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Background: Recent studies have shown that folate metabolismmight influence

cancer progression by regulating mitochondrial metabolism and glutamine is

involved in the development and progression of several malignancies. This study

aimed to explore the association between folate and glutamine metabolism and

prognosis of kidney cancer.

Methods: We performed expression analysis, survival analysis, genetic alteration

analysis, and tumor immune infiltrate analysis of related genes using platforms

such as UALCAN, GEPIA, GEPIA2, cBioPortal, and TIMER. Serum folate, vitamin

B12, and methylmalonic acid levels and clinical information of participants

in the United States diagnosed with kidney cancer was obtained from the

National Health and Nutrition Examination Survey (NHANES) and analyzed using

software R.

Results: We observed that RNA expression levels of certain folate and glutamine

metabolism-related genes, particularly MTHFD2 and SLC1A5, were associated

with the prognosis of kidney renal clear cell carcinoma (KIRC). Expression

di�erences in these genes were notable between high-stage and low-stage and

N1 vs. N0 lymph node metastasis status in KIRC. There was a positive association

between glutamine metabolism-related genes and folate metabolism-related

genes in KIRC. SLC1A5 was positively correlated with MTHFD2 in KIRC. Folate

and glutamine metabolism might play a synchronous role in KIRC prognosis.

Strong correlations betweenMTHFD2 and SLC1A5 expressionwith KIRC immune

infiltrates were found. Higher levels of serum folate may be related to improved

cancer-specific survival (CSS) in kidney cancer patients in the U.S.

Conclusion: Folate and glutaminemetabolism-related genes, especially SLC1A5

and MTHFD2, were associated with the prognosis, tumor stage, and lymph node

metastasis status in KIRC. Higher KIRC SLC1A5 or MTHFD2 expression levels

were associated with higher tumor stages, increased lymph node metastasis

possibilities, poorer OS, and poorer RFS. Elevated levels of serum folate may be

associated with improved CSS in kidney cancer patients in the United States.
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1 Introduction

Metabolic abnormalities are a notable characteristic of tumors.
Metabolic properties may evolve during the progression of kidney
cancer. Notably, mitochondrial complex I promotes kidney cancer
metastasis (1). Additionally, recent studies have shown that folate
metabolism might influence cancer progression by regulating
mitochondrial metabolism (2).

Plasma folate levels may alter the associations between 5-
methyl-2-deoxycytidine, a global DNA methylation marker, blood
cadmium concentrations, and kidney cancer (3). Glutamine
is closely associated with the mitochondrial tricarboxylic acid
(TCA) cycle and involved in the development and progression
of several malignancies (4). Many cancer cells depend on
glutamine for their growth and proliferation, a phenomenon
referred to as “glutamine addiction” (5). Moreover, glutamine
metabolism plays a significant role in the prognosis of advanced
kidney cancer and in the sunitinib resistance to the drug
sunitinib (6).

In one-carbon metabolism, one-carbon units must bind to
tetrahydrofolic acid (FH4), which is the active form of folate, in
order to be transported. Vitamin B12 serves as a coenzyme in the
conversion of folate to FH4 (7, 8).

Vitamin B12 deficiency can lead to increased levels of
methylmalonic acid, which serves as a biomarker for assessing
vitamin B12 status (9). Methylenetetrahydrofolate dehydrogenase
1 (MTHFD1), MTHFD2, methylenetetrahydrofolate reductase
(MTHFR), and 5-methyltetrahydrofolate-homocysteine
methyltransferase reductase (MTRR) are important regulatory
enzymes in folate metabolism (10–12). The solute carrier family 1
member 5 (SLC1A5) is responsible for transporting glutamine into
the cell cytosol, while glutaminase 1 (GLS1) deaminates glutamine
in the mitochondria. Subsequently, glutamine is catalyzed by
glutamate dehydrogenase 1 (GLUD1) to produce α-ketoglutarate,
which then participates in the TCA cycle (13).

