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Protective effects of betaine on 
the early fatty liver in laying hens 
through ameliorating lipid 
metabolism and oxidative stress
Chaohui Wang , Xi Sun , Xiaoying Liu , Yumeng Wang , Jiarui Luo , 
Xiaojun Yang  and Yanli Liu *

College of Animal Science and Technology, Northwest A&F University, Yangling, China

Introduction: Fatty liver syndrome (FLS) is a prevalent nutritional and metabolic 
disease that mainly occurs in caged laying hens, causing substantial losses in the 
poultry industry. The study was carried out to explore the protective effect and 
potential mechanism of betaine on early FLS.

Methods: There were three groups: Con group (basal diet), FLS group 
(Dexamethasone injection  +  basal diet) and betaine group (Dexamethasone 
injection  +  basal diet with 8  g/kg betaine). Birds in FLS and betaine groups were 
treated with subcutaneous dexamethasone injection once a day at a dosage of 
4.50  mg/kg body weight for 7  days.

Results: The results revealed that DXM treatment significantly increased the liver 
index, serum aspartate aminotransferase (AST), total protein (TP), total bilirubin 
(TBIL), total biliary acid (TBA), total cholesterol (TC), high density lipoprotein 
cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c), and glucose 
(GLU) (p  <  0.05). Additionally, hepatic TC and TG levels were also elevated 
(p  <  0.05). Meanwhile, H&E and oil red O staining showed that there were a large 
number of vacuoles and lipid droplets in the liver of hens in FLS group. Dietary 
betaine addition significantly alleviated the increasing of serum TBIL, TBA and 
hepatic TC caused by dexamethasone treatment (p  <  0.05). There existed 1,083 
up- and 996 down-regulated genes in FLS group when compared with the 
control, and there were 169 upregulation and 405 downregulation genes in BT 
group when compared with FLS group. A total of 37 differential expression genes 
(DEGs) were rescued by betaine addition, which were related to lipid metabolism 
and antioxidant functions including APOC3, APOA4, G0S2, ERG28, PLA2G3, 
GPX4 and SLC5A8. Serum metabolomics analysis showed that 151 differential 
metabolites were identified in FLS group when compared with the control. 
Dietary betaine addition could rescue the changes of metabolites partly such as 
chicoric acid, gamma-aminobutyric acid, linoleic acid, telmisartan, which were 
associated with anti-oxidative function. In addition, RT-PCR results showed that 
genes involved in lipid metabolism, such as ACC, FAS, SCD1, ELOVL6, SREBP1, 
GR, ATGL and MTTP were markedly upregulated at the mRNA level (p  <  0.05). 
However, dietary supplementation with betaine can reversed the expression 
of these genes (p  <  0.05). Importantly, dietary betaine supplementation could 
reverse increased lipid synthesis partly by regulating PI3K/AKT/SREBP and 
CEBPα pathways in the liver based on western blot results (p  <  0.05).

Conclusion: Dexamethasone treatment could establish the early FLS model in 
laying hens with hepatic lipid accumulation and no inflammation, which could 
be attenuated by dietary betaine addition.
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1 Introduction

Fatty liver syndrome (FLS) is a common nutritional metabolic 
disease in laying hens during intensive cage rearing. It is 
characterized by excessive fat accumulation in the liver, which 
adversely affects overall production performance and egg 
production rate (1, 2). Studies have reported that FLS can contribute 
significantly to the mortality rate in laying hens accounting for up 
to 74% especially in caged condition (3, 4). All of these bring 
substantial economic losses for laying hen industry. Therefore, 
investigating the pathogenesis of FLS and identifying effective 
preventive measures are crucial to reduce the incidence of FLS and 
prevent it.

