidant, anticholinergic, radical-scavenging, 
and metal-binding properties due to its bioactive functional groups 
(141). Cynarin promotes Nrf2 dissociation from Keap1, enhances 
Nrf2 nuclear translocation and downstream antioxidant protein 
transcription, thereby inhibiting lipid peroxidation. In addition, Cyn 
activates the adenosine monophosphate-activated protein kinase 
(AMPK)/sirtuin (SIRT)3 signaling pathway with a protective effect on 
APAP-induced acute lung injury (ALI). These findings suggest that 
Cyn enhances Keap1/Nrf2-mediated defense against lipid 
peroxidation by activating the AMPK/SIRT3 signaling pathway, 
thereby alleviating APAP-induced ALI (142).

4.2.2.2 Mangiferin (MAN)
Treatment with mangiferin (MAN), present in mangos, restored 

the GSH depletion caused by APAP overdose, reducing the formation 
of APAP-Cys adducts and promoting protection. MAN treatment 
downregulated p-JNK and activated AMPK and the expression of 
inflammation-related genes, which suggested that MAN plays a 
protective and therapeutic role in APAP-induced hepatotoxicity by 
improving APAP metabolism and APAP-Cys adduct formation, 
followed by JNK-mediated oxidative stress and inflammation (143).

4.2.2.3 Epicatechin (Epi)
Epicatechin (Epi) is commonly present in grapes, cola nuts, straw 

berries and red wine. Epi has been reported to improve streptozotocin- 
(STZ) (144), methotrexate- (MTX) (145), APAP- (146) and 

doxorubicin (DOX) (147)-induced liver injury. In an STZ-induced 
diabetic rat model, (−)-epicatechin treatment decreased the 
concentrations of thiobarbituric acid reactive substances (TBARS) and 
hydroperoxides (HPs) and improved the antioxidant status of diabetic 
tissues such as the liver, kidney and heart (144). In a rat model of 
MTX-induced diabetes, Epi pretreatment reduced liver dysfunction 
by improving the antioxidant defense system and anti-inflammatory 
effects and alleviating histopathological damage in the context of 
MTX hepatotoxicity (145). In addition, Wu et al. indicated that Epi 
inhibits acute liver injury induced by APAP by suppressing 
inflammatory factors to alleviate the immune response and 
pathological damage and downregulating the mitochondrial apoptosis 
pathway to alleviate liver injury (146). Similarly, Epi may be  an 
effective chemoprophylencer against DOX-induced hepatotoxicity by 
enhancing the antioxidant defense system and reducing the effects of 
inflammation and apoptosis (147).

4.2.2.4 Naringin (Nar)
Naringin (Nar) is a dihydroflavonoid extracted primarily from 

Citrus grandis (L.) Osbeck and the immature or almost mature dried 
outer peel of grapefruit (C. paradisi Macfad). Elsawy et al. reported 
that Nar can significantly reduce the upregulation of MTX-induced 
liver injury markers in rats, reduce oxidative stress, and protect liver 
cells from MTX-induced damage (148). Nar also significantly 
decreased serum toxicity markers, increased antioxidant enzyme 
activities, and regulated inflammation, apoptosis, autophagy, and 
oxidative DNA damage induced by cyclophosphamide (149, 150). In 
experimental studies of Nar counteracting doxorubicin- (151), 
Taxol- (152), and diclofenac (153)-induced liver injury in vivo, it was 
also confirmed that Nar exerts hepatoprotective effects through 
functions such as antioxidation, anti-inflammation, and apoptosis 
inhibition. In addition, Nar can ameliorate APAP-induced oxidative 
stress and liver tissue damage in vivo (154, 155). Moreover, several 
in vitro and in vivo studies have extensively investigated the 
mechanisms by which Nar alleviates APAP-induced liver injury. Wu 
et al. found that APAP reduced the concentrations of GSH and SOD 
in liver cells while increasing MDA and ROS levels, as well as the 
expression of CYP2E1. However, Nar pre-treatment reversed these 
indicators, suggesting that Nar has a protective effect against APAP-
induced liver cell damage. Further mechanistic studies revealed that 
Nrf2 plays a crucial role in regulating the expression of various 
antioxidant enzymes. Nar pre-treatment induced an upregulation of 
Nrf2 protein levels and phosphorylation of AMPK. Pre-treatment 
with dorsomorphin (an AMPK inhibitor) effectively blocked 
Nar-mediated Nrf2 activation and AMPK phosphorylation, while 
brusatol (an Nrf2 inhibitor) had no significant effect on 
Nar-mediated AMPK phosphorylation, indicating that AMPK can 
act as an upstream regulator of Nrf2. These experimental results 
suggest that Nar alleviates APAP-induced hepatocyte and 
mitochondrial injury by activating the AMPK/Nrf2 pathway to 
reduce oxidative stress in vitro (156). Zhai et al. indicated that Nar 
may be  a potent activator of cation transport regulator-like 2 
(CHAC2), alleviating APAP-induced hepatitis through CHAC2-
mediated Nrf2 pathway activation and inhibiting hepatic oxidative 
stress, inflammation, and hepatocyte apoptosis (157). Interestingly, 
a previous report highlighted the therapeutic potential of autophagy 
in the treatment of APAP-induced liver injury (158, 159). 
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Transcription factor EB (TFEB) regulates a set of genes involved in 
autophagy and lysosome biogenesis, and dephosphorylation of 
TFEB by PP3P/calcineurin phosphatase hydrolysis mediates its 
transcriptional activity (160). Thus, triggering TFEB-mediated 
macroautophagy/autophagy-lysosomal pathway (ALP) activation 
potentially provides a therapeutic option for APAP overdose. Based 
on the above mechanism, Fang et  al. reported that Nar protects 
against APAP-induced liver injury by activating the PPP3/
calcineurin-TFEB-ALP axis, indicating that Nar may be a potential 
agent for treating APAP overdose (161). Interestingly, The mixture 
of naringin and naringenin seemed to be more effective in enhancing 
organ function and maintaining structural integrity. In summary, 
naringin and naringenin are recommended for their hepatoprotective 
benefits by strengthening the body’s antioxidant defense system, 
lowering inflammation, and inhibiting apoptosis (151). In addition, 
the administration of a combination of hesperidin and naringin was 
found to be the most powerful in potentially counteracting liver 
injury and toxicity induced by diclofenac through enhancing the 
antioxidant defense system, anti-inflammatory properties, as well as 
suppressing oxidative stress and apoptosis (152).

