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In this study, Chinese yam polysaccharides (CYPs) were fermented using Lactobacillus 
plantarum M616, and changes in the chemical composition, structure, and anti-
inflammatory activity of CYPs before and after fermentation were investigated. The 
carbohydrate content of L. plantarum M616-fermented CYP (CYP-LP) increased 
from 71.03% ± 2.75 to 76.28% ± 2.37%, whereas protein and polyphenol content 
were almost unaffected compared with those of the unfermented CYP (CYP-NF). 
The monosaccharide composition of CYP-NF included rhamnose, arabinose, 
galactose, glucose, and mannose in a molar ratio of 0.493:0.6695:0.9738:0.7655: 
12.4365. CYP-LP had the same monosaccharides as CYP-NF, but the molar ratio 
was 0.3237:0.3457:0.8278:2.5541:10.4995. Meanwhile, the molecular weight and 
polydispersity of CYP-LP, respectively, increased from 124.774 kDa and 6.58 (CYP-
NF) to 376.628 kDa and 17.928, indicating a low homogeneity. In vitro antioxidant 
analysis showed that L. plantarum M616 fermentation had varying effects on 
CYP-LP against DPPH, ABTS, hydroxyl, and superoxide radicals. However, CYP-
LP had superior anti-inflammatory activity to CYP-NF and is more effective in 
regulating superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, 
nitric oxide, tumor necrosis factor-α, interleukin-1β, and interleukin-6 release in 
lipopolysaccharide-induced RAW 264.7 macrophages. This study suggested that 
CYP-LP is a potential anti-inflammatory ingredient in drugs and functional food.
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1 Introduction

Proper inflammation is beneficial and essential to the automatic defense of the body, but 
the persistence of inflammatory factors causes damage to body tissues and thus leads to the 
development of various diseases (1). Anti-inflammatory drugs are widely used to fight 
inflammation, but drug residues and bacterial resistance induced by the long-term use of anti-
inflammatory drugs have seriously threatened human health (2). Apart from proper diet, 
personal and environmental hygiene, and proper exercise (3), consuming food containing 
anti-inflammatory compounds, especially dietary plant-derived anti-inflammatory substances, 
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is essential. Li et al. (4) suggested that Phaseolus lunatus L. organic 
acids have anti-inflammatory activity and can be  used in clinical 
efficacy studies. Sun et al. (5) demonstrated that Nymphaea candida 
polyphenols has excellent anti-inflammatory and cough-relieving 
properties. Zhao et al. (6) found that plant essential oils can be used 
to treat pain and inflammation, and Zhang et  al. (7) found that 
alkaloids isolated from Stemona tuberosa Lour roots provide 
inflammatory protection to lipopolysaccharide (LPS)-damaged RAW 
264.7 cells. Previously, we found that Artemisia argyi flavonoids have 
excellent antioxidant and anti-inflammatory activities (8, 9). 
Therefore, the exploitation and application of anti-inflammatory 
compounds from dietary plants have good prospects.

Polysaccharides are composed of more than 10 monosaccharides 
and have excellent physicochemical properties (10–12), and good anti-
inflammatory activity (13, 14), especially polysaccharides from dietary 
plants. Yuan et al. (15) suggested that natural plant polysaccharides 
possess anti-inflammatory effects and can be  used in drugs and 
functional food. Chen et  al. (16) and Xie et  al. (17) verified that 
Astragalus membranaceus and American ginseng polysaccharides can 
be used as anti-inflammatory ingredients. Huang et al. (18) suggested 
that pectic polysaccharides isolated from Cucurbita moschata Duch 
can reduce inflammatory responses and are potential functional food 
ingredients with anti-inflammatory properties. Thus, the application 
of dietary plant-based polysaccharides as anti-inflammatory 
ingredients is a good approach, especially polysaccharides extracted 
from medicinal and food-homologous plants.