In this study, we attempted to explore the association between
folate and glutamine metabolism and prognosis of kidney cancer.
The correlation between expression levels of genes encoding
key regulatory proteins in folate and glutamine metabolism and
kidney renal clear cell carcinoma (KIRC) was investigated. Serum
folate, vitamin B12, and methylmalonic acid levels and kidney
cancer prognosis were evaluated based on the data from the
National Health and Nutrition Examination Survey (NHANES).
The NHANES offers high-quality and comprehensive data on
health and nutritional status of the population, as well as related

Abbreviations: CI, confidence intervals; CSS, cancer-specific survival; FH4,

tetrahydrofolic acid; GLS1, glutaminase 1; GLUD1, glutamate dehydrogenase

1; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP,

kidney renal papillary cell carcinoma; MTHFD, methylenetetrahydrofolate

dehydrogenase; MTHFR, methylenetetrahydrofolate reductase; MTRR, 5-

methyltetrahydrofolate-homocysteine methyltransferase reductase; NDI,

National Death Index; NHANES, National Health and Nutrition Examination

Survey; OS, overall survival; RFS, recurrence-free survival; SCNA, somatic

copy number alterations; SLC1A5, solute carrier family 1 member 5; TCA,

tricarboxylic acid.

survival information. This provides reliable evidence to support
our study.

2 Materials and methods

2.1 Data collection in NHANES

Serum folate, vitamin B12, and methylmalonic acid levels
and clinical information of participants from the United States
diagnosed with kidney cancer, were acquired from the NHANES
(https://wwwn.cdc.gov/nchs/nhanes/search/) within the time
periods 1999–2004 and 2011–2014. Clinical information included
age at screening, age at diagnosis, gender, ethnicity, drinking
history, voluntary smoking history, BMI values, follow-up time,
overall survival (OS) status, and cancer-specific survival (CSS)
status. The NHANES did not provide detailed information on
pathological subtypes, TNM staging, tumor stage, or lymph node
metastasis status for kidney cancer-diagnosed participants. A
total of 55 kidney cancer patients were selected from over 8,000
participants with serum folate, vitamin B12, or methylmalonic acid
level data in the NHANES. Related survival data were obtained
from the National Death Index (NDI) (https://www.cdc.gov/nchs/
data-linkage/mortality-public.htm).

2.2 Construction of prognostic
folate-related signature based on NHANES
data

Vitamin B12 is involved in folate metabolism. Methylmalonic
acid can reflect vitamin B12 status. Therefore, we decided
to construct a prognostic folate-related signature that
comprehensively considers the relationship between kidney cancer
prognosis and serum folate, vitamin B12, and methylmalonic acid
levels. The coefficient index was achieved using the cph function in
the “rms” package of R. Risk score =

∑
valuen × βn. The “value”

represents the quartile group value of serum folate, vitamin B12, or
methylmalonic acid. The “β” represents the coefficient index value.
The “n” represents the serial number. The samples were divided
into a low-risk group and a high-risk group based on the median
cut-off risk score.

2.3 Expression analysis, survival analysis,
genetic alteration analysis, and tumor
immune infiltrate analysis of related genes
in KIRC

Kidney renal clear cell carcinoma (KIRC) is the most common
pathological subtype of kidney cancer, and there are differences
in gene expression among different pathological subtypes. As a
result, we specifically examined KIRC utilizing UALCAN, GEPIA,
GEPIA2, cBioPortal, and TIMER, which are all visual online
analysis sites. MTHFD1, MTHFD2, MTHFR, and MTRR are
important regulatory enzymes in folate metabolism. SLC1A5
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FIGURE 1

Glutamine metabolism-related genes RNA expression levels in KIRC. (A–C) SLC1A5, GLUD1, and GLS1 RNA expression between primary KIRC tissues

and paired normal tissues. (D, E) SLC1A5 and GLUD1 RNA expression between cancer stages. (F) SLC1A5 RNA expression between di�erent lymph

node metastasis statuses. KIRC: kidney renal clear cell carcinoma.