To date, most FLS models have been induced through long-term 
dietary interventions (5–7). Additionally, some researchers have 
employed gene editing methods to establish FLS models (8–10), which 
require substantial investment. Dexamethasone (DXM), a synthetic 
glucocorticoid, is commonly employed as an anti-inflammatory and 
immunosuppressive medication (11). It was reported that DXM 
treatment can induce lipid metabolism disorders within a relatively 
short time (12, 13). Furthermore, a recent study emphasized the 
importance of focusing on the early stage of FLS, as it could 
be  reversibly regulated during the stage of simple steatosis (14). 
Consequently, DXM was selected for early FLS model construction 
due to its anti-inflammatory properties and the relatively short 
duration of treatment in the current study.

Betaine assumes a pivotal role in the folate/methionine cycle as 
a methyl donor and is involved in regulating the gene expression 
through DNA methylation and histone modification (15, 16). A 
growing number of studies have demonstrated that betaine can 
notably enhance the production performance of broilers (17) and 
increase the laying rate of laying hens (18, 19). Additionally, betaine 
has been shown to reduce serum triglyceride (TG) levels in laying 
hens (20). Another study has shown that the addition of betaine to 
the diet can induce the production of GR in hens (21), and GR is 
considered to be involved in regulating lipid metabolism and TG 
homeostasis (22). The current study was conducted to investigate 
whether betaine has preventive or mitigating effects on the early FLS 
formation and further to reveal the underlying mechanism based on 
hepatic transcriptomics and serum metabolomics technologies. The 
study aims to provide a theoretical foundation for the prevention of 
early FLS and potential therapeutic targets in laying hens.

2 Materials and methods

2.1 Animals

Hy-Line Brown laying hens were all purchased from Julong 
Poultry Farm (Wugong, Shanxi, China) and experimental procedures 
in this research were performed in accordance with the Guidelines for 
Care and Use of Laboratory Animal and approved by the Animal 
Ethics Committee of the Northwest A&F University (Permit Number: 
DK202123).

2.2 Animal treatment and sample 
collection

Sixty Hy-line brown hens aged 21-week-old were used in this 
study and randomly divided into three groups: Con group (basal diet), 
FLS group (Dexamethasone injection + basal diet) and betaine group 
(Dexamethasone injection + basal diet with 8 g/kg betaine). DXM was 
obtained from Chen Xin Pharmaceutical Co., Ltd. (Shandong, China) 
and Betaine (pure ≥98%) was obtained from Shanghai Yuanye 
Bio-Technology Co., Ltd. (Shanghai, China). Each group contained 20 
laying hens (one bird/cage). After 1 week pre-feeding, birds in the FLS 
and betaine groups were subcutaneously injected with dexamethasone 
(DXM) at a dosage of 4.50 mg/kg body weight for 7 days (at 7:30–8:00) 
once a day, and hens in the Con group was injected with an equal 
volume of normal saline. All hens were housed in an environmentally 
controlled room where the temperature was maintained at about 
25 ± 2°C, and the relative humidity was controlled from 60 to 70%. The 
water was provided freely and about 95 g of feed was fed per day on a 
restricted feeding regimen. The experimental diet was a corn-soybean-
basal diet, formulated according to the guidelines provided by the 
Chinese Feeding Standard of Chickens (NY/T33-2004). The detailed 
component of basal diet was shown in Table 1. At the end of the trial, 
10 birds were randomly selected and weighted. The blood sample was 
firstly collected from brachial vein under the wing, and serum was 

TABLE 1 Composition and nutrient levels of basal diet.