Yam is the underground rhizome of Dioscorea, which is a 
medicinal and food-homologous plant (19). Yam polysaccharides have 
many bioactivities, including anti-inflammation activity. Lu et al. (20) 
found that yam polysaccharides alleviate DSS-induced ulcerative 
colitis in mice by inhibiting inflammation and modulating gut 
microbiota. Bai et al. (21) suggested that yam polysaccharides have 
intestinal anti-inflammatory activity. However, the low extractability 
and anti-inflammatory activity of yam polysaccharides limit their use 
as anti-inflammatory ingredients. Physical, chemical, and enzymatic 
methods might improve the extractability and bioactivity of yam 
polysaccharides (22–24), but simple, efficient, and green methods for 
enhancing these features simultaneously have not been discovered. 
Organic acids and enzymes produced by microorganisms not only can 
destroy plant cells and increase polysaccharide extractability but also 
modify polysaccharide structure (such as monosaccharide, molecular 
weight, functional group, glycosidic linkage, chemical bond, and 
spatial conformation) and bioactivity (25, 26).

In the present work, Lactobacillus plantarum M616 was used to 
ferment and modify Chinese yam polysaccharide (CYP), and the 
chemical composition and structural features of the CYPs before and 
after fermentation were analyzed. In addition, the antioxidant and 
anti-inflammatory activities of the CYPs were investigated. This work 
will provide a green and efficient method for improving the bioactivity 
of CYPs through microbial fermentation.

2 Materials and methods

2.1 Materials and microorganisms

Chinese yam (iron yam) was purchased from a local supermarket 
in Zhengzhou (Henan, China), which was provided by Wen County 

(Jiaozuo, Henan Province). L. plantarum M616 was provided by Dr. 
Yaoming Cui (Henan University of Technology, Zhengzhou, China). 
An MRS broth medium used for L. plantarum M616 activation and 
culture was purchased from Beijing Solarbio Science and Technology 
Co., Ltd. (Beijing, China). Ethanol, trichloromethane, 1-butanol, 
dialysis bag, and activated carbon used for the extraction and 
purification of yam polysaccharides were purchased from Beijing 
Solarbio Science and Technology Co., Ltd. (Beijing, China). Glucose, 
bovine serum albumin, gallic acid, potassium bromide, LPS, alicylic 
acid, ABTS, and other reagents used for detecting the chemical 
composition, structural features, and bioactivities of the yam 
polysaccharides were purchased from Beijing Solarbio Science 
&Technology Co., Ltd. (Beijing, China). Standard monosaccharides 
(fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, 
fructose, ribose, galacturonic acid, mannuronic acid, glucuronic acid, 
and mannuronic acid) used for detecting the monosaccharide of the 
yam polysaccharides were purchased from Sigma-Aldrich (Shanghai, 
China). The molecular weight and homogeneity of the yam 
polysaccharides were detected using SEC-MALLS-RI. Enzyme-
linked immunosorbent assay (ELISA) kits used for determining 
superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GSH-Px), malondialdehyde (MDA), nitric oxide (NO), tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 
(IL-6) factors were purchased from Beyotime Biotechnology 
(Shanghai, China).

2.2 Extraction of Chinese yam 
polysaccharides (CYPs)

Chinese yam was peeled, cut into small pieces, and crushed into 
paste with a grinder. One part of the pasted Chinese yam was placed 
in nine volumes (w/v) of deionized water, and the mixture was stirred 
magnetically at room temperature for 8 h. The resulting Chinese yam 
solution was collected and centrifuged at 8000 × g for 10 min for the 
removal of insoluble matter. Activated carbon was added to the 
supernatant with concentration of 1 g/100 mL, decolorized at 150 r/
min overnight at room temperature, and centrifuged at 8000 × g for 
10 min. The supernatant was concentrated to one-fifth at 60°C and 
0.1 MPa and added to three volumes Sevag solution (trichloromethane: 
n-butyl alcohol = 3: 1). The mixture was shaken vigorously and then 
centrifuged at 10,000 × g for 10 min. Four volumes of alcohol were 
added to the supernatant and placed at 4°C overnight for the 
precipitation of the CYPs. Subsequently, the precipitated CYPs were 
re-dissolved in water and rotary evaporated at 60°C and 0.1 MPa. The 
CYP concentrate was de-salted through dialysis (molecular weight 
cut-off was 10.0 kDa) in deionized water for 48 h, and water was 
replaced every 4 h. Finally, a dialytic solution of unfermented CYP 
(CYP-NF) was collected and lyophilized.