Currently, no significant adverse reactions have been reported 
with Nar, and various studies have confirmed the benefits of 
consuming water infused with grapefruit peel in everyday life. In 
summary, all of this suggests that Nar could be an effective element in 
treating DILI.

4.2.2.5 Apigenin (API)
Apigenin (API) is one of the most abundant flavones in parsley, 

onions, oranges, tea, and chamomile (162). In vivo studies have 
shown that API has beneficial effects, such as antioxidation, anti-
inflammation, anti-apoptosis and autophagy-promoting effects 
(163, 164). Further research on the mechanism by which API 
alleviates APAP-induced liver injury revealed that API alleviates 
APAP-induced liver injury by regulating the SIRT1-p53 axis, 
thereby promoting APAP-induced autophagy and improving the 
APAP-induced inflammatory response and oxidative stress damage 
(163). Overall, API has a potential protective effect in drug-induced 
liver injury (DILI). However, celery is a high-fiber vegetable that 
may increase the burden on the liver. Despite celery being rich in 
API, it is noteworthy that it is not recommended for patients 
with cirrhosis.

4.2.2.6 Kaempferol (Kae)
Kaempferol (Kae) is one of the most common aglycone flavonoids 

in the form of glycosides. It is found in a wide variety of plant foods 
and plant-based supplements, including kale, beans, tea, spinach, and 
broccoli (165). In 2013, Shih et  al. first reported that Kae, as an 
adjuvant, prevents the CYP2E1-mediated hepatotoxicity induced by 
anti-tuberculosis drugs (166). Mechanistically, Kae enhances 
antioxidant defense against isoniazid/rifampin (INH/RIF)-induced 
hepatotoxicity (167). Interestingly, Tsai et  al. indicated that Kae 
protects the liver against propacetamol-induced damage not only 
through antioxidative and anti-inflammatory effects but also through 
antiapoptotic effects (167). BinMowyna et  al. highlighted a novel 
mechanism by which Kae decreases the acetylation of all SIRT1 targets 
to mediate antioxidant, anti-inflammatory and antiapoptotic 
effects (168).

4.2.2.7 Hesperetin (Hst)
Hesperetin (Hst) is a dihydrogen flavonoid extracted from the 

citrus fruits of Rutaceae plants and the glycosyl ligand of hesperidin 
(169). Recently, Wan et al. showed that Hst pretreatment alleviated 
AILI both in vivo and in vitro. The hepatoprotective effect of Hst is 
achieved by alleviating oxidative stress, inhibiting the inflammatory 
response and inhibiting apoptosis, and its anti-inflammatory effect 
could be  linked to the inhibition of TLR4 signaling pathway 
activation (170).

4.2.2.8 α-Mangostin (α-MA)
α-Mangostin (α-MA), a flavonoid, is one of the significant 

phytochemical components found in the tropical fruit mangosteen 
(Garcinia mangostana) and in mangosteen (G. mangostana) (171). Fu 
et  al. revealed that the hepatoprotective effect of α-MA may 
be mediated by inhibiting APAP-mediated MAPK activation (172). 
Another study by Yan et  al. showed that α-M exhibits significant 
hepatoprotective effects through its antioxidant and anti-inflammatory 
properties in vivo and confirmed that the detoxification effect of 
α-MA on APAP-induced ALI is related to the regulation of the Akt/
mTOR pathway (52).