Composition (air-dry basis) % Basal diet

Corn 56.69

DDGS 4.00

Soybean meal (43%) 25.77

DL-methionine 0.18

Fat-soybean oil 1.51

CaCO3 9.04

CaHPO4 21/16 1.15

NaCl 0.26

Choline chloride (60%) 0.15

Premix* 1.00

Bentonite 0.25

Total 100.00

Nutrient levels

Metabolizable energy, kcal/kg (calculated) 2,600

Crude protein (calculated) 16.5

Total phosphorus (calculated/analyzed) 0.53/0.49

Non-phytate phosphorus (calculated) 0.32

Calcium (calculated/analyzed) 3.50/3.52

*The composition of premixes: iron, 60 mg; manganese, 60 mg; copper, 8 mg; zinc, 80 mg; 
selenium, 0.3 mg; iodine, 0.35 mg; vitamin A, 8,000 IU; vitamin D3, 1,600 IU; vitamin E, 
30 mg; menadione, 1.5 mg; vitamin C, 200 mg, thiamine, 4 mg; riboflavin, 13 mg; pantothenic 
acid, 15 mg; nicotinamide, 20 mg; pyridoxine, 6 mg; biotin, 0.15 mg; folic acid, 1.5 mg; 
cobalamin, 0.02 mg; additional 8,000 mg betaine was added to the betaine group.
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obtained after centrifugation at 3,000 × g for 10 min. Thereafter hens 
were sacrificed by cervical dislocation, and the liver was carefully 
removed and immediately weighed. Meanwhile, hepatic pathological 
characters were observed and 1 cm3 piece of liver was fixed in 
paraformaldehyde. The rest of the liver was frozen in liquid nitrogen, 
and then transferred to −80°C for further analysis.

2.3 Hepatic morphology

The liver was processed in paraffin and stained with hematoxylin–
eosin (H&E) and oil red O after fixed in 4% paraformaldehyde for 
more than 24 h, which were operated by Wuhan Servicebio technology 
Co., Ltd. (Wuhan, China).

 Liver index wet liver weight body weight 100%= ÷ ×

2.4 Hepatic TC and TG contents 
determination

Small pieces of liver tissue were cut and homogenized with PBS in 
high-throughput homogenizer. The supernatant was collected after 
centrifuged at 3,000 × g for 15 min at 4°C and the protein concentration 
were further detected by BCA commercial kit (Xi’an AccuRef 
Scientific Co., Ltd., Xi’an, China). Additionally, hepatic total 
cholesterol (TC), triglyceride (TG) content was measured by 
commercial kits (Nanjing Jiancheng Institute of Biological 
Engineering, Nanjing, China) based on kits instructions. Data 
conversion and standardization were performed based on the 
protein concentration.

2.5 Serum biochemical indicators

Serum biochemical parameters including aspartate 
aminotransferase (AST), total protein (TP), total bilirubin (TBIL), 
total biliary acid (TBA), TC, high density lipoprotein cholesterol 
(HDL-c), low density lipoprotein cholesterol (LDL-c), and glucose 
(GLU) were determined using 7,180 Clinical Analyzer (Hitachi, 
Japan) at Yangling Demonstration Zone Hospital (Yangling, China).

2.6 Transcriptomics analysis and RT-PCR

Total RNA was extracted from liver samples with Trizol reagent 
according to the manufacturer’s instructions (TaKaRa, Dalian, China). 
RNA-seq libraries were constructed and sequenced by Shanghai 
Personal Biotechnology Co., Ltd. through llumina NovaSeq. The 
filtered reads were compared to the reference genome (GRCg7b, 
GCF_016699485.2) using HISAT21 after checking the data quality. The 
accession number is PRJNA1130356. Then, differential expression 
genes (DEGs) were identified according to the parameters of log2 fold 

1 http://ccb.jhu.edu/software/hisat2/index.shtml

change >1 and p-value <0.05. All DEGs were annotated in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)2 and KEGG enrichment 
analysis was performed using cluster profiler (the criterion for 
significant enrichment was p-value <0.05).

For RT-PCR, the total extracted RNA was reversely transcribed to 
corresponding cDNA according to Evo M-MLV RT Premix for qPCR 
(Accurate Biotechnology, Co., LTD., ChangSha, China). Some DEGs 
expression were selected for further verification. β-actin was used as 
internal reference gene, and the sequence of gene primers are shown 
in Table 2. The calculation method and reference system were referred 
to our previous study (23).