Another other part of the pasted Chinese yam was added to nine 
volumes (w/v) of deionized water, peptone (1.0 g/L), yeast extract 
(1.0 g/L), MgSO4 (1.0 g/L), KH2PO4 (1.0 g/L), and K2HPO4 (1.0 g/L) 
and sterilized at 80°C for 60 min. Then, L. plantarum M616 grown to 
the logarithmic phase in the MRS broth medium was inoculated with 
10% (v/v) volume and cultured at 35°C for 168 h. After fermentation, 
the fermentation broth was collected and filtered with eight layers of 
gauze for the removal of large sediments, and the filtrate was 
centrifuged at 10000 × g for 10 min. Then, extraction method for 
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L. plantarum M616-fermented CYP was the same as that used for 
CYP-NF, and the extract was named CYP-LP.

2.3 Chemical composition analysis

Carbohydrate content in CYP-NF and CYP-LP was detected using 
the anthrone-sulfonic acid colorimetric method (27), polyphenol content 
was determined using the Folin–Ciocalteu method (28), and protein 
content was measured using the Coomassie Brilliant Blue method (29).

2.4 Monosaccharide and molecular weight 
detection

The monosaccharide composition, proportion, and molecular 
weight of CYP-NF and CYP-LP were detected by Shanghai Sanshu 
Biotechnology Co., Ltd. (Shanghai, China). The pretreatment and 
detection procedures of CYP-NF and CYP-LP were based on 
previously described methods (30).

2.5 Fourier transform infrared (FT-IR) 
spectroscopy analysis

Approximately 1 mg of freeze-dried CYP-NF or CYP-LP samples 
was mixed with 100 mg of potassium bromide, ground thoroughly, 
and pressed into tablets for detection using a FT-IR spectrometer 
(Nexus 470, Nicolet, USA). Each sample was detected three times and 
scanned through infrared spectroscopy from 500 cm−1 to 4,000 cm−1 
with 1750 scanning points.

2.6 In vitro antioxidant activity of CYP-NF 
and CYP-LP

CYP-NF and CYP-LP were dissolved in deionized water to 
concentrations of 0.5, 1.0, 1.5, 2.0 and 2.5 mg/mL. Then, CYP-NF and 
CYP-LP solutions were filtrated through a 0.22 μm aqueous 
membrane. In vitro antioxidant activity against DPPH, ABTS, 
hydroxyl, and superoxide radicals were detected according to 
previously reported methods (30).

2.7 Toxicity analysis of CYP-NF and CYP-LP

The toxicity of CYP-NF and CYP-LP was detected using previously 
described methods (29). CYP-NF and CYP-LP were dissolved separately 
in Dulbecco’s modified eagle medium (DMEM) to concentrations of 
5.0, 2.5, 1.25, 0.625, and 0.3125 mg/mL and filtrated through a 0.22 μm 
aqueous membrane. Their toxicity was evaluated with a CCK-8 kit on 
the basis of cell viability on RAW 264.7 macrophages.

2.8 Anti-inflammation analysis of CYP-NF 
and CYP-LP

Anti-inflammatory activity of CYP-NF and CYP-LP was detected 
according to previously reported methods (13). RWA 264.7 cells in the 

logarithmic growth phase were regulated to 2 × 105 cell/mL with 
0.25% (w/v) trypsin EDTA solution, and then 500 μL of RAW 264.7 
cells were seeded into 12-well plates, incubated for 24 h, and treated 
with 1 μg/mL LPS for 24 h for the establishment of an inflammatory 
model. CYP-NF and CYP-LP were dissolved separately in DMEMs to 
concentrations of 5.0, 2.5, 1.25, 0.625 and 0.3125 mg/mL. CYP-NF or 
CYP-LP solution (100 μL) was added to each well and incubated for 
24 h. The same amount of DMEM was used as the control. Then, the 
culture supernatant of the RAW 264.7 cells was collected for the 
detection of NO, TNF-α, IL-1β, and IL-6 levels according to the 
manufacturer’s protocols. The collected RAW 264.7 cells were cleaved 
with lyase and centrifuged. SOD, CAT, MDA, and GSH-Px activity 
were detected in the supernatant with ELISA kits.

