
Frontiers in Nutrition 01 frontiersin.org

Association between copper and 
Achilles tendon disease: a 
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Background: There is a clear association between micronutrients and Achilles 
tendon disease (AT). An increase in micronutrients may alleviate AT symptoms 
and have a therapeutic effect. The aim of this study is to clarify the causal 
relationship between 15 micronutrients (copper, zinc, magnesium, vitamins A, 
C, E, D, B6, B12, folic acid, carotene, iron, selenium, calcium, and potassium) 
and AT.

Methods: We employed the Mendelian randomization (MR) method to analyze 
the causal effects of micronutrients on the risk of AT. The SNPs related to 
micronutrients were obtained from a large-scale genome-wide association 
study (GWAS) of circulating micronutrients in European populations. Outcome 
data were obtained from a meta-analysis of AT in European-ancestry participants 
from the Finnish FINNGEN BIOBANK. The main analysis was conducted using 
the inverse variance weighting (IVW) method, with additional sensitivity and 
pleiotropy analyses performed.

Results: Inverse variance weighting results indicated a causal relationship 
between copper and AT (P  =  0.003, OR  =  0.899, 95% CI  =  0.839–0.964). 
Sensitivity analysis validated the robustness and reliability of this finding.

Conclusion: This study revealed a causal relationship between copper and 
AT, with copper serving as a protective factor. This provides evidence of the 
causality between copper and AT, offering new insights for clinical research and 
therapeutic approaches in AT.
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1 Introduction

The Achilles tendon is the strongest tendon in the human body and plays a vital role in foot 
movement (1). Achilles tendon disease (AT) essentially represents a failure of the tendon healing 
response, where under conditions of ischemia, high temperature, and hypoxia, tendon cells in 
the Achilles tendon undergo degeneration, collagen fibers are damaged, and non-collagenous 
matrix increases (2), Tendon cell apoptosis and free radical damage following injury are also 
associated with AT (3–5). Ischemia and hypoxia in the Achilles tendon promote new blood 
vessel formation; however, these vessels are highly permeable and fail to effectively perfuse the 
tissue, making healing difficult. Moreover, these new blood vessels may be accompanied by the 
formation of small nerves, which are associated with localized pain (6, 7). Evidence suggests that 
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aging leads to abnormal changes in the expression of various genes and 
the production of different types of matrix proteins in tendons, 
potentially resulting in tendon degeneration, aging, and impaired 
healing (2). These factors may reduce the Achilles tendon’s resistance to 
stress and strain, negatively affecting its ability to transmit force and 
generate power (7). The natural course and clinical progression of AT 
are still unclear. Symptoms of AT include pain, swelling, and 
dysfunction in or around the Achilles tendon, significantly affecting 
patients’ quality of life (8, 9). Some studies indicate a high incidence of 
this disease among middle-aged men and sports enthusiasts (10). 
However, further in-depth research is needed on the treatment and 
prevention of AT.

Micronutrients play a crucial role in maintaining overall health and 
are closely linked to AT (AT) (11, 12). Vitamin C is crucial for the 
enzymatic synthesis of collagen and various proteoglycans found in 
tendons (13). Additionally, vitamin C acts as a transcriptional promoter 
of collagen synthesis. An animal study reported that high-dose oral 
vitamin C supplementation can significantly accelerate the healing of 
Achilles tendon rupture (14). Another animal study found that a 
vitamin D-deficient diet results in delayed healing of shoulder tendons 
and decreased biomechanical strength (15). 60% of the human body’s 
zinc content is located in muscles, and 30% is in the bones (16). Zinc 
enhances the body’s natural defense mechanisms and mitigates 
oxidative stress by preventing the formation of free reactive oxygen 
species (ROS) through copper-zinc superoxide dismutase in the cytosol 
and mitochondrial membranes, as well as the less active copper-zinc 
superoxide dismutase in plasma and biological fluids (17). Vitamin B12 
can effectively alleviate pain caused by partial transection injuries of the 
Achilles tendon, inhibit ectopic nerve sprouting, and accelerate tendon 
repair by suppressing protease-activated receptor 2 (PAR2) activation 
in neurons (18). Cyclic strain in tendon cells activates stress-activated 
protein kinase (SAPK/JNK) through calcium-mediated signaling, with 
this stress response being sensitive to both the frequency and magnitude 
of strain. Cyclic strain promotes tendon health (19). Ferroptosis can 
be mitigated by reducing lipid peroxidation and iron accumulation in 
tendon cells, which alleviates collagenase-induced tendinopathy (20).