2.7 Metabolomics analysis

Metabolites extraction was following the method previously 
described (24), and performed with Vanquish UHPLC System 
(Thermo Fisher Scientific, United States) and Orbitrap Exploris 120 
(Thermo Fisher Scientific, United States). Next, based on the previous 
reports, the original GC–MS data were selected, aligned and a series 
of processing was performed (25). Orthogonal partial least-square 
discriminant analysis (OPLS-DA) was performed using Ropls software 
and used for screening differential metabolites based on p-value <0.05, 
variable importance projection (VIP >1) and fold change (FC > 2). The 
identified differential metabolites were employed for functional 
pathway enrichment using MetaboAnalyst and the criterion for 
significant enrichment was p-value <0.05.

2.8 Western blot analysis

The frozen liver tissue was first lysed and homogenized in cold 
RIPA lysis buffer with protease inhibitor and phosphatase inhibitor 
(DIYIBio, Shanghai, China). BCA kit (Xi’an AccuRef Scientific Co., 
Ltd., Xi’an, China) was employed to detect the protein concentration 
in supernatant liquid after centrifugation. SDS-polyacrylamide gel 
electrophoresis was engaged to protein separation and further 
transferred to a polyvinylidene difluoride (PVDF) membrane. After 
that, the blots were blocked in 5% BSA before being incubated with 
the following primary antibodies: β-actin (PTMBIO, PTM-5028, 
Hangzhou, China), PI3K (Abways, CY6915), AKT (Abways, CY5561, 
Shanghai, China), P-AKT (Abways, CY6569, Shanghai, China), P53 
(Abways, CY5131, Shanghai, China), SREBP1c (Wanleibio, wl01314, 
Shenyang, China), C/EBPα (Abways, CY5723, Shanghai, China), FTO 
(Abways, CY7205, Shanghai, China), which were diluted at a ratio of 
1:1000. The secondary antibody obtained from DIYIBio (Shanghai, 
China) was used after 1:2000 dilutions. Images were quantified by 
Image J (National Institutes of Health, MD).

2.9 Statistical analysis

All data are analyzed by unpaired Student’s t test using GraphPad 
Prism 8 (United States) to compare the statistically significant differences 

2 http://www.kegg.jp/
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between Con vs. FLS and FLS vs. BT groups and shown as mean ± SEM, 
and p-value <0.05 was considered to be statistically significant.

3 Results

3.1 Phenotypic observation of hepatic lipid 
metabolism

As presented in Supplementary Figure S1, DXM injection had no 
effect on body weight and average daily feed intake. The appearance of 
the liver and pathological examination stained with H&E and oil red 
O are shown in Figure 1A. The color of liver in Con group was bright 
red, while it was yellowish and fragile in FLS group. H&E and oil red 
O staining revealed significant vacuole and lipid droplet accumulation 
in the liver of FLS group, but dietary betaine addition could reduce this 
accumulation to some extent. Moreover, when compared to the Con 
group, the liver index, hepatic TG and TC contents increased 

dramatically in the FLS group (p < 0.05), whereas the TC content was 
significantly reduced in betaine group (p < 0.05; Figures 1B–D).

3.2 Serum biochemical characteristics

As shown in Figure 2, DXM administration markedly increased 
serum AST, TP, TBIL, TBA, TC, HDL-c, LDL-c, GLU concentration 
(p < 0.01) when compared with the control. Conversely, betaine could 
significantly reduce the TBA and GLU levels compared with FLS 
group (p < 0.05).

3.3 DEGs and KEGG pathway analysis by 
transcriptomics

To further investigate the potential mechanism of betaine in 
preventing FLS in laying hens, DEGs were identified through 

TABLE 2 Forward and reverse primer sequences for RT-PCR analysis.