2.9 Statistical analysis

All data were expressed as mean ± SD after three repeats, and the 
significance of the data was analyzed by one-way analysis of variance 
(ANOVA) performed with the methods reported previously (13).

3 Results and discussion

3.1 Chemical composition analysis

As shown in Table 1, the carbohydrate, protein, and polyphenol 
content in CYP-NF were 71.03% ± 2.75, 8.24% ± 0.19, and 
0.26% ± 0.07%, respectively. After Chinese yam was fermented with 
L. plantarum M616 (CYP-LP), their content changed to 76.28% ± 2.37, 
8.39% ± 0.26, and 0.25% ± 0.09%. Carbohydrate content increased, 
whereas protein and polyphenol content were basically unchanged. 
Similar results were obtained by previous studies, showing that 
microbial fermentation increases carbohydrate content in plant 
polysaccharides. Wang et al. (31) found that carbohydrate content in 
hot-water-extracted Schisandra sphenanthera fruit polysaccharide was 
51.45% ± 1.78%, which increased to 63.22% ± 2.60% after L. plantarum 
CICC 23121 fermentation. Sakr (32) found that the carbohydrate 
content of fructan isolated from Asparagus sprengeri increased from 
90.45% ± 0.28 to 94.11% ± 0.92% after L. plantarum DMS 20174 
fermentation. However, some studied showed different results. Song 
et al. (33) found that L. plantarum CICC 24202 fermentation decreased 
carbohydrate content in Lanzhou lily polysaccharide from 93.56% ± 2.25 
to 91.17% ± 1.93%. Shao et  al. (34) and Tian et  al. (35) found that 
carbohydrate content in Chinese yam and Dendrobium officinale was 
hardly affected by Saccharomyces boulardii and Bacillus sp. DU-106 
fermentation. Carbohydrate content in plant polysaccharides might 
relate to fermentation strains and conditions, and high carbohydrate 
content might endow CYP-LP with enhanced bioactivity.

3.2 Monosaccharide analysis

Monosaccharides may affect bioactivity and functions of 
polysaccharides by influencing their electrification and functional groups 
(36). Table  1 shows that CYP-NF composed rhamnose, arabinose, 
galactose, glucose, and mannose in a molar ratio of 0.493:0.6695:0.9738:
0.7655:12.4365. CYP-LP contained the same monosaccharides in a molar 
ratio of 0.3237:0.3457:0.8278:2.5541:10.4995 after L. plantarum M616 
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fermentation. Additionally, Guo et al. (37) and Li et al. (38) found that 
yam polysaccharides contain uronic acid. However, it was not detected in 
CYP-NF and CYP-LP. Huang et  al. (39) and Wan et  al. (40) found 
Lactobacillus fermentum fermentation only affected the molar ratio of 
polysaccharides isolated from longan pulp and carrot pulp, but their 
monosaccharide types were not influenced. Yang et al. (41) found that 
Lactobacillus casei fermentation did not affect the monosaccharide 
composition of Polygonatum kingianum polysaccharides. These results 
were similar to those in the present work. However, Gao et al. (42) and 
Song et al. (33) found that L. plantarum fermentation decreased the 
monosaccharide types of Momordica charantia L. and Lanzhou lily 
polysaccharides. Meanwhile, Huang et  al. (43) suggested that 
monosaccharide type change in the longan pulp polysaccharides is related 
to L. plantarum fermentation time.