plays a crucial role in glutamine transport. GLS1 and GLUD1
are essential for glutamine metabolism. We selected four folate
metabolism-related genes and three glutamine metabolism-related
genes to analyze the association between folate and glutamine
metabolism and KIRC. All these analyses were based on RNA
expression data. Detailed clinical information on age, gender,
ethnicity, follow-up status, pathological subtypes, TNM staging,
tumor stage, and lymph node metastasis status was available in the
TCGA KIRC dataset.

Expression analysis and survival analysis of related genes
were performed in UALCAN (https://ualcan.path.uab.edu/) and
GEPIA (http://gepia.cancer-pku.cn/), based on TCGA KIRC data.
Correlation analyses were performed in UALCAN and GEPIA2
(http://gepia2.cancer-pku.cn/), which were also based on TCGA
KIRC data. Genetic alteration analysis of related genes was
performed in cBioPortal (https://www.cbioportal.org/), which
relied on TCGA KIRC data. Tumor immune infiltrate analysis
of related genes was performed in TIMER (https://cistrome.
shinyapps.io/timer/), based on TCGA KIRC data.

2.4 Statistics analysis

R (version 4.3.2) software was used for statistical analyses of
NHANES data. Some test methods are annotated in the figures
and tables. The correlation was evaluated using the Spearman
method. A P < 0.05 was defined as statistically significant.
Statistical analysis of the online databases is conducted based on
the database instructions and the description above. All analyses in

GEPIA compared TCGA primary KIRC tissues and TCGA-paired
normal tissues.

3 Results

3.1 Glutamine metabolism-related genes
and KIRC prognosis

SLC1A5 can transport glutamine into the cell cytosol, GLS1
can deaminate glutamine in the mitochondria, and subsequently,
glutamine is catalyzed by GLUD1 to produce α-ketoglutarate,
which participates in the TCA cycle (13). Using UALCAN to
analyze TCGA KIRC RNA expression data, we found that SLC1A5
expression was upregulated in primary KIRC tissues compared to
paired normal tissues, while GLUD1 and GLS1 expression was
downregulated (Figures 1A–C). The expression level of SLC1A5
was higher in stage 4 vs. stage 1, stage 4 vs. stage 2, and N1
vs. N0 lymph node metastasis status (Figures 1D, F). GLUD1
expression level was lower in stage 4 vs. stage 1 and stage 4 vs.
stage 2 (Figure 1E). No statistically significant differences were
observed in GLUD1 or GLS1 expression between N1 and N0
lymph nodemetastasis statuses. Similarly, there were no statistically
significant differences in GLS1 expression between stage 4 and stage
1. Detailed p-values are shown in Supplementary Table S2.

Using GEPIA to analyze TCGA KIRC RNA expression data, we
found that elevated SLC1A5 expression levels were associated with
poorer OS and RFS. However, lower GLUD1 and GLS1 expression
levels were also associated with poorer OS and RFS (Figure 2). In
the analysis, the group cutoff was “median.”
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FIGURE 2

SLC1A5, GLUD1 and GLS1 RNA expression level and KIRC survival: K-M curve of OS and RFS. KIRC: kidney renal clear cell carcinoma.

FIGURE 3

Folate metabolism-related genes RNA expression level in KIRC. (A–D) MTHFD1, MTHFD2, MTHFR, and MTRR RNA expression between primary KIRC

tissues and paired normal tissues. (E, G) MTHFD2 and MTHFR RNA expression between cancer stages. (F, H) MTHFD2 and MTHFR RNA expression

between di�erent lymph node metastasis status. KIRC: kidney renal clear cell carcinoma.