The MR analysis is an “natural experiment” epidemiological 
method that uses genetic variation as an instrumental variable to 
strengthen the random inference of causal effects on modifiable 
exposures (risk factors) (21–23). In MR, single nucleotide 
polymorphisms (SNPs) associated with exposure events are used as 
instrumental variables (IVs). Genetic variation is randomly assigned 
at conception, and since the instrumental variable is independent of 
other confounders, MR can assess the causal relationship between 
previously observed exposures and outcomes, effectively avoiding 
confounding bias present in traditional epidemiological studies (24). 
In this study, we used the MR method to explore the relationship 

between micronutrients and AT, aiming to better understand the role 
of micronutrients in AT and to inform clinical diagnosis and treatment.

2 Materials and methods

2.1 Study design

The design is illustrated in Figure 1. Data for the 15 exposures 
were sourced from the published Open GWAS public database. GWAS 
data for one outcome were derived from the FinnGen Biobank. Both 
the exposure and outcome data were derived from participants of 
European ancestry. This MR analysis adheres to three fundamental 
assumptions, as shown in Figure 2. The first assumption is that the 
chosen SNPs are significantly associated with the exposure factors 
(micronutrients). The second assumption is that the SNPs must 
be independent of confounding factors between the exposure and the 
outcome. The third assumption is that the SNPs are not directly 
associated with AT and can only be  causally linked 
through micronutrients.

2.2 Data sources

In this study, the genome-wide association study (GWAS) data for 
micronutrients were sourced from IEU OpenGWAS,1 and the 
summary statistics for 15 micronutrients are shown in Table 1. First, 
the OpenGWAS data for copper included 2,603 Europeans, with 
GWAS ID ieu-a-1073. The OpenGWAS data for calcium included 
64,979 Europeans, with GWAS ID ukb-b-8951. The OpenGWAS data 
for carotene included 64,979 Europeans, with GWAS ID ukb-b-16202. 
The OpenGWAS data for folate included 64,979 Europeans, with 
GWAS ID ukb-b-11349. The OpenGWAS data for iron included 
64,979 Europeans, with GWAS ID ukb-b-20447. The OpenGWAS data 
for magnesium included 64,979 Europeans, with GWAS ID ukb-b-
7372. The OpenGWAS data for potassium included 64,979 Europeans, 
with GWAS ID ukb-b-17881. The OpenGWAS data for selenium 
included 2,603 Europeans, with GWAS ID ieu-a-1077. The 
OpenGWAS data for vitamin A included 8,863 Europeans, with GWAS 
ID ukb-b-9596. The OpenGWAS data for vitamin B12 included 64,979 
Europeans, with GWAS ID ukb-b-19524. The OpenGWAS data for 
vitamin B6 included 64,979 Europeans, with GWAS ID ukb-b-7864. 
The OpenGWAS data for vitamin C included 64,979 Europeans, with 
GWAS ID ukb-b-19390. The OpenGWAS data for vitamin D included 
64,979 Europeans, with GWAS ID ukb-b-18593. The OpenGWAS data 
for vitamin E included 64,979 Europeans, with GWAS ID ukb-b-6888. 
The OpenGWAS data for zinc included 2,603 Europeans, with GWAS 
ID ieu-a-1079. Additionally, the outcome data for AT were obtained 
from the FinnGen database2 under finngen_R10_M13_
ACHILLESTEND (DF11–2024.06.24), as shown in Table 1, including 
3,434 AT patients and 294,770 normal controls. All participants for 
both exposure and outcome data were of European ancestry. Detailed 
information on participants, genetic analysis, imputation, and quality 