3.3 Molecular weight

Molecular weight may affect the bioactivity of polysaccharides by 
influencing their morphology, size, spatial configuration, absorption, 
and utilization rates (44, 45). As shown in Table 1, the weight-averaged 
and number-averaged molecular weight of CYP-NF were 124.774 and 
18.963 kDa, respectively, and its polydispersity was 6.58. After 
fermentation with L. plantarum M616, the weight-averaged molecular 
weight, number-averaged molecular weight, and polydispersity of 
CYP-LP increased to 376.628 kDa, 21.008 kDa, and 17.928, respectively. 
These results indicated that L. plantarum M616 fermentation increased 
molecular weight and reduced homogeneity of CYP-LP. On the one 
hand, enzymes and organic acids secreted by L. plantarum M616 
hydrolyzed Chinese yam polysaccharides with small molecular weight 
into oligosaccharides or monosaccharides, thus increasing CYP-LP 
molecular weight (46). On the other hand, L. plantarum M616 
fermentation increased the number of hydroxyl groups in Chinese yam 
polysaccharides, then stretching vibration of hydroxyl groups caused 
aggregation of polysaccharide molecules and the increased CYP-LP 
molecular weight (47). Last but not least, the polysaccharide synthase 
secreted by L. plantarum M616 polymerized small molecular weight 

polysaccharides into large molecular weight ones via enzymatic 
polymerization, thus increasing the molecular weight of CYP-LP (48, 
49). Tian et al. (35) found that the molecular weight of Dendrobium 
officinale polysaccharide increased from 4.92 × 105 Da to 5.21 × 105 Da 
after Bacillus sp. DU-106 fermentation. Liang et al. (46) found that the 
molecular weight of Lentinus edodes polysaccharide increased from 
1.16 × 104 Da to 1.87 × 104 Da after Lactobacillus fermentum 21,828 
fermentation. In general, enzymes and organic acids secreted by 
microorganisms might reduce the molecular weight of polysaccharides 
by breaking glycosidic linkages (25). Yang et  al. (41) found that 
Lactobacillus casei fermentation decreased the molecular weight of 
Polygonatum kingianum polysaccharides from 50–650  kDa to 
2–100 kDa. Sakr (32) found that L. plantarum DMS 20174 fermentation 
reduced the molecular weight of Asparagus sprengeri fructan from 
1770 Da to 1,229 Da. Meanwhile, molecular weight is affected by 
fermentation strains and conditions. Yang et al. (50) suggested that the 
molecular weight of Sargassum fusiforme polysaccharides was almost 
unaffected by Lactobacillus fermentation. He et al. (51) and Huang et al. 
(43) verified that the molecular weight of litchi pulp and longan pulp 
polysaccharides decreased and then increased with the extension of 
Lactobacillus fermentation time. Effect of microbial fermentation on the 
molecular weight of polysaccharides might be one of the focuses of 
future research.

3.4 Fourier transform infrared (FT-IR)

The types and amounts of functional groups affect the bioactivity 
of polysaccharides (25, 52), and the structural features of yam 
polysaccharides influenced by L. plantarum M616 fermentation were 
analyzed by FT-IR. As shown in Figure 1, peaks between 3,400 and 
3,200 cm−1 might relate to the intermolecular H-bridge of OH groups 
and OH stretching, and peaks between 3,000 and 2,900 cm−1 might 
relate to CH2 antisymmetric stretching. They were the characteristic 
absorption peaks of polysaccharides (30). Peaks between 1800 and 
1700 cm−1 might relate to COOH groups or C=O stretching from 
acetyl, and peaks between 1,600 and 1,400 cm−1 might relate to CH2 
symmetric ring stretching or to the vibration of CH2 scissors in 

FIGURE 1

FT-IR spectra of Chinese yam polysaccharides before and after 
fermentation by Lactobacillus plantarum M616, and the mean 
spectral is generated from n = 3.

TABLE 1 Chemical composition and structural characteristics of Chinese 
yam polysaccharides before and after fermentation by Lactobacillus 
plantarum M616.

Chemical composition CYP-NF CYP-LP

Carbohydrate contents (%) 71.03 ± 2.75 76.28 ± 2.37

Protein content (%) 8.24 ± 0.19 8.39 ± 0.26

Polyphenol content (%) 0.26 ± 0.07 0.25 ± 0.09

Monosaccharide composition (μg/mL)

Rhamnose 0.493 0.3237

Arabinose 0.6695 0.3457

Galactose 0.9738 0.8278

Glucose 0.7655 2.5541

Mannose 12.4365 10.4995

Molecular weight (kDa)