4.2.2.9 Others
In addition, davallialactone (DAVA), isolated from I. xeranticus, 

had protective effects against APAP overdose-induced liver injury via 
its antioxidant activity (173). Saponarin (Sap), which is isolated from 
Gypsophila trichotoma, also exerts antioxidant and hepatoprotective 
effects on acetaminophen-induced liver injury both in vitro and in 
vivo (174).

4.2.3 Glycosides

4.2.3.1 Amygdalin (AMG)
Amygdalin (AMG) is a natural compound isolated from bitter 

almond seeds that has broad anti-inflammatory and analgesic 
activities. AMG can alleviate CCL4- and APAP-induced liver damage 
(175, 176). AMG was found to have a protective effect on APAP-
induced liver injury through its anti-inflammatory and antioxidant 
effects (176). Further mechanism studies revealed that amygdalin 
reduced the expression of Nrf2 and its downstream proteins NQO1 
and HO1. Nrf2 is recognized as the primary transcription factor for 
maintaining cellular redox homeostasis and combating oxidative 
stress. The downregulation of Nrf2 by amygdalin is beneficial for 
alleviating acute liver injury induced by acetaminophen (APAP). 
Additionally, amygdalin treatment significantly increased the 
phosphorylation levels of AKT and JNK. The activation of p-JNK can 
enhance the nuclear translocation of Nrf2 and increase its expression. 
As an upstream factor of JNK, the activation of p-AKT also promotes 
Nrf2’s nuclear expression. This suggests that amygdalin may resist 
oxidative stress and mitigate APAP-induced liver injury through the 
AKT/JNK/Nrf2 pathway. Moreover, amygdalin treatment reduced 
indicators related to cell death, such as terminal dUTP nick end 
labeling (TUNEL), and markers associated with necroptosis, including 
p-MLKL (Mixed Lineage Kinase Domain-Like) and RIP3 (Receptor-
interacting Protein Kinase 3). In summary, these results indicate that 
amygdalin exerts a protective effect against APAP-induced liver injury 
through its anti-inflammatory and antioxidant properties, linked to 
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increased AKT phosphorylation and the inhibition of the JNK/RIP3/
MLKL signaling pathway (176).

4.2.3.2 Ginsenosides
Ginsenosides are a class of bioactive substances extracted from 

the roots of the medicinal plant ginseng, which has been used in 
traditional Chinese medicine for centuries. The medicinal properties 
of ginseng have been extensively documented in relation to the 
central nervous, cardiovascular, endocrine, and immune systems. 
Additionally, ginseng possesses anti-cancer, anti-stress, antioxidant, 
and antiviral properties. The positive effects of ginseng are attributed 
to its diverse pharmacologically active components, with most of the 
pharmacological benefits linked to ginsenosides. Extensive research 
has explored the hepatoprotective properties of ginsenosides, 
addressing mild to severe liver damage and liver fibrosis caused by 
various etiologies. Previous studies have shown that various 
components, including ginsenosides Rg1, Rg3, Rg5, Rk1, Rk3, and 
Rb1 and compound K, significantly alleviate liver damage in both in 
vivo and in vitro models of DILI through different mechanisms of 
action (177–186). Ginsenosides can improve the hepatotoxicity and 
antioxidant activity of APAP and inhibit the inflammatory response 
induced by APAP (177–179, 182–186). Furthermore, ginsenosides 
inhibited the activation of apoptotic signaling pathways by 
increasing Bcl-2 expression and decreasing the protein levels of Bax 
and caspase-3 (186). Bi et al. suggested that ginsenoside Rg1 and 
ginsenoside Rh1 exert protective effects against APAP-induced liver 
damage through their antioxidative, antiapoptotic, and anti-
inflammatory activities (179). Interestingly, Gao et al. reported that 
ginsenoside Rg1 activates the p62-Keap1-Nrf2 signaling pathway to 
exert antioxidant effects, thereby protecting against cisplatin-
induced liver injury (180). Ginsenoside Rg3 is a saponin isolated 
from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax 
quinquefolius L. (181) Ginsenoside Rg3 treatment significantly 
relieved APAP-induced hepatic tissue inflammation and oxidative 
stress. Moreover, molecular docking studies have shown that 
ginsenoside Rg3 can bind to NLRP3, indicating its anti-inflammatory 
effects (182). Zhou et  al., revealed that 20(R)-Rg3 played an 
important role in alleviating APAP-induced liver injury by inhibiting 
oxidative stress, improving inflammatory response, alleviating 
apoptosis and necrosis, and regulating PI3K/AKT pathways-
mediated Bax/Bcl-2 and NF-κB signal cascade. Hu et al. reported 
that the hepatoprotection of the ginsenoside Rk1 may be due to its 
antioxidative, antiapoptotic, anti-inflammatory, and antinitration 
effects (184). Additionally, Ren et  al. suggested that Rb1 has a 
significant hepatoprotective effect on APAP-induced ALI, partly 
through modulation of the inflammatory response mediated by the 
MAPK and PI3K/Akt signaling pathways (185). In addition, Igami 
et al. evaluated the effect of fermented ginseng (FG) containing a 
high concentration of complex K on APAP-induced liver and HepG2 
cell damage in rats. FG rich in complex K reduced serum AST and 
ALT levels in rats. DNA microarray analysis suggested that complex 
K in FG may play an important role in APAP-induced liver injury by 
inhibiting JNK signaling pathways in the liver (186). In addition, the 
ability of ginsenoside Rg5 to exert hepatoprotection by mainly 
inducing an antiapoptotic effect mediated through caspases was 
investigated (52). Hepatoprotection by the ginsenoside Rk3  in 
APAP-induced hepatic toxicity was mainly dependent on its 