1 https://gwas.mrcieu.ac.uk/

2 https://www.finngen.fi/

Abbreviations: AT, Achilles tendon disease; MR, Mendelian randomization; SNPs, 

single nucleotide polymorphisms; IVs, instrumental variables; GWAS, genome-

wide association studies; IVW, inverse variance weighted; CI, confidence intervals; 

MR-PRESSO, MR pleiotropy residual sum and outlier; LOX, lysyl oxidase; ROS, 

reactive oxygen species; PAR2, protease-activated receptor 2; SAPK/JNK, Stress-

Activated Protein Kinase/Jun N-terminal Kinase; CP, ceruloplasmin; MSC, 

mesenchymal stromal cells; PDE3, Phosphodiesterase 3; cAMP, cyclic Adenosine 
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control can be found on the Finngen Biobank website. As the data 
analyzed in this study were obtained from publicly available databases, 
ethical approval and informed consent from institutional review 
boards were not required. These data sources guarantee transparency 
and reliability, allowing the findings of our study to be shared and 
discussed across a broader spectrum of medical research.

2.3 Instrumental variable processing

According to the STROBE-MR research guidelines, each SNP for 
micronutrients must go through the following screening steps: First, 
the genome-wide significance threshold p < 5 × 10−6 is used. Second, 
the Clump function is used for linkage disequilibrium (LD) testing, 

with the standard set at r2 < 0.001 and kb = 10,000 (24). In addition, the 
PhenoScanner database is used to exclude SNPs associated with 
outcomes to eliminate confounders. Finally, the F-statistic for each 
SNP is calculated, and SNPs with F < 10 are excluded to avoid bias 
from weak IVs. At the same time, the following formula is used to 
calculate the proportion of exposure explained by the instrumental 
variable (R2) to quantify the strength of the genetic instrument: 
R2 = [2 × Beta2 × (1-EAF) × EAF]/[2 × Beta2 × (1-EAF) × EAF + 2 × SE2 × 
N×(1-EAF) × EAF], where Beta represents the genetic effect of each 
SNP, EAF is the effect allele frequency, SE is the standard error, and N 
is the sample size. To assess the strength of the selected SNPs, the 
F-statistic for each SNP is calculated using the following formula: 
F = R2(N-k-1)/k(1-R2), where R2 represents the proportion of exposure 
explained by the selected SNP, N is the sample size, and k is the 

FIGURE 1

Summary of the MR study design for the relationship between 15 micronutrients and AT. MR, Mendelian randomization; SNPs, single nucleotide 
polymorphisms; IVW, inverse variance weighted; MVMR, Multivariable Mendelian randomization.
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number of included IVs. SNPs with F < 10 are excluded as weak IVs. 
The remaining independent IVs are used for subsequent MR analysis. 
MR-STRO is used to detect outliers and adjust for horizontal 
pleiotropy (25). If horizontal pleiotropy is detected in the IVs, outliers 
are removed.

2.4 Statistical analysis

All analyses in this study were performed using R language 
(version 4.4.1) and the TwoSampleMR package (26). To conduct a 
comprehensive and precise study of the causal relationship between 
micronutrients and AT, we employed various complementary MR 

methods, using inverse variance weighting (IVW), weighted 
median, MR-Egger, simple mode, and weighted mode to evaluate 
potential causal effects (27). Causal effects reflect the impact of a 
one standard deviation (SD) increase in each input micronutrient 
on the risk of outcome characteristics, expressed as odds ratios 
(OR) and their 95% confidence intervals (CI). Sensitivity analyses 
include tests for heterogeneity, genetic pleiotropy, and leave-
one-out analysis. Heterogeneity was tested using the Cochran Q 
test, where p > 0.05 indicates no heterogeneity, and p < 0.05 suggests 
the possibility of intergenic heterogeneity. The ideal result of the 
leave-one-out method is that no significant changes occur after 
removing each SNP one by one. The MR-Egger method (typically 
indicated by the intercept of MR-Egger) and the MR-ESTO global 

FIGURE 2

The first hypothesis is that the selected SNP is significantly associated with the exposure factor (micronutrient); the second hypothesis is that the SNP 
must be independent of potential confounders between exposure and outcome; the third hypothesis is that the SNPs are not directly related to 
Achilles tendinopathy, but only causally linked through micronutrients.