Weight-average molecular weight (Mw) 124.774 376.628

Number-average molecular weight (Mn) 18.963 21.008

Polydispersity (Mw / Mn) 6.58 17.928
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CYP-NF and CYP-LP (28). Peaks between 1,400 and 1,100 cm−1 might 
relate to OH in-plane deformation, C-O-C antisymmetric stretching 
and C-O stretching (13), and peaks between 900 and 500 cm−1 might 
relate to C-anomeric group stretching and pyran ring stretching (27). 
Figure 1 also shows that CYP-NF and CYP-LP had similar FT-IR 
spectra but different peak height, indicating that they had the same 
types of functional groups and L. plantarum M616 fermentation did 
not influence the functional groups and main structure of the yam 
polysaccharides but affected the amounts of the functional groups.

3.5 In vitro antioxidant activity

Excessive oxygen free radicals can attack and damage 
biomacromolecules in the body, thus inducing inflammation and 
various diseases (53). As shown in Figure 2A, the scavenging effect of 
CYP-NF against DPPH radicals decreased slightly from 83.32 to 
66.11% as concentration increased from 0.5 mg/mL to 2.5 mg/
mL. However, the scavenging effect of CYP-LP against DPPH radicals 

FIGURE 2

In vitro antioxidant activity of CYP-NF and CYP-LP against DPPH (A), ABTS (B), hydroxyl (C) and superoxide (D) radicals. * p < 0.05, ** p < 0.01 as 
compared to CYP-NF.

FIGURE 3

Toxicity analysis of CYP-NF and CYP-LP. * p < 0.05, ** p < 0.01 as 
compared to 100% cell activity.
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FIGURE 4

Effect of CYP-NF and CYP-LP on SOD (A), CAT (B), GSH-Px (C) and MDA (D) activities in LPS-induced RAW 264.7 macrophages. * p < 0.05, ** p < 0.01 
as compared to control group.

was basically unchanged. Figures  2B,C show that the scavenging 
effects of CYP-NF and CYP-LP against ABTS and hydroxyl radicals 
increased as concentrations increased from 0.5 mg/mL to 2.5 mg/
mL. CYP-LP showed higher activity against ABTS radicals but lower 
activity against hydroxyl radicals than CYP-NF. Figure 2D shows that 
the scavenging effect of CYP-NF against superoxide radicals slightly 
increased with concentration, and CYP-LP showed an opposite trend. 
In general, microbial fermentation might increase the extraction rate 
and carbohydrate content, and modify polysaccharide structure (such 
as reducing molecular weight and changing monosaccharide 
composition, and so on), thus improving the antioxidant activity of 
polysaccharides (25, 26). Yu et  al. (54) found that the scavenging 
effects of jackfruit polysaccharide against DPPH and ABTS radicals 
were enhanced after fermentation by L. plantarum FM 17. Yang et al. 
(41) found that the DPPH radical-scavenging activity and total 
reducing power capacity of Polygonatum kingianum polysaccharide 
improved after Lactobacillus casei fermentation. However, in some 
cases, changes in chemical composition and structural features 
(including the decrease of bioactive functional groups and spatial 
structures, and so on) after microbial fermentation may reduce the 

antioxidant activity of polysaccharides (25, 26). Wang et  al. (55) 
verified the scavenging effects of Lvjian okra polysaccharide against 
DPPH, ABTS and hydroxyl radicals were reduced after L. plantarum 
fermentation. Song et al. (33) found that the antioxidant activity of 
Lanzhou lily polysaccharide against hydroxyl radicals was reduced by 
L. plantarum fermentation. Therefore, the effect of L. plantarum M616 
fermentation on the structure and antioxidant activity of yam 
polysaccharides will be further analyzed in our future studies.