antioxidative and anti-inflammatory effects and continuous 
activation of autophagy (58).

4.2.3.3 Jujuboside B (JuB)
Jujuboside B (JuB) is the main saponin in jujube kernels. Wang 

et al. reported that JuB pretreatment reversed the decrease in CYP2E1 
levels, inhibited oxidative stress, reduced the production of 
proinflammatory cytokines, and alleviated hepatocyte apoptosis. 
Further mechanistic studies revealed that JuB treatment upregulated 
total Nrf2 levels, promoted its nuclear translocation, increased the 
expression of HO-1 and NQO-1, and inhibited the activation of the 
STING pathway induced by APAP. Moreover, the beneficial effects of 
JuB were weakened in the presence of DMXAA (a specific STING 
inhibitor) and ML385 (a specific Nrf2 inhibitor), suggesting that JuB 
prevents APAP-induced hepatotoxicity through the Nrf2-STING 
pathway (187).

4.2.4 Terpenes

4.2.4.1 Taraxasterol (TAX)
Taraxasterol (TAX) is a five-ring triterpenoid compound extracted 

from the edible plant Taraxacum officinale (188). Ge and colleagues 
obtained 24 common targets of taraxasterol and drug-induced liver 
injury (DILI) from an online database and selected 9 core targets for 
subsequent enrichment analysis. The results of GO and KEGG 
enrichment analysis indicated that the core targets play significant 
roles in oxidative stress, inflammatory response, and apoptosis. In vivo 
experiments confirmed that taraxasterol significantly reduced serum 
ALT and AST activities induced by APAP, and tissue pathology further 
verified that taraxasterol alleviated APAP-induced liver injury in mice. 
Additionally, both in vitro and in vivo results showed that taraxasterol 
enhanced antioxidant capacity by increasing GSH and SOD activities 
while inhibiting the production of ROS and MDA. Further 
mechanistic studies confirmed that taraxasterol alleviated the 
oxidative stress response induced by APAP by inhibiting JNK 
phosphorylation and activating the Nrf2/HO-1 signaling pathway, 
leading to increased GSH and SOD activities and decreased ROS and 
MDA levels. The experiments also validated that taraxasterol inhibited 
the secretion and expression of cytokines IL-1β, IL-6, and TNF 
induced by APAP, reduced apoptosis in APAP-treated AML12 cells 
and mouse hepatocytes, significantly lowered the Bax/Bcl-2 ratio, and 
downregulated the expression of caspase-3. Moreover, taraxasterol 
exerted a hepatoprotective effect by inhibiting JNK phosphorylation 
and activating the Nrf2/HO-1 signaling pathway, which was 
confirmed through network pharmacology analysis. These findings 
suggest that taraxasterol improves oxidative stress, inflammation, and 
apoptosis induced by APAP, helping to prevent the progression of 
drug-induced liver injury (189).

However, this study conducted by Lin and others mainly focused 
on the Nrf2 protein, emphasizing specifically how the Nrf2 protein 
mediates the role of TAX in countering APAP-induced liver injury. 
Research data shows that Nrf2 mediates TAX’s protection against 
APAP-induced liver injury, and significant attenuation of protective 
effect of TAXwas observed through knockout of Nrf2 using 
AAV-Nrf2-KO. Furthermore, depletion of Nrf2 weakened TAX 
inhibitory effects on APAP-induced oxidative stress and liver 
inflammation. In addition, inhibition of Nrf2 by ML-383 may also 
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weaken the protective effects of TAX against APAP-induced cell 
damage, oxidative stress, and secretion of inflammatory factors, 
suggesting that Nrf2 is involved in regulating the modulation effect of 
TAX on APAP-induced liver injury. In conclusion, TAX plays a 
protective role against APAP-induced liver injury by inhibiting 
oxidative stress and liver inflammation, with an important 
involvement of Nrf2  in mediating the antioxidant and anti-
inflammatory stress effects exerted by TAX (190).