3.2 Folate metabolism-related genes and
KIRC prognosis

MTHFD1, MTHFD2, MTHFR, and MTRR are important
regulatory enzymes in folate metabolism (10–12). Using UALCAN

to analyze TCGA KIRC RNA expression data, we found that the
expression of MTHFD2, MTHFR, and MTRR was upregulated in
primary KIRC tissues compared to paired normal tissues, while
MTHFD1 expression was downregulated (Figures 3A–D). The
expression level of MTHFD2 was higher in stage 4 vs. stage 1,
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FIGURE 4

MTHFD1, MTHFD2, MTHFR, and MTRR RNA expression level and KIRC survival, K-M curve of OS and RFS.

FIGURE 5

Association between glutamine metabolism-related genes and folate metabolism-related genes in KIRC. (A) Top25 genes positively correlated with

SLC1A5 in KIRC. (B) Correlation between MTHFD2 and SLC1A5 in KIRC. (C) Survival map between the seven genes and KIRC OS, statistically

significant results are boxed. (D) All genes negatively correlated with SLC1A5 in KIRC. (E) Correlation between 3 glutamine metabolism-related genes’

signature and 4 folate metabolism-related genes’ signature in KIRC. (F) In the survival map between the seven genes and KIRC RFS, statistically

significant results are boxed. KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma.

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2024.1506967
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qin et al. 10.3389/fnut.2024.1506967

FIGURE 6

Genetic alteration and tumor immune infiltrates of related genes in KIRC. (A) Genetic alteration information of related genes. (B, C) Tumor infiltration

levels with SCNA for MTHFD2 and SLC1A5. (D) Correlations of MTHFD2 and SLC1A5 expression with tumor-infiltrating immune cells. KIRC, kidney

renal clear cell carcinoma.

stage 4 vs. stage 2, and N1 vs. N0 lymph node metastasis status
(Figures 3E, F). The expression level of MTHFR was lower in
stage 4 vs. stage 1 and N1 vs. N0 lymph node metastasis status
(Figures 3G, H). The expression level of MTHFD1 was lower in
N1 vs. N0 lymph nodemetastasis status (Supplementary Figure S1),
but there was no statistically significant difference in stage
4 vs. stage 1. There was no statistically significant difference
in MTRR expression in stage 4 vs. stage 1 and N1 vs. N0
lymph node metastasis status. Detailed p-values are shown in

Supplementary Table S2.
Using GEPIA to analyze TCGA KIRC RNA expression data, we

found that a higher MTHFD2 expression level was associated with

poorer OS and RFS. Lower MTHFR expression level was associated

with poorer OS and RFS. Lower MTHFD1 and MTRR expression

levels were associated with poorer OS (Figure 4). In the analysis, the
group cutoff was “median.”

3.3 Association between glutamine
metabolism-related genes and folate
metabolism-related genes in KIRC

When we used UALCAN to analyze genes correlated
with SLC1A5 in KIRC, we found MTHFD2 among the top
25 positively correlated genes (Figures 5A, D). Furthermore,
KIRC SLC1A5 was positively correlated with MTHFD2 in the
Pearson correlation analysis conducted in GEPIA2 (Figure 5B).
A positive correlation between three glutamine metabolism-
related gene signatures and four folate metabolism-related gene
signatures in KIRC was found through Pearson correlation
analysis in GEPIA2 (Figure 5E). Using GEPIA2, we obtained
the survival map between the seven genes and kidney cancer
OS and RFS, and statistically significant results were boxed in
Figures 5C, F.
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FIGURE 7

Multivariate Cox regression forest plots with CSS in kidney cancer.

3.4 Genetic alteration and tumor immune
infiltrates of MTHFD2 and SLC1A5 in KIRC

Genetic alteration information from cBioPortal is shown in
Figure 6A. Tumor infiltration levels in KIRC with different somatic
copy number alterations (SCNA) for MTHFD2 and SLC1A5 are
shown in Figures 6B, C. The correlations between MTHFD2 and
SLC1A5 expression with selected tumor-infiltrating immune cells
in KIRC are shown in Figure 6D.

