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Background: Recent research has identified the Low-Carbohydrate Diet (LCD) 
score as a novel biomarker, with studies showing that LCDs can reduce carbon 
dioxide retention, potentially improving lung function. While the link between 
the LCD score and chronic obstructive pulmonary disease (COPD) has been 
explored, its relevance in the US population remains uncertain. This study aims 
to explore the association between the LCD score and the likelihood of COPD 
prevalence in this population.

Methods: Data from 16,030 participants in the National Health and Nutrition 
Examination Survey (NHANES) collected between 2007 and 2023 were analyzed 
to examine the relationship between LCD score and COPD. Propensity score 
matching (PSM) was employed to reduce baseline bias. Weighted multivariable 
logistic regression models were applied, and restricted cubic spline (RCS) 
regression was used to explore possible nonlinear relationships. Subgroup 
analyses were performed to evaluate the robustness of the results. Additionally, 
we  employed eight machine learning methods—Boost Tree, Decision Tree, 
Logistic Regression, MLP, Naive Bayes, KNN, Random Forest, and SVM RBF—to 
build predictive models and evaluate their performance. Based on the best-
performing model, we further examined variable importance and model accuracy.

Results: Upon controlling for variables, the LCD score demonstrated a strong 
correlation with the odds of COPD prevalence. In compared to the lowest 
quartile, the adjusted odds ratios (ORs) for the high quartile were 0.77 (95% CI: 
0.63, 0.95), 0.74 (95% CI: 0.59, 0.93), and 0.61 (95% CI: 0.48, 0.78). RCS analysis 
demonstrated a linear inverse relationship between the LCD score and the odds 
of COPD prevalence. Furthermore, the random forest model exhibited robust 
predictive efficacy, with an area under the curve (AUC) of 71.6%.

Conclusion: Our study of American adults indicates that adherence to the LCD 
may be linked to lower odds of COPD prevalence. These findings underscore 
the important role of the LCD score as a tool for enhancing COPD prevention 
efforts within the general population. Nonetheless, additional prospective 
cohort studies are required to assess and validate these results.
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1 Introduction

Chronic obstructive pulmonary disease (COPD) is a common 
long-term respiratory condition characterized by persistent airflow 
limitation, typically resulting from ongoing inflammation of the 
airways and lung tissue (1, 2). COPD has emerged as a significant 
factor in global morbidity and mortality rates, exerting considerable 
impacts on public health and economic systems (3). Based on the 
global burden of disease research, there are currently over 200 million 
COPD patients worldwide, a figure projected to continue rising (4). 
While smoking and long-term exposure to harmful gases are 
recognized as the primary risk factors (5), a notable proportion of 
COPD patients are non-smokers (6). Research indicates that 
approximately half of all COPD cases are associated with non-tobacco 
factors (7). This observation has prompted researchers to investigate 
other potential contributors to the onset and evolution of the disease, 
particularly the role of dietary imbalance (8–10).

Low-carbohydrate diets (LCD), which reduce carbohydrate intake 
while moderately increasing the proportion of proteins and fats, have 
gained widespread attention in recent years (11). The differences in 
respiratory quotient (RQ) for various nutrients indicate that long-term 
inappropriate nutritional intake may adversely affect lung health (12, 
13). Carbohydrates, as a major energy source for the body (14), 
produce higher respiratory quotients and carbon dioxide (CO2) 
during metabolism, thereby increasing the burden on the respiratory 
system (15). Studies have shown that excessive carbohydrate intake is 
closely related to respiratory health, particularly in individuals with 
underlying conditions or those at high risk. Reducing carbohydrate 
intake can effectively reduce CO2 production, thereby alleviating 
respiratory stress (16, 17). Moreover, low-carbohydrate, high-fat diets 
are considered beneficial for alleviating CO2 retention in the lungs of 
COPD patients, improving nutritional status, enhancing exercise 
capacity, and increasing lung function (18, 19). Therefore, an 
evaluation system for low-carbohydrate diets, by integrating these 
nutritional components, provides a novel perspective and helps to 
deepen our understanding of the potential impact of nutritional 
regulation on the odds of COPD prevalence.