4.2.4.2 Kahweol (KW)
Kahweol (KW), derived from coffee, exhibits antioxidant and 

anti-inflammatory effects in acute and chronic inflammatory diseases 
(191). Studies by Kim et al. have indicated that KW has a protective 
effect against APAP-induced liver toxicity by activating the antioxidant 
system, inhibiting ER stress-induced liver cell death, and alleviating 
inflammation mediated by NF-κB (192).

4.2.4.3 γ-Oryzanol (ORY)
γ-Oryzanol (ORY) is a mixture of ferulic acid esters with 

phytosterols isolated from rice bran oil (193). ORY has been shown to 
reduce liver damage caused by APAP (194, 195). ORY can reduce 
APAP-induced hepatocyte apoptosis and subsequent liver injury by 
regulating the AMPK/GSK3β/Nrf2 and NF-κB signaling 
pathways (194).

4.2.5 Carotenoids
Previous studies have shown that several carotenoids, such as 

astaxanthin (ASX), lycopene (LYC), and torularhodin, can alleviate 
drug-induced liver damage.

4.2.5.1 Astaxanthin (ASX)
ASX is present in aquatic animals, microalgae, flamingoes and 

Pfaffia (yeast) and possesses a potent antioxidant ability (196). ASX 
plays a protective role in APAP-induced liver injury by alleviating liver 
cell necrosis, preventing ROS production, inhibiting oxidative stress 
and reducing apoptosis. This effect is achieved by blocking the TNF-α-
mediated JNK signaling pathway and phosphorylating ERK and P38, 
which have been shown to be effective in preventing and treating liver 
damage in mice (197). ASX can protect against APAP-induced liver 
injury by activating the Nrf2/HO-1 pathway, which mainly affects 
oxidative stress, autophagy, and ferroptosis processes (64). ASX was 
found to protect the liver against chemotherapeutic drug 
(doxorubicin)-induced liver injury through the Keap1/Nrf2/HO-1 
pathway in mice (198).

It is already recognized that the transcription factor Nrf2 is a key 
regulator in maintaining cellular redox homeostasis and plays an 
important role in mediating iron/heme metabolism. The activation of 
Nrf2 reduces intracellular iron stores, thereby restoring iron 
homeostasis and limiting the production of reactive oxygen species 
(ROS). Targeting Nrf2 or its downstream targets as a strategy for disease 
intervention through the regulation of ferroptosis is promising. There 
is concrete evidence suggesting that certain dietary compounds can 
activate Nrf2 to promote ferroptosis, thereby inhibiting APAP-induced 
liver injury, for example, Li et al. found that Kaempferol reduced liver 
damage caused by APAP by inhibiting hepatocyte ferroptosis through 
the activation of Nrf2. Other researchers demonstrated that astaxanthin 
could relieve APAP-induced liver injury by activating the Nrf2/HO-1 

pathway, which inhibits ferroptosis (64, 167) and enhance autophagy 
(197). To address this, using different types of dietary compounds to 
jointly activate Nrf2 and inhibit ferroptosis may have a significant 
synergistic effect in suppressing APAP-induced liver damage. However, 
the potential side effects of the combined use should also be taken into 
consideration and need further validation.

4.2.5.2 Lycopene (LYC)
LYC is an exogenous antioxidant that belongs to the carotenoid 

family and is responsible for the red pigment found in many fruits and 
vegetables (199). LYC inhibits NADPH oxidase via the protein kinase 
C (PKC) pathway, reducing ROS production in SK-Hep-1 cells. In 
vivo, LYC reduces oxidative damage by decreasing protein 
carbonylation, promotes the downregulation of matrix 
metalloproteinase (MMP)-2, and reduces necrotic areas, thereby 
ameliorating APAP-induced liver toxicity (200).

4.2.5.3 Torularhodin
Torularhodin, a compound akin to β-carotene found in 

sporidiobolus pararoseus, has notable antioxidant effects by effectively 
scavenging peroxyl free radicals (201). Torularhodin can inhibit 
hepatocyte apoptosis, enhance antioxidant enzyme activity, and 
intervene in DILI by modulating signaling pathways such as the PI3K/
Akt/mTOR and Nrf2/HO-1 pathways, suggesting its potential as a 
preventive strategy for DILI (202).

4.2.6 Combination of diet-derived compounds 
against DILI

The combined application of different compounds offers stronger 
protective effects against liver damage compared to the efficacy of 
single compounds, as shown in Table 3.