Gene Accession Primer sequences, 5′–3′ Product size, bp

β-actin L_08165 F: ATTGTCCACCGCAAATGCTTC

R: AAATAAAGCCATGCCAATCTCGTC
113

ACC XM_046929960 F: GCTTCCCATTTGCCGTCCTA

R: GCCATTCTCACCACCTGATTACTG
185

FAS NM_205155 F: TTTGGTGGTTCGAGGTGGTA

R: CAAAGGTTGTATTTCGGGAGC
212

SCD1 NM_204890 F: GTTTCCACAACTACCACCATACATT

R: CCATCTCCAGTCCGCATTTT
175

ELOVL6 XM_046916529 F: GGTGGTCGGCACCTAATGAA

R: TCTGGTCACACACTGACTGC
169

SREBP1 XM_046927256 F: GCCCTCTGTGCCTTTGTCTTC

R: ACTCAGCCATGATGCTTCTTC
130

GR NM_001037826 F: GGAAACCTGGGGGAAGACTG

R: TCACTTGAGGCATCGGCATT
245

ATGL NM_001113291 F: TCCTAGGGGCCTACCACATC

R: CCAGGAACCTCTTTCGTGCT
195

MTTP NM_001109784 F: GCAGATGGACAGAGTTGGCT

R: ACACCAAAAGTGCAAGGTGC
224

APOC3 NM_001302127.2 F: CCGAAGCTCCCGATAAGACAG

R: CCGTCTTGACTGCCTCAGTG
81

GPX4 NM_001163232.3 F: AAAGTACGCGGGGAAGATGG

R: CCCAAATTGGTTGGAGGGGA
145

APOA4 NM_204938.3 F: GTACTTCACTGAGCTGGGCA

R: CTCCTCGGCGTATGAGTTCG
127

GOS2 NM_001190924.4 F: GCCCAACAGGAAGATGGTGA

R: ACGACTTCTTGCTCTGCTCC
203

ERG28 XM_040672773.2 F: TCCGCAACCAAACCCTCTAC

R: GGTACTGTAGCCCGATCAGC
171

PLA2G3 XM_040684216.2 F: CTCCGAGCTGGGTCTGTTCC

R: TAGTTGCGGATGCCGAAGTT
105

SLC5A8 XM_040657436.2 F: TGGTAAGAGTGCTGTCCCCT

R: ATGCTCTCGGGATCAGTTCT
197
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RNA-seq. A total of 1,083 and 996 up- and down-regulated genes 
were identified, respectively, between the Con and FLS group. 
Meanwhile, 574 DEGs were identified between the FLS and betaine 
groups, including 169 upregulation and 405 downregulation 
(Figure  3A). Cluster analysis of DEGs heatmap showed that the 
addition of betaine could rescue some DEGs disturbed by DXM 
injection (Figure  3B). Overlapped analysis identified 37 genes 
rescued by betaine including APOC3, APOA4, G0S2, ERG28, 
PLA2G3, GPX4, and SLC5A8, which are related to lipid metabolism 
and antioxidant functions (Figure 3C). Total DEGs between Con and 
FLS group significantly enriched steroid hormone biosynthesis, 
PPAR signaling pathway, pyruvate metabolism, citrate cycle (TCA 

cycle), glycolysis/gluconeogenesis and adipocytokine signaling 
pathways (Figure 3D). Similarly, pathways such as arachidonic acid 
metabolism, citrate cycle (TCA cycle), alpha-linolenic acid 
metabolism, linoleic acid metabolism p53 signaling pathway, FoxO 
signaling pathway and oxidative phosphorylation pathways were 
enriched in DEGs between FLS and betaine groups (Figure 3E). To 
further explore metabolic changes clearly, up- or down-regulated 
DEGs were employed for enrichment analysis separately 
(Supplementary Figure S2). Pathways including PPAR signaling 
pathway, glycolysis/gluconeogenesis, galactose metabolism, pentose 
and glucuronate interconversions, citrate cycle (TCA cycle), fatty acid 
biosynthesis and insulin signaling pathway were enriched by up 

FIGURE 1

Phenotypic observation of hepatic lipid metabolism. (A) Liver histological sections assessed by morphological observation, H&E and oil Red O staining 
(200×, 100  μm) in different groups. (B) Liver index. (C) Hepatic TG. (D) Hepatic TC. Data were expressed as mean  ±  SEM (n  =  10). *p  <  0.05, **p  <  0.01 
represent that the comparison between Con and FLS group is statistically significant. #p  <  0.05, ##p  <  0.01 represent there is statistical significance 
between FLS and BT group.
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DEGs between Con and FLS groups. Conversely, several metabolic 
processes were predicted to be changed based on downregulated 
DEGs between FLS and betaine groups, such as alpha-linolenic acid 

metabolism, p53 signaling pathway, linoleic acid metabolism, 
fructose and mannose metabolism, mTOR signaling pathway and 
oxidative phosphorylation.