3.6 Toxicity analysis

Chinese yam is a medicinal and food-homologous plant (19, 56), 
and yam polysaccharides have good biosafety. As shown in Figure 3, 
cell viability was maintained at 100–105% after the addition of different 
concentrations of CYP-NF and CYP-LP, suggesting their biosafety. As 
biomacromolecules, polysaccharides have good biosafety. Shao et al. 
(57) found that yam peel polysaccharide exerts an effect that promote 
the proliferation of RAW 264.7 cells. Li et al. (58) found that Dioscotea 
opposite polysaccharides have no toxicity on RAW 264.7 macrophages. 
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Meanwhile, the safety of plant polysaccharides modified by microbial 
fermentation has been verified. Wang et al. (55) demonstrated that 
L. plantarum-fermented Lvjian okra polysaccharides have no toxic 
effects on RAW 264.7 macrophages. Tian et al. (35) indicated that 
Bacillus sp. DU-106-fermented Dendrobium officinale polysaccharides 
promote RAW264.7 cell proliferation without exerting cytotoxic effects.

3.7 Anti-inflammatory activity

The persistence of inflammatory factors will damage body tissues, 
thus leading to development of various diseases (1, 59). Figure 4 
shows that CYP-NF and CYP-LP increased SOD, CAT, and GSH-Px 
levels in LPS-induced RAW 264.7 macrophages and reduced MDA 
formation. CYP-LP had a higher effect than CYP-NF. Meanwhile, 
Figure 5 shows similar trend. CYP-NF and CYP-LP reduced the levels 
of TNF-α, IL-1β, IL-6, and NO in LPS-induced RAW 264.7 
macrophages, and CYP-LP had more enhancing effects than 
CYP-NF. Although L. plantarum M616 fermentation had a different 
effect on the in  vitro antioxidant activity of CYP-LP, the lower 
homogeneity of CYP-LP indicated the presence of fractions with 

different molecular weight, which might have enhanced anti-
inflammatory activity (21). Meanwhile, change in monosaccharide 
composition (such as galactose) may afford CYP-LP enhanced anti-
inflammatory activity (36). Improvement in the anti-inflammatory 
activities of plant polysaccharides through microbial fermentation 
has been verified. Tang et al. (60) suggested that Limosilactobacillus 
reuteri CCFM8631 fermentation enhances Dendrobium officinale 
polysaccharides to reduce NO and IL-6 secretion. Zhang et al. (61) 
found that L. plantarum NCU116 fermentation improved Asparagus 
officinalis polysaccharide to inhibit TNF-α and IL-1β expression, and 
reinforced antioxidant systems (T-AOC, SOD, CAT, and MDA) in 
mice with liver injuries. Additionally, Li et al. (62) demonstrated that 
Lactobacillus fermentation enhanced the alleviating effect of Nostoc 
commune Vauch. polysaccharides in cadmium-injured mice by 
increasing the activity of antioxidant enzymes (SOD, GSH, and 
GSH-Px) and inhibiting cytokines levels (IL-6, IL-1β, TNF-α, and 
IL-18). However, Chen et al. (63) reported that yeast fermentation 
had little effect on the anti-inflammatory activity of Dendrobium 
officinal polysaccharides. Meanwhile, microbial fermentation might 
decrease the anti-inflammatory activity of polysaccharides. Wang 
et al. (55) found that L. plantarum P158 fermentation decreased the 

FIGURE 5

Effect of CYP-NF and CYP-LP on TNF-α (A), IL-1β (B), IL-6 (C) and NO (D) activities in LPS-induced RAW 264.7 macrophages. * p < 0.05, ** p < 0.01 as 
compared to control group.
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immunomodulatory ability of Lvjian okra polysaccharide to 
stimulated the secretion of NO and IL-6.

4 Conclusion

Carbohydrate content increased from 71.03% ± 2.75% 
(CYP-NF) to 76.28% ± 2.37% (CYP-LP) after L. plantarum M616 
fermentation. Meanwhile, CYP-LP had higher molecular weight and 
changed molar ratio compared to CYP-NF. However, L. plantarum 
M616 fermentation endowed CYP-LP with different antioxidant 
activities in vitro, and CYP-LP showed better anti-inflammatory 
activity than CYP-NF. Overall, the present study not only offers a 
good reference for the green and efficient modification of plant 
polysaccharides through microbial fermentation but also offers an 
excellent strategy for producing plant-based functional beverages. 
Unfortunately, the effects of L. plantarum M616 fermentation on the 
physicochemical properties (including viscosity, water holding 
capacity, suspension and thickening abilities) of CYP-LP were not 
analyzed. These effects will be the focus of future research.
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