Chronic illnesses, such as diabetes, metabolic syndrome, coronary 
artery disease, and cognitive decline, are significantly correlated with the 
LCD score (20–23). Although previous studies have indicated that 
low-carbohydrate diets may influence the odds of developing COPD 
(24), research exploring the relationship between the LCD score and 
COPD remains insufficient. Current research is constrained by restricted 
sample sizes and a focus on specific geographic regions; furthermore, the 
potential non-linear relationship between the LCD score and the 
likelihood of COPD prevalence has not yet been examined. In light of 
these limitations, research utilizes data from the National Health and 
Nutrition Examination Survey (NHANES) spanning 2007 to 2023 to 
perform a cross-sectional analysis investigating the potential association 
between the LCD score and the odds of COPD prevalence.

2 Methods

2.1 Study cohort and data collection

The NHANES, administered biennially by the US Centers for 
Disease Control and Prevention (CDC), evaluates the health and 

nutritional status of the US population. Utilizing a multi-stage 
probability sampling method, NHANES chooses roughly 5,000 
participants each year from varied places across the country, 
guaranteeing representativeness (25, 26). All subjects granted 
informed consent before their enrollment in the study. The survey 
collects extensive data, including demographic information, 
questionnaire responses, medical examinations, laboratory results, 
and dietary intake data, to uphold data integrity and ethical standards. 
Comprehensive information regarding the survey’s design and 
analytical methodology is available on the CDC website.

The current analysis utilized cross-sectional data from 78,081 
participants across 7.6 consecutive NHANES cycles (2007–2023). 
We applied specific exclusion criteria: (1) participants without COPD 
diagnosis data (n = 29,286); (2) individuals with missing covariate 
information, including education level, marital status, poverty-to-
income ratio (PIR), body mass index (BMI), waist circumference, 
standing height, physical activity, smoking status, hypertension, 
congestive heart failure, coronary heart disease, heart attack, stroke, 
magnesium intake, calcium intake, vitamin D intake, and intake of fat, 
protein, carbohydrates, and energy (n = 24,233); and (3) those younger 
than 40 years (n = 8,532). After implementing these criteria, 16,030 
participants remained eligible for further analysis. Figure 1 presents a 
comprehensive flowchart of the participant recruitment procedure.

2.2 Collection of data

This study identified several confounding variables based on 
existing research and clinical evaluations, including age, sex, race/
ethnicity, education level, marital status, poverty-to-income ratio 
(PIR), body mass index (BMI), waist circumference, waist-to-height 
ratio (WHtR), physical activity levels, smoking habits, hypertension, 
diabetes mellitus (DM), cardiovascular disease (CVD), and average 
dietary intake of magnesium, calcium, and vitamin D. The following 
groups were used to categorize self-reported race/ethnicity: Mexican 
American, other Hispanic, non-Hispanic White, non-Hispanic Black, 
and other race. There were two categories for marital status: married 
and unmarried. Educational attainment was categorized into three 
levels: less than high school, high school graduate, and higher than 
high school. Economic status was assessed using the PIR, and BMI 
was computed from weight measured against height. Waist 
circumference, height, and weight were measured following the 
guidelines outlined in the Anthropometry Procedures Manual, which 
incorporates rigorous quality assurance (QA) and quality control 
(QC) procedures to minimize measurement errors. Smoking status 
was categorized into non-smokers (individuals who had smoked fewer 
than 100 cigarettes in their lifetime) and smokers (individuals who 
had smoked more than 100 cigarettes and were currently smoking). 
Physical activity was assessed using the first question of the Global 
physical activity questionnaire (GPAQ), which asks: “Does your work 
involve vigorous-intensity activity that causes large increases in 
breathing or heart rate, such as carrying or lifting heavy loads, digging, 
or construction work, for at least 10 min continuously?” Individuals 
participating in a minimum of 10 min of such exercise were designated 
as active, whereas those engaging in less were classed as inactive. The 
history of CVD was derived from self-reported diagnoses of congestive 
heart failure, coronary heart disease, heart disease, or stroke. 
Hypertension and diabetes were self-reported conditions, with 
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diabetes defined by any of the following criteria: an HbA1c level 
surpassing 6.5%, a diagnosis from a healthcare professional, fasting 
glucose levels of 7.0 mmol/L or above, random or 2-h oral glucose 
tolerance test (OGTT) glucose levels of 11.1 mmol/L or more, or the 
administration of diabetes medications or insulin. For comprehensive 
details regarding these variables, please refer to the NHANES website.

2.3 Dietary intake evaluation

Two 24-h dietary recalls’ average results guided the evaluation of 
food intake. The first interview took place at a mobile examination 
center (MEC), then 3 to 10 days later the second one over the phone. 
The Food and Nutrition Database for Dietary Studies (FNDDS) was 
employed to calculate the daily total energy and nutrient intake based 
on the consumption of foods and beverages reported within the 24 h 
preceding each interview (27, 28).