FIGURE 2

Serum biochemical parameters for AST, TP, TBIL, TBA, TC, HDL-c, LDL-c and GLU. Data were expressed as mean  ±  SEM (n  =  10). *p  <  0.05, **p  <  0.01 
represent that the comparison between Con and FLS group is statistically significant. #p  <  0.05, ##p  <  0.01 represent there is statistical significance 
between FLS group and BT group.

FIGURE 3

Hepatic DEGs identification and KEGG pathway enrichment analysis by transcriptomics. (A,B) The number and heatmap of hepatic DEGs among Con, 
FLS and BT groups. (C) Venn diagram of DEGs from different comparison groups. (D,E) Pathway enrichment based on DEGs from Con vs. FLS and FLS 
vs. BT, respectively.
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3.4 Differential metabolites analysis based 
on serum metabolomics

The OPLS-DA score plot distinctly showed separation among 
Con, FLS and BT betaine groups (Figure 4A). Compared to the Con 
group, 78 up- and 73 down-regulated metabolites were identified in 
FLS group. Similarly, a total of 50 differential metabolites were 
observed in betaine group in comparison with those in FLS group 
(Figure 4B; Supplementary Table S1). A total of 11 metabolites were 

found to be  rescued by dietary betaine addition (Figures 4C,D), 
including 3-Indoleacetonitrile, Ethyl oleate, Levamisole, 
O-Phosphoethanolamine, Propylthiouracil, Uracil 5-carboxylate, 
Chicoric acid, gamma-Aminobutyric acid, Linoleic acid, Quinolin-
2-ol and Telmisartan. Differential metabolites between Con and FLS 
groups fall in pathways such as pyruvate metabolism, galactose 
metabolism, citrate cycle (TCA cycle), oxidative phosphorylation, 
apoptosis. However, fatty acid elongation, biosynthesis of 
unsaturated fatty acids, fatty acid degradation, linoleic acid 

FIGURE 4

Differential metabolites analysis based on serum metabolomics. (A) OPLS-DA score map of serum metabolites combining positive and negative ions. 
(B) The number of differential metabolites among Con, FLS and BT groups. (C) Venn diagram of differential metabolites from different comparison 
groups. (D) VIP value map of differential metabolites rescued by BT. (E) Pathway enrichment based on differential metabolites from Con vs. FLS and FLS 
vs. BT, respectively.
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FIGURE 5

Differential expression genes (DEGs) validation expression. (A–H) The effects of BT on gene expression associated with De novo synthesis and 
decomposition of fatty acids. (I–O) RT-PCR validation of BT regulate genes. Data were expressed as mean  ±  SEM (n  =  10). *p  <  0.05, **p  <  0.01 represent 
that the comparison between Con and FLS group is statistically significant. #p  <  0.05, ##p  <  0.01 represent there is statistical significance between FLS 
group and BT group.

metabolism and ascorbate and aldarate metabolism were enriched 
by differential metabolites between FLS and betaine groups 
(Figures 4E,F).

3.5 DEGs validation and protein expression

To corroborate the findings from the transcriptome analysis, 
some DEGs were selected for RT-PCR validation. As shown in 
Figures  5A–H, increased mRNA levels of ACC, FAS, SCD1, 
ELOVL6, SREBP1, ATGL and MTTP were found in FLS group 
(p < 0.01), while these genes mRNA abundance were reduced by 
dietary betaine addition (p < 0.05). Several genes rescued by 
betaine such as APOC3, APOA4, G0S2, ERG28, PLA2G3, GPX4 
and SLC5A8, exhibited consistency with the findings from the 
RNA-Seq analysis (Figures 5I–O). In parallel, the abundance of 
apoptosis related protein p53, and lipogenesis related protein 
SREBP1c and CEBPα were notably elevated in the FLS group 
(Figure 6A). However, in comparison to the FLS group, CEBPα 
protein expression was significantly decreased (p < 0.01) and 

there was a decreasing trend in SREBP1c (p = 0.0687) in betaine 
group (Figures 6B–G).