TABLE 1 Exposure data from the OpenGWAS database: copper, calcium, iron, magnesium, potassium, selenium, zinc, carotene, folate, vitamins A, B6, 
B12, C, D, and E.

Trace element GAWS ID Sample size

Exposure Copper ieu-a-1073 2,603

Exposure Calcium ukb-b-8951 64,979

Exposure Carotene ukb-b-16202 64,979

Exposure Folate ukb-b-11349 64,979

Exposure Iron ukb-b-20447 64,979

Exposure Magnesium ukb-b-7372 64,979

Exposure Potassium ukb-b-17881 64,979

Exposure Selenium ieu-a-1077 2,603

Exposure Vitamin A ukb-b-9596 8,863

Exposure Vitamin B12 ukb-b-19524 64,979

Exposure Vitamin B6 ukb-b-7864 64,979

Exposure Vitamin C ukb-b-19390 64,979

Exposure Vitamin D ukb-b-18593 64,979

Exposure Vitamin E ukb-b-6888 64,979

Exposure Zinc ieu-a-1079 2,603

Outcome Achilles tendon disease finngen_R10_M13_ACHILLESTEND 3,434

Outcome data from the FinnGen database: Achilles tendon disease.
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test were used to detect horizontal pleiotropy (28, 29). If the results 
show no pleiotropy and no heterogeneity, the IVW is significant, 
other methods are significant, and the results are stable. Finally, 
this study used multivariable MR to analyze the causal relationships 
between various exposures and diseases, assessing the combined 
impact and interactions of multiple exposures on disease risk.

3 Results

3.1 MR analysis

Copper, calcium, iron, magnesium, potassium, selenium, zinc, 
carotene, folic acid, vitamins A, B6, B12, C, D, and E, these 15 
micronutrients were treated as exposure factors, and AT as the 
outcome factor for MR analysis. After multiple corrections, the 
random effects IVW analysis showed a significant causal 
relationship between copper (p  = 0.002, OR = 0.899, 95% 
CI = 0.839–0.964) and AT. Additionally, the results of the weighted 
median analysis for copper (p = 0.002, OR = 0.892, 95% CI = 0.807–
0.89) were consistent with the IVW analysis. However, the 
MR-Egger method showed: p = 0.132, OR = 0.911, 95% CI = 0.827–
1.003; the simple mode showed p  = 0.113, OR = 0.852, 95% 
CI = 0.724–1.003, with no heterogeneity (p > 0.05) and OR > 1. The 
weighted mode showed p  = 0.006, OR = 0.891, 95% CI = 0.809–
0.981, with no heterogeneity (p  > 0.05) and OR < 1. MR result 
analysis as shown in Figure 3 and Supplementary File 1.

Disease-related micronutrients were screened using the R 
package. The analysis revealed that copper’s pleiotropy had 
p = 0.727 (p > 0.05), showing an association with AT 
(Supplementary File 2). MR analysis was conducted on copper, a 
micronutrient associated with AT (Supplementary File 3), and the 

random-effects IVW analysis indicated copper (p  =  0.003, 
OR  =  0.899, 95% CI  =  0.839–0.964). Pleiotropy tests 
(Supplementary File 4) and heterogeneity tests 
(Supplementary File 5) were also conducted, with p-values all 
greater than 0. Outlier detection results indicated that all combined 
p-values for outlier detection were >0.05 (Supplementary File 6), 
and no SNP outliers were detected in individual SNP outlier testing 
(Supplementary File 7). Additionally, through a scatter plot, 
we observed that the results of SNPs on exposure and outcome 
factors were consistent across the five methods used. Leave-
one-out sensitivity analysis showed that removing individual SNPs 
did not excessively impact the MR analysis. The funnel plot also 
showed a symmetric distribution in Figure 4.