2.4 Low-carbohydrate diet score

By calculating the average total energy and nutrient intake from 
both interviews, we categorized participants’ carbohydrate, protein, 
and fat energy percentages into 11 tiers (Supplementary Table 1). The 
LCD score was derived from a comprehensive assessment of these 
three macronutrients. Initially, the consumption of each gram of fat, 
protein, and carbs was converted to kilocalories with the corresponding 
conversion factors of 1:9 for fat and 1:4 for both protein and 
carbohydrates. Subsequently, we calculated the proportion of each 
macronutrient in relation to total energy consumption. The lowest 

intake % for carbohydrates scored 10, while the maximum scored 0; in 
contrast, the highest intake percentage for fat and protein scored 10, 
and the lowest scored 0 (11). Ultimately, the LCD score was the 
aggregate of the values for the three macronutrients, ranging from 0 to 
30, where elevated scores signify reduced carbohydrate consumption 
and increased fat and protein intake. In this study, LCD scores were 
divided into four groups using the 25th, 50th, and 75th percentiles.

2.5 Chronic obstructive pulmonary disease

To thoroughly assess our target population, we utilized two distinct 
diagnostic criteria based on the NHANES database (29, 30). First, 
we assessed medical history by asking participants, “Has a doctor or 
other health professional ever told you or the sample person (SP) that 
you/he/she had COPD?” Individuals who answered “yes” were 
categorized as having COPD, while those who responded “no” were 
categorized as not having the condition. Second, we  performed 
pulmonary function tests, necessitating participants to have an FEV1/
FVC ratio below 70% after inhaling a bronchodilator. Participants 
fulfilling this condition were classified as having COPD, whereas those 
who did not were classified as not having the disease. The reliability of 
these diagnostic criteria has been validated in previous studies, 
confirming the robustness of our inclusion standards.

2.6 Statistical analysis

Propensity score matching (PSM) was conducted utilizing a 1:1 
nearest-neighbor approach to reduce bias and account for potential 

FIGURE 1

Scheme of the study’s objectives and the participant selection process. Our objective is to assess the relationship between LCD score and adults with 
COPD. LCD, Low-Carbohydrate Diet; COPD, Chronic Obstructive Pulmonary Disease; NHANES, National Health and Nutrition Examination Survey. 
Created with BioRender.com.
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confounding baseline variables between the COPD and non-COPD 
cohorts. Matching variables included age, sex, race, education level, 
PIR, BMI, WHtR, smoking status, hypertension, diabetes, congestive 
heart failure, coronary heart disease, heart disease, stroke, and 
magnesium intake. After matching, if the p-values for intergroup 
differences exceeded 0.05, it suggested no statistically significant 
baseline differences, indicating that the matched groups achieved 
reasonable balance in baseline characteristics (31–33). In accordance 
with the NHANES analytic standards (accessed on March 4, 2024), all 
analyses included sample weights, clustering, and stratification to 
assure national representativeness of the US civilian 
non-institutionalized population with COPD and to get precise 
variance estimation (34, 35). For data with a normal distribution, 
continuous variables are expressed as mean ± standard deviation 
(Mean ± SD), whereas for data that do not follow a normal 
distribution, they are presented as median (IQR). Categorical variables 
are given as counts and percentages [n (%)]. Comparisons across 
groups were conducted utilizing weighted Student’s t-tests, Mann–
Whitney U tests, and Chi-square tests, contingent upon the variable 
type and distribution.

Multivariable logistic regression models were utilized to evaluate 
the relationship between the LCD score and the likelihood of COPD 
prevalence, comprising one unadjusted (crude) model and two more 
adjusted models (Model I and Model II). Model I was adjusted for 
demographic variables such as age, sex, race/ethnicity, education level, 
marital status, and PIR. Model II was further adjusted for additional 
potential confounders. To explore the possible non-linear association 
between the LCD score and COPD, we utilized restricted cubic spline 
(RCS) regression with knots placed at the 5th, 35th, 65th, and 95th 
percentiles of the LCD score distribution. Additionally, subgroup 
analyses were conducted to examine the correlation between the LCD 
score and the odds of COPD prevalence across different strata, 
including age, sex, race/ethnicity, marital status, education level, PIR, 
smoking status, diabetes, hypertension, congestive heart failure, 
coronary heart disease, heart disease, stroke, physical activity, and 
BMI. Ultimately, we analyzed the interplay between the LCD score 
and the stratification variables by logistic regression to investigate the 
correlation between the LCD score and the odds of COPD prevalence 
within each subgroup.