4 Discussion

Fatty liver syndrome, as a common metabolic disease, exhibits a 
high prevalence during laying periods and its incidence increases with 
age (3). The hepatic steatosis model induced by DXM had been 
reported before (26, 27). Excessive DXM injection increases insulin 
resistance with interference in glucose/insulin homeostasis and 
escalates liver lipid deposition (28, 29). The heightened lipid deposition 
in the liver can lead to inflammation, fibrosis and eventual cirrhosis 
(30). According to previous reports, betaine has been shown to alleviate 
and prevent FLS by reducing adiponectin levels in the blood and 
decreasing hepatic oxidative stress (31, 32), as well as inflammation, 
apoptosis, and metabolic abnormalities (33). In this study, 
we successfully induced an early FLS model in laying hens without 
inflammation response. At the same time, during the process of FLS 
model induction, hepatic lipidosis was notably ameliorated by dietary 
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betaine addition, as evidenced by reduced TC contents and 
lipid droplets.

When hepatocytes are damaged, AST enters the bloodstream 
through the hepatocyte membrane, and the bile acid metabolism 
becomes aberrant, causing elevated TBA and AST levels in serum. In 
the current study, the AST and TBA levels were significantly 
increased in FLS group, indicating the occurrence of liver 
impairment. Additionally, serum higher TP and TBIL levels also 
implied abnormal liver function. Consistent with previous studies 
(34–36), we  found substantial parameters rise related to lipid 
metabolism including serum TC, HDL-c, LDL-c and GLU. However, 
serum higher TBA and GLU levels induced by DXM, was 
dramatically decreased through dietary betaine treatment. It is 
hypothesized that betaine may alleviate FLS by modulating bile acid 
and glucose metabolism.

Transcriptomics analysis provided insights into the molecular 
mechanisms underlying the preventive effects of betaine on 
FLS. The results showed that betaine reversed some genes 
expression such as APOC3, APOA4, G0S2, ERG28, PLA2G3, 
GPX4, and SLC5A8. APOC3 and APOA4, which belong to lipid 
transport proteins family and are known to regulate plasma TG 
levels and inhibit hepatic lipase activity, ultimately affecting VLDL 
assembly and secretion (37, 38). G0S2 is found to enhance TG 
accumulation and stimulate the development of fatty liver by 
binding to ATGL (39). Previous reports have reported the 
relationship between ERG28 and TC synthesis (40) as well as 
PLA2G3 (41). Indeed, KEGG pathway analysis revealed 
enrichment of lipid metabolism-related pathways in the FLS 
group, such as PPAR signaling pathway, glycolysis/
gluconeogenesis, galactose metabolism, pentose and glucuronate 
interconversions, citrate cycle (TCA cycle), fatty acid biosynthesis, 

insulin signaling pathway. These findings aligned with the 
phenotypic characteristics associated with the occurrence of FLS, 
implying that the FLS model used in this study can simulate FLS 
laying hens under natural conditions to some extent. Interestingly, 
no difference was observed in pro-inflammatory cytokines, which 
may be attributed to the anti-inflammatory function of DXM and 
the relatively short period of FLS induction in the study. 
Conversely, the p53 signaling pathway, alpha-linolenic acid 
metabolism, linoleic acid metabolism, fructose and mannose 
metabolism, mTOR signaling pathway and oxidative 
phosphorylation were also enriched from down-regulation DEGs 
in betaine group. The p53 signaling pathway and mTOR signaling 
pathway is related to apoptosis and insulin response, respectively 
(42, 43). The liver is a vital organ where numerous oxidative 
processes take place and oxidative stress can result in cellular 
dysfunction, injury, and ultimately cell death. Alpha-linolenic acid 
and linoleic acid metabolism can cause lipid oxidative damage 
(44). Conversely, the downregulation of these pathways indicated 
dietary betaine addition might reduce lipid deposition and 
oxidative stress in the liver. These findings suggest that betaine 
may have a protective effect on FLS via regulating lipid deposition 
and oxidative stress.