4.2.6.1 Resveratrol (RES) and quercetin (QUR)
Al Humayed et  al. (203) tested the protective effect of the 

combined polyphenolic compounds resveratrol (RES) and 
quercetin (QUR) in a rat model of liver cell ultrastructural damage 
induced by toxic doses of APAP. The results showed that 
transmission electron microscopy (TEM) images revealed marked 
changes in liver cell ultrastructure due to acute liver injury 
induced by excessive APAP, and these changes were significantly 
protected by RES + QUR. In addition, APAP significantly 
regulated TNF-α, IL-6, MDA, SOD, GPx, and ALT biomarkers, all 
of which were fully protected by RES + QUR. Therefore, 
RES + QUR effectively protects rats from APAP-induced acute 
liver injury, possibly through inhibiting inflammation and 
oxidative stress. In addition, APAP induces alterations to the 
glomerulus ultrastructure, which is protected by resveratrol plus 
quercetin, which also reduces blood levels of urea and creatinine, 
and biomarkers of oxidative stress such as MDA and inflammation 
such as TNF-α (204).

4.2.6.2 Resveratrol (RES) and luteolin (LUT)
Based on the common use of resveratrol (RES) and luteolin 

(LUT), it can significantly enhance the bioavailability of quercetin and 
increase the systemic exposure to resveratrol. Combination therapy 
can also leverage their multi-component and multi-
target characteristics.
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Wu et al. studied the protective effects of combined resveratrol 
and luteolin against α-naphthyl isothiocyanate (ANIT)-induced 
cholestasis. Serum biochemical indicators in rats and liver tissue 
pathology indicated that the combined use of resveratrol and 
luteolin can improve liver function by inhibiting oxidative stress 
(antioxidant enzyme SOD and substrate GSH, and increasing the 
serum level of the lipid peroxidation product MDA). The levels of 
bile acids, deoxycholic acid, taurine conjugates, and glycine 
conjugates, as well as the ratio of taurine conjugates to their free 
forms, can serve as diagnostic indicators for cholestasis in rats. 
Furthermore, the combined use of resveratrol and luteolin can 
restore bile acid levels and demonstrate better protective effects 
compared to using either one alone. The above experimental studies 
suggest that the combined use of resveratrol and luteolin can protect 

rats from ANIT-induced cholestasis, with mechanisms closely 
related to the regulation of bile acid homeostasis and inhibition of 
oxidative stress (205).

4.2.6.3 Astaxanthin (Asx) and capsaicin (cap)
The powerful antioxidants astaxanthin (Asx) and capsaicin (Cap) 

were co-encapsulated in liposomes, resulting in a synergistic 
antioxidant activity that was significantly higher than the summed 
activity of each antioxidant encapsulated individually. A study by 
Fukuta et al. used a carbon tetrachloride (CCl4) induced acute liver 
injury rat model, where the administration of CCl4 significantly 
increased the levels of aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT). The combined intravenous administration 
of Asx-R encapsulated liposomes (Asx-R-Lipo) and Cap encapsulated 

TABLE 3 Combination of diet-derived bioactive compounds for the prevention and treatment of drug-induced liver injury.

Combination of 
compounds

Model Does (time)
Changes of 
biological 
markers

Molecular 
mechanisms

Authors (Ref.)

Resveratrol (RES) and 

Quercetin (QUR)

APAP-induced liver 

injury in rats

RES (30 mg/kg) and 

QUR (50 mg/kg) for 

7 days

TNF-α and IL-6↓; MDA↓; 

SOD and GPx↑; ALT↓

Anti-oxidative stress; anti-

inflammation

AL Humayed et al. 

(203)

APAP-induced 

kidney injury in rats

RES (30 mg/kg) and 

QUR (50 mg/kg) for 

7 days

Urea and creatinine↓; 

MDA↓; IL-6 and TNF-α↓

Anti-oxidative stress; anti-

inflammation; anti-apoptosis

Dallak et al. (204)

Resveratrol (RES) and Luteolin 

(LUT)

ANIT-induced 

cholestasis in rats

RES (200 mg/ kg), LUT 

(200 mg/ kg) and 

RES + LUT (200 mg/

kg + 200 mg /kg) for 

7 days

AST, ALT, TBIL, DBIL, 

γ-GT and ALP↓; SOD 

and GSH↑; MDA↓; 

Serum neutrophil 

infiltration and ANIT-

induced necrosis↓

Anti-oxidative stress Wu et al. (205)

Astaxanthin (Asx) and 

Capsaicin (Cap)

CCl4-induced liver 

injury model in rats

Asx (0.5 μmol/kg) and 

Cap (1 μmol/kg)

AST and ALT↓ Anti-oxidative stress Fukuta et al. (206)

Navel orange peel extract, 

Naringin and Naringenin

APAP-induced liver 

injury model in rats

Naringin (20 mg/kg), 

Naringenin (20 mg/kg) 

and Navel orange peel 

extract (50 mg/kg), 

every other day for 

4 weeks

Liver function indictor: 

serum AST, ALT, ALP, 

LDH, GGT and TBIL↓. 