3.2 Multivariable MR analysis

Zinc and vitamin C, which are related to AT among the 15 
micronutrients, were selected for multivariable MR 
(Supplementary File 8) (30, 31). The results showed that zinc 
(p = 0.568, OR = 1.036, 95% CI = 0.918–1.169) and vitamin C 
(p  =  0.962, OR  =  0.968, 95% CI  =  0.467–2.004) did not have 
independent causal effects on AT. Copper (p = 0.007, OR = 0.893, 
95% CI: 0.823–0.969) had an independent causal effect on AT, and 
copper is a protective factor for AT. Heterogeneity and pleiotropy 
tests were conducted, yielding Q-values with p > 0.05, indicating no 
significant heterogeneity or pleiotropy (Supplementary File 9). 
We  compared the forest plot of copper with the forest plots of 
copper, zinc, and selenium, showing the causal relationship 
between copper and AT in Figure 5. Thus, it can be concluded that 
copper may be a protective factor for AT.

4 Discussion

The AT is a complex musculoskeletal disorder, essentially 
characterized by a failure in the healing response of the Achilles 
tendon at the heel. Patients with AT often experience pain, 
swelling, and dysfunction around the Achilles tendon, significantly 
impacting their quality of life, which is closely related to 
micronutrients (13–20). This study used MR to investigate the 
causal relationships between 15 micronutrients (copper, calcium, 
iron, magnesium, potassium, selenium, zinc, carotenoids, folic 
acid, vitamin A, vitamin B6, vitamin B12, vitamin C, vitamin D, 
and vitamin E) and AT. MR analysis showed that copper had a 
causal relationship with AT and that copper is a protective 
factor for AT.

Copper is an essential micronutrient in the human body, and 
as an important trace metal, it is required for the catalysis of many 
critical cellular enzymes (32). Lysyl oxidase (LOX) is implicated in 
the formation of collagen fiber crosslinks, and copper is a cofactor 
for LOX, and therefore may influence the differentiation of 
mesenchymal stem cells to tendon cells (33). A correlation between 
LOX activity and dietary copper intake has been noted (34). 
Previous studies have demonstrated that copper ions can drive 
inflammation via the mitochondrial signaling pathway, which can 
also regulate the epigenetic state of immune cells (35, 36). The role 
of copper in regulating inflammation has gained increasing 

FIGURE 3

Mendelian randomization (MR) analysis results of exposures (copper, 
calcium, iron, magnesium, potassium, selenium, zinc, carotene, 
folate, vitamins A, B6, B12, C, D, and E) and outcome (AT). Five 
methods: inverse variance weighting (IVW), weighted median, 
MR-Egger, simple mode, and weighted mode.
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attention, making it crucial to clarify the relationship between 
copper and Achilles tendinopathy.

The human body primarily relies on dietary intake to maintain 
adequate copper levels, which are vital for both physiological and 
psychological health (37, 38). Copper is involved in numerous 
cellular processes, including hematopoiesis, immune defense, and 
free radical scavenging (39). Nonetheless, an excess of copper in 
the body is linked to several diseases, including Alzheimer’s disease 
and Wilson’s disease, which are neurodegenerative conditions (40). 
The adult human body contains approximately 100 mg of copper, 
with over half distributed in the bones and muscles. The highest 
concentrations are found in the liver, kidneys, and brain, followed 

by the heart and hair. Only about 5% of copper is present in the 
blood, with approximately 95% bound to ceruloplasmin (CP) and 
the remainder bound to albumin and amino acids (41, 42). Copper 
plays a significant role in the body’s anti-inflammatory processes. 
Recent studies suggest that copper can be utilized as an adjunct in 
the treatment of osteoarthritis and cancer (43, 44).