3.5 Serum folate, vitamin B12, and
methylmalonic acid levels and kidney
cancer prognosis based on the NHANES
data

Simultaneously, data on available serum folate, vitamin B12,
and methylmalonic acid levels could be found in the NHANES
within the time periods 1999–2004 and 2011–2014. We selected
55 US participants with kidney cancer diagnosed within this time
period above, but 14 of them lacked sufficient data. Finally, data
from 41 participants were used in further analyses. None of the 41
participants had a drinking history or voluntary smoking history.
Detailed pathological subtype information was not available. BMI,
serum folate, serum vitamin B12, and serum methylmalonic acid

values were converted into quartile group values as 1, 2, 3,
and 4, respectively. Multivariate Cox regression forest plots were
generated using R. No association was found between serum folate,
vitamin B12, or methylmalonic acid levels and kidney cancer OS
(Supplementary Figure S2). Higher levels of serum folate might be
associated with improved CSS, and ethnicity and age at screening
might be the confounding factors (Figure 7).

Furthermore, we tried to construct a prognostic folate-related
signature, and the coefficient index was calculated using the cph
function in the “rms” package in R. Based on OS, we obtained
the following formula: Risk score = 0.1211×Methylmalonic Acid
+ 0.2529×Vitamin B12 – 0.4428×Folate. However, no statistically
significant differences in kidney cancer survival were identified
between the low- and high-risk groups (Supplementary Table S1).
Based on CSS, we obtained the following formula: Risk score =

0.7937×Vitamin B12 – 1.0694× Folate – 0.2508×Methylmalonic
Acid. However, no statistically significant result was found, either
(Table 1).

4 Discussion

In our study, some folate and glutamine metabolism-
related genes’ RNA expression levels were associated with KIRC
prognosis, especially MTHFD2 and SLC1A5. Meanwhile, we found
statistically significant differences in high-stage vs. low-stage and
N1 vs. N0 lymph node metastasis status.

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2024.1506967
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Qin et al. 10.3389/fnut.2024.1506967

TABLE 1 Based on CSS, clinical characteristics between low and high-risk

groups in kidney cancer.

Characteristic High,
N = 20a

Low,
N = 21a

p-valueb

Age at screening 0.22

Mean (SD) 69 (13) 73 (9)

Median (IQR) 72 (65, 75) 75 (72, 80)

Range 26, 85 50, 85

Age at diagnosed 0.67

Mean (SD) 60 (15) 63 (11)

Median (IQR) 61 (50, 70) 63 (57, 69)

Range 26, 85 48, 85

Gender 0.39

Male 14 (70%) 12 (57%)

Female 6 (30%) 9 (43%)

Race 0.77

Mexican American 2 (10%) 3 (14%)

Other Hispanic 0 (0%) 2 (9.5%)

Non-Hispanic White 12 (60%) 12 (57%)

Non-Hispanic Black 5 (25%) 3 (14%)

Other Race 1 (5.0%) 1 (4.8%)

BMI group >0.99

Underweight 0 (0%) 1 (4.8%)

Normal weight 2 (10%) 2 (9.5%)

Overweight 9 (45%) 10 (48%)

Obesity 9 (45%) 8 (38%)

OS 10 (50%) 14 (67%) 0.28

CSS 3 (15%) 3 (14%) >0.99

an (%).
bWilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.

Higher expression levels of SLC1A5 or MTHFD2 were
associated with poorer OS and relapse-free survival (RFS),
advanced tumor stages, and increased likelihood of lymph node
metastasis in KIRC patients.

A ‘switch’ in mitochondrial status may occur between
metastatic and localized kidney cancers. Recent studies have shown
that KIRC metastases enhanced TCA cycle labeling compared
to primary KIRC, indicating a divergent metabolic programming
during metastasis in patients.