Oxidative stress indictors: 

LPO↓; GSH, GST, GPx 

and SOD↑. Apoptosis 

indictors: P53, Bax and 

Caspase-3↓; Bcl↑. 

Inflammation indictors: 

TNF-α↓; IL-4↑.

Anti-oxidative stress; anti-

inflammation; anti-apoptosis

Ahmed et al. (155)

Naringin and Naringenin taxol-induced liver 

injury in rats

Naringin (10 mg/kg), 

Naringenin (10 mg/kg) 

and Naringin + 

Naringenin (10 mg/

kg + 10 mg/kg), every 

other day for 6 weeks

TBIL, AST, ALT, ALO, 

LDH, and ɣ-GT↓; hepatic 

LPO↓; liver GHS↑; SOD 

and GPx↑; alpha-

fetoprotein and 

caspase-3↓

Antioxidant defense; Anti- 

inflammation; inhibition of 

apoptosis

Khaled et al. (151)

Naringin and Hesperidin diclofenac-induced 

liver injury in rats

Naringin (20 mg/kg), 

Hesperidin (20 mg/kg) 

and Naringin + 

Hesperidin (20 mg/

kg + 20 mg/kg), for 

4 weeks

ALT, AST, LDH, ALP, 

GGT and TBIL↓; TNF-α, 

and IL-17↓; liver LPO 

peroxidation, p53 and 

caspase-3 mRNA↓; serum 

IL-4↑; liver GSH 

content↑; liver GPx and 

SOD ↑

Antioxidant defense; Anti- 

inflammation; inhibition of 

apoptosis

Hassan et al. (152)
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liposomes (Cap-Lipo) significantly reduced the increase in AST and 
ALT levels caused by CCl4. Importantly, the treatment with Asx-R/
Cap-Lipo exhibited a higher protective effect in acute liver injury 
compared to the combined treatment of Asx-R-Lipo and Cap-Lipo 
used separately. These results suggest that Asx-R and Cap 
co-encapsulated in liposome membranes can exert more effective 
antioxidant activity in vivo, and Asx-R/Cap-Lipo may become a 
promising antioxidant formulation for treating reactive oxygen 
species-related diseases (206).

4.2.6.4 Navel orange peel extract, naringin and naringenin
The research by Osama et  al. (155) investigated how the 

hydroethanolic extract of navel orange peel, along with naringin and 
naringenin, can prevent liver damage caused by APAP in male Wistar 
rats. The findings indicated that treating rats given APAP with these 
substances led to a notable reduction in elevated levels of serum AST, ALT, 
ALP, LDH, and GGT, as well as total bilirubin and TNF-α. Conversely, 
there was a significant increase in serum albumin and IL-4 levels. 
Additionally, the treatments decreased liver lipid peroxidation and 
increased liver GSH content, along with SOD, GST, and GPx activity, 
compared to the control group treated only with APAP. The peel extract 
was particularly effective in improving liver lipid peroxidation, GSH 
levels, and GPx activity. Furthermore, the treatments significantly reduced 
the levels of pro-apoptotic mediators p53, Bax, and caspase-3, while 
increasing the anti-apoptotic protein Bcl-2  in the rats treated with 
APAP. The treatments also improved liver histopathology, which was 
adversely affected by APAP, including issues like hepatocyte steatosis, 
cytoplasmic vacuolization, hydropic degeneration, and necrosis, alongside 
inflammation marked by the presence of mononuclear leukocytes and 
fibroblasts. In summary, the hydroethanolic extract of navel orange peel, 
along with naringin and naringenin, may help protect the liver in APAP-
treated rats by enhancing antioxidant defenses and reducing inflammation 
and apoptosis.

In addition, the research by A et al. examined the protective effects 
of naringin, naringenin, and their combination against liver injury 
caused by Taxol (paclitaxel) in Wistar rats. Treatment with naringin 
and/or naringenin lowered the elevated serum levels of total bilirubin, 
AST, ALT, ALO, LDH, and ɣ-GT in rats treated with Taxol. It also 
significantly raised serum albumin levels, indicating liver 
improvement. The disrupted histological changes in the liver were 
notably improved with naringin and/or naringenin treatment in 
Taxol-treated rats. Additionally, these treatments reduced high hepatic 
lipid peroxidation and increased liver glutathione content, along with 
the activities of superoxide dismutase and glutathione peroxidase. 
Furthermore, the treatments lowered levels of alpha-fetoprotein and 
caspase-3, a pro-apoptotic mediator. The combination of naringin and 
naringenin appeared more effective in enhancing organ function and 
structural integrity. In conclusion, naringin and naringenin are 
suggested to offer hepatoprotective benefits by enhancing the body’s 
antioxidant defense, reducing inflammation, and inhibiting 
apoptosis (151).