Copper deficiency can lead to neutropenia, anemia, 
osteoporosis, and cause muscle cramps and abnormal muscle tone 
(45). The human body requires copper to catalyze many important 
cellular enzymes (32, 46). Copper can regulate inflammatory 
responses by modulating the functions of T helper cells, B cells, 
neutrophils, natural killer cells, and macrophages (47, 48). It can 

FIGURE 4

Mendelian randomization analysis of the causal relationship between copper and AT. (A) Scatterplots for the causal association between copper and 
AT. The slope of a straight line indicates the magnitude of causality. Black dots represent genetic instruments included in the main Mendelian 
randomization analysis. (B) Forest map visualization of the causal impact of each SNP on AT risk. (C) “Leave-one-out” plots for the causal association 
between copper on AT risk. (D) Funnel plot showing heterogeneity of SNP.
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also induce the activity of LOX and regulate the synthesis of 
prostaglandins (49–51). It induces or mimics superoxide dismutase 
activity, reduces the permeability of synovial lysosomes, and 
regulates histamine production (52). Therapeutic interventions 
involving copper can prevent or reduce the deterioration of 
congested areas and wound size after burns (53). Nano-copper, 
when applied locally to burn areas, has significant anti-
inflammatory effects by reducing cytokine expression (54). ROS 
are key signaling molecules in inflammation; oxidative stress 
occurs when ROS accumulate beyond a cell’s antioxidant capacity, 
leading to oxidative damage. Oxidative stress is associated with 
various inflammatory diseases, and studies have shown that ultra-
small copper nanoparticles at very low doses can protect cells from 
ROS damage and significantly promote healing (55–57). However, 
excess copper in cells generates free radicals and increases 
oxidative stress (40). Most studies have shown that both copper 
deficiency and excess are harmful to the human body (32, 58). 
Therefore, copper homeostasis is causally related to the progression 
of AT. The U.S. Institute of Medicine’s Food and Nutrition Board 
recommends a daily copper intake of about 700 micrograms for 
adults (59). Copper sulfate can promote tendon regeneration by 
enhancing the recruitment of mesenchymal stromal cells (MSC) to 
the site of injury. These cells secrete growth factors and other 
substances, counteract oxidative stress, and stabilize collagen 
fibers, thereby accelerating tendon healing (60). New research 
shows that ultra-small copper-based enzyme clusters can improve 
Achilles tendinopathy by inhibiting acute oxidative stress (61). 
Obesity is a risk factor for AT (62), Copper inhibits 
phosphodiesterase 3 (PDE3) during the breakdown of fat cells for 
energy, and PDE3 hydrolyzes cyclic AMP (cAMP), which promotes 
fat breakdown (63). Therefore, copper is a protective factor 
against AT.

Our study provided new insights into the treatment of AT, but 
there were also some limitations. First, to reduce the interference 

of population stratification, we only performed stratified analyses 
based on European ancestry, without considering factors such as 
age, dietary habits, and lifestyle, which may introduce bias and fail 
to fully reflect the actual situation of broader populations. 
Moreover, in genome-wide association studies, we  used the 
conventional significance level p-value = 5 × 10−8, but we did not 
obtain enough SNPs for MR analysis. Therefore, we relaxed the 
significance level to 5 × 10−6 to obtain more candidate SNPs, though 
this may increase the false positive rate and affect the reliability of 
the results. Future studies need to optimize the design, include 
more diverse population characteristics, and adopt stricter 
statistical standards to ensure the robustness and generalizability 
of the results.

5 Conclusion

In conclusion, our study clarified the causal relationship 
between copper and AT through MR analysis. This insight not only 
offers a new perspective for subsequent mechanistic studies, but 
also provides new scientific evidence and strategies for the clinical 
application of copper in the prevention and treatment of 
AT. Through in-depth analysis, we found that copper plays a key 
role in the occurrence and progression of AT, pointing the way for 
future research. Furthermore, this discovery provides an important 
reference for clinicians when formulating treatment plans, 
potentially improving patient prognosis and quality of life.
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FIGURE 5

Forest plot. (A) Forest plot of Mendelian randomization analysis of copper with inverse variance weighting (IVW), weighted median, MR-Egger, simple 
mode, and weighted mode. (B) Forest plots for inverse variance-weighted Mendelian randomization analysis of zinc, vitamin C, and copper.
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