Metabolic characteristics may change during the progression
of KIRC, with mitochondrial complex I playing a significant role
in promoting metastasis (1). Mitochondrial content increased in
high-grade KIRC, while the function of mitochondrial respiratory
complex II remained low. The progression of KIRC is accompanied
by altered mitochondrial respiratory complex II status (14).
Mitochondria play a crucial role in tumor cell growth and
proliferation by supporting both the ATP synthesis and the

production of macromolecular precursors. Altered mitochondrial
metabolism contributes to tumor progression (15, 16). Through
mitochondrial fission and fusion, cellular ATP demand creates
metabolically distinct subpopulations of mitochondria (17). Folate
metabolism and glutamine metabolism are closely associated
with mitochondrial metabolism. Consequently, these metabolic
pathways may exhibit changes accordingly between metastatic
kidney cancer and localized kidney cancer.

One-carbon unit metabolism is altered during tumor
progression and relies on the combination with the active form of
folate (7, 8, 10–12). MTHFD2, a crucial regulatory enzyme in folate
metabolism, plays a significant role in one-carbon unit metabolism
(18). This one-carbon unit is mainly from amino acids such as
serine, tryptophan, histidine, or glycine. In many cancers, the
expression of SLC1A5 increases to meet the heightened demand
for glutamine caused by rapid cell proliferation (19). Additionally,
SLC1A5 is a significant transporter of serine in cancer cells.
Serine and glutamine compete for transport through SLC1A5,
with SLC1A5-mediated serine uptake being essential for purine
nucleotide biosynthesis (20). Both folate metabolism and glutamine
metabolism are involved in one-carbon unit metabolism, especially
the genes MTHFD2 and SLC1A5. Our study found a positive
association between glutamine metabolism-related genes and
folate metabolism-related genes in KIRC. SLC1A5 was positively
correlated with MTHFD2. Folate metabolism and glutamine
metabolism may have interconnected, potentially synchronous
roles in influencing KIRC prognosis. Synchronous change of
MTHFD2 and SLC1A5 can also be found in mutant p53 breast
cancer cell lines (21) and EB virus-infected B cells (22).

MTHFD2 and SLC1A5 expression levels were strongly
correlated with KIRC immune infiltrates. Previous studies have
shown that tumor microenvironment is associated with the efficacy
of immunotherapy (23) and that MTHFD2 might induce cancer
immune evasion through PD-L1 upregulation (24). SLC1A5, as an
efficient transporter of glutamine, could strengthen the metabolic
capabilities and effector functions of tumor-directed CAR-NK and
T cells (25).

Based on the NHANES data, higher levels of serum folate
might be associated with improved CSS in kidney cancer patients
in the United States. We attempted to develop a prognostic folate-
related signature. However, no statistically significant correlation
was found between the signature and kidney cancer survival. This
outcome may have been influenced by the limited sample size.

Additionally, it is important to acknowledge the limitations of
this study. The small sample size and limited data necessitate a
cautious interpretation of the results.

To summarize, we might estimate KIRC progression and
prognosis by monitoring folate metabolism- and glutamine
metabolism-related gene expression levels. Higher SLC1A5 or
MTHFD2 expression levels were associated with poorer KIRC
OS and RFS. Higher SLC1A5 or MTHFD2 expression levels
were associated with higher KIRC tumor stage and higher KIRC
lymph node metastasis likelihood. Kidney cancer prognosis may
potentially be assessed by monitoring serum folate levels, as higher
levels appear to be associated with improved CSS. This suggests
potential clinical advantages this study might offer for managing
KIRC patients.
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5 Conclusion

Our results suggest that folate metabolism- and glutamine
metabolism-related genes, especially SLC1A5 and MTHFD2, are
associated with KIRC prognosis, tumor stage, and lymph node
metastasis status. Higher KIRC SLC1A5 or MTHFD2 expression
levels were associated with higher tumor stages, increased lymph
node metastasis possibilities, poorer OS, and poorer RFS. Higher
serum folate levels might be associated with better CSS in kidney
cancer patients in the US.
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