4.2.6.5 Naringin and hesperidin
The research by Hassan et al. evaluated the preventive effects of 

naringin and hesperidin, as well as their combination, on diclofenac-
induced hepatotoxicity and the underlying mechanisms. 
Administration of naringin and hesperidin to mice injected with 
diclofenac significantly reduced serum levels of ALT, AST, LDH, ALP, 
GGT, total bilirubin, TNF-α, and IL-17, along with liver lipid 

peroxidation and the expression of liver p53 and caspase-3 mRNA. In 
contrast, serum IL-4 levels, liver GSH content, and the activities of 
liver GPx and SOD increased. Additionally, diclofenac-induced 
histological damage, including edema, cytoplasmic vacuolization, 
apoptosis, and focal necrosis of hepatocytes accompanied by 
inflammatory cell infiltration, showed significant improvement after 
treatment with naringin and hesperidin. In conclusion, naringin, 
hesperidin, and their combination (most effective) counteract 
diclofenac-induced liver injury through antioxidant, anti-
inflammatory, and anti-apoptotic mechanisms (152).

Notably, before adding functional foods to the treatment plan 
for Drug-Induced Liver Injury (DILI), it’s crucial to carry out a 
thorough safety assessment. This involves studying the ingredients 
at a molecular level to understand their structure–activity 
relationships, dose–response relationships, mechanisms of action, 
and possible toxic effects. Treatment plans should be tailored to each 
patient’s specific situation, including their nutritional status, the 
degree of liver damage, and their personal preferences regarding 
functional foods. Furthermore, collaboration across disciplines such 
as nutrition, food science, and medicine is vital to ensure the 
effectiveness and safety of these foods. Educating patients about how 
to use functional foods properly, their potential benefits, and any 
possible side effects is an essential part of incorporating them into 
DILI treatment plans.

5 Conclusion and future perspective

DILI is very common and has attracted global attention. Over 
the past 20 years, edible natural products with potent 
hepatoprotective effects, including foods and food-derived bioactive 
compounds, have been studied. These compounds work by reducing 
oxidative stress, decreasing inflammation, maintaining normal 
mitochondrial function, inhibiting cell apoptosis, promoting 
autophagy, reducing hepatocyte necrosis, and repairing the structure 
and function of liver cells, providing promising alternatives for 
healthy dietary choices and the development of functional foods and 
drugs. Although most current evidence comes from animal 
experiments, many food-derived bioactive compounds have been 
confirmed to be  effective hepatoprotective agents, and their 
mechanisms of action have been elucidated, necessitating additional 
clinical research. This article provides the latest information on the 
prevention and treatment of DILI with food and food-derived 
bioactive compounds. It offers guidance for physicians and 
nutritionists to advise people on consuming foods to protect against 
DILI and provides new insights for the development of new drugs 
for treating DILI.

Currently, although many food-derived compounds have 
shown promising results in preclinical studies, there is still a lack of 
clinical trials confirming their efficacy in treating DILI. To advance 
the management of DILI, well-designed randomized clinical trials 
are necessary to assess the effectiveness of food-derived compounds 
and the development of new molecules. Interdisciplinary 
collaboration between preclinical and clinical fields is an expedient 
and safe approach for accelerating the development of DILI 
treatment methods, reducing the risk of unexpected adverse events, 
and improving patient prognosis. In addition, before conducting 
randomized clinical trials, it is essential to use nanotechnology to 
enhance targeted drug delivery, control release, and improve 
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solubility and bioavailability, as well as to carry out necessary 
pharmacokinetic, pharmacodynamic, and toxicological studies. 
Excitingly, experimental studies have been conducted to investigate 
the safety, tolerability, pharmacokinetics, and pharmacodynamics 
of purified (−)-EPI in healthy volunteers. The research indicates 
that no adverse reactions were observed in healthy volunteers using 
(−)-EPI, demonstrating high safety. Furthermore, it has also been 
found that the increase in NO metabolites, mitochondrial enzyme 
function, and plasma inhibitory hormone levels may be potential 
reasons for some beneficial effects of cocoa products or (−)-EPI 
reported in other studies (207). Furthermore, Fukuta et al. used 
liposome technology to co-encapsulate astaxanthin (Asx) and 
capsaicin (Cap) in liposomes, demonstrating higher protective 
effects in a rat model of acute liver injury induced by carbon 
tetrachloride (CCl4), pioneering the application of nanotechnology 
in combating drug-induced liver injury from food-derived 
compounds (206).
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