Metabolomics analysis further supported the beneficial effects of 
betaine on FLS prevention. Studies have proved that chicoric acid can 
mitigated hyperglycemia and dyslipidemia, reversing oxidative stress 
and inflammation in the liver induced by high-fat-diet (45). Gamma-
Aminobutyric acid was reported to acts as a protective agent to 
against toxin-induced hepatic damages (46). Linoleic acid (47) and 
telmisartan (48) can significantly improve insulin secretion and 
reduce lipid accumulation by inhibiting oxidative stress. Additionally, 
telmisartan exhibited a protective effect against apoptosis induced by 

FIGURE 6

Validation of certain protein expression. (A) Western blot analysis of protein expression in pathways associated with apoptosis and lipogenesis. (B–G) 
Quantitative analysis of Western blot bands which were normalized to β-actin.
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high-fat and high-sugar diet (48). An earlier study indicated that FLS 
is associated with oxidative stress alterations, which in turn causes 
insulin resistance and free fatty acids production, finally leading to 
an imbalance in the antioxidative system (49). This imbalance 
triggered lipid peroxidation, impaired VLDL secretion and resulted 
in hepatic TG accumulation (50). In the current study, these 
metabolites mentioned above were reduced in the FLS group, 
indicating that the liver is under oxidative stress. A favorable increase 
in these metabolites was observed in betaine group, suggesting the 
protective effect of betaine on hyperglycemia, dyslipidemia and 
oxidative stress. Furthermore, the enriched pathways from differential 
metabolites between FLS and betaine groups were linoleic acid 
metabolism, fatty acid degradation, ascorbate and aldarate 
metabolism. Previous studies have suggested that linoleic acid 
possesses significant antioxidant effects (51) and ascorbate is 
recognized as a crucial antioxidant function (5). These findings 
implied that the therapeutic effect of betaine on FLS might 
be attributed to its antioxidant regulation.

It has been reported that an elevation of fatty acid delivery causes 
an increase in TCA cycle flux, leading to heightened hepatic oxidative 
stress and inflammation (52). The TCA cycle is a pivotal component 
of energy metabolism in vivo and represents a hub metabolic pathway 
of carbohydrates, fats and proteins. Consequently, we performed a 
joint analysis of transcriptomics and metabolomics based on the 
center of the TCA cycle (Figure 7). The increase abundance of TC, 
isocitric acid, succinic acid and fumaric acid indicated an elevation in 
the flow of the TCA cycle, suggesting that hepatic lipid metabolism 
was disturbed. An intermediate of the TCA cycle, the increase of 
fumaric acid in the FLS group implied impaired mitochondrial 
function (5). Meanwhile, elevated serine and valine levels also 
suggested enhanced gluconeogenesis. Furthermore, genes 
upregulation related to de novo lipid synthesis including ACACA, 

FASN, and ELOVL6, further supported an increase in fatty acids 
synthesis. Collectively, TCA cycle metabolism might be a marker of 
the early stage of FLS, and lipid deposition promoted the oxidative 
stress, which finally leaded to liver injury. Betaine could develop 
protective effects on the early fatty liver through ameliorating lipid 
metabolism and oxidative stress.

5 Conclusion

In summary, DXM can induce hepatic lipid accumulation by 
changing gene expression related to lipid metabolism, and established 
early FLS model with liver damage. The preventive effects of betaine on 
FLS mainly attribute to its regulation function of lipid metabolism and 
antioxidative roles. These findings offer valuable insights into the 
potential therapeutic application of betaine in preventing FLS in 
laying hens.
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