Eight machine learning algorithms—Boost Tree, Decision Tree, 
Logistic Regression, Multilayer Perceptron (MLP), Naive Bayes, 
K-Nearest Neighbors, Random Forest, and Support Vector Machine 
with a Radial Basis Function (SVM RBF)—were utilized to generate 
receiver operating characteristic (ROC) curves, calibration plots, and 
decision curve analyses (DCA) (36, 37). These tools were used to 
assess model sensitivity, specificity, predictive accuracy, and decision-
making value (38). To guarantee a rigorous performance assessment, 
the data was randomly divided between training and testing sets, 
utilizing five-fold cross-validation to optimize hyperparameters (39). 
This process was repeated 500 times with varying random seeds to 
capture performance stability across different patient subgroups. 
Model evaluation was conducted using accuracy, Brier class, and area 
under the ROC curve (AUC). Accuracy reflects the overall correctness 
of predictions, with values closer to 1 indicating better performance. 
The Brier score quantifies the disparity between anticipated probability 
and actual results, with lower scores signifying greater predictive 
accuracy (40). AUC quantifies the model’s ability to differentiate 
between positive and negative cases at varying thresholds, with higher 

values reflecting improved discriminatory power. AUC served as the 
primary metric for selecting the best-performing machine learning 
model alongside other performance indicators. For the top-performing 
model, the importance of various exposure factors and the model’s 
precision were further investigated. Statistical analyses were conducted 
using R software version 4.3.3, and a two-sided p-value of less than 
0.05 was considered statistically significant.

3 Results

3.1 Characteristics of the study participants

Included in the analysis were 16,030 participants, with a weighted 
average age of 56.83 ± 10.94 years. The overall prevalence of COPD 
among participants was 11.9%, with a weighted mean LCD score of 
11.63 ± 7.14. Following the execution of 1:1 PSM, the baseline 
characteristics of the groups were assessed utilizing standardized 
mean differences (SMD). Post-matching, all variables showed SMD 
values close to or below 0.1, meeting the statistical criteria for balance 
and indicating an optimal matching effect, as shown in 
Supplementary Figure 1. Furthermore, visual assessments through 
histograms and density plots demonstrated that the post-matching 
distributions between the groups were more similar, further 
confirming the balance of baseline characteristics, as presented in 
Supplementary Figure  2. Prior to matching, COPD patients were 
generally older, predominantly male, mostly non-Hispanic White, and 
had a higher smoking rate, as detailed in Table  1 (all p  < 0.001). 
Additionally, the COPD group had lower education levels, a lower 
family income-to-poverty ratio, and lower BMI and WHtR, also 
shown in Table 1 (all p < 0.05). Following PSM, these differences were 
substantially reduced, and no significant differences were found 
between the COPD and non-COPD groups in terms of demographic 
characteristics, health behaviors, physical health indicators, and 
chronic diseases (all p > 0.05). Table 2 highlights that the COPD group 
had significantly lower LCD scores than the non-COPD group after 
matching (10.96 ± 7.02 vs. 12.09 ± 7.05, p < 0.001). Further analysis 
indicated that the COPD cohort had reduced consumption of fat, 
protein, and carbs relative to the non-COPD cohort. 
Supplementary Table 2 presents baseline characteristics of participants 
grouped by LCD score quartiles after matching.

3.2 Association between LCD score and 
COPD

A weighted multivariate logistic regression was performed to 
analyze the relationship between the LCD score and COPD, as 
illustrated in Table 3. The analysis indicated that higher LCD scores 
were significantly associated with lower odds of COPD prevalence. 
Subsequent to the adjustment for possible confounders, the adjusted 
ORs with 95% CIs for COPD across the higher quartiles of the LCD 
score, compared to the lowest quartile, were 0.77 (0.63, 0.95), 0.74 
(0.59, 0.93), and 0.61 (0.48, 0.78), respectively. Additionally, an RCS 
curve (Figure 2) revealed a linear inverse association between the LCD 
score and the odds of COPD prevalence, with a notable reduction in 
the odds of COPD prevalence once the LCD score exceeded 6.0. A 
stratified a9nalysis further assessed the consistency of this association 
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TABLE 1 Weighted baseline characteristics of study participants stratified by COPD status, pre-PSM.

Characteristic Overall (n = 16,030) Non-COPD (n = 14,125) COPD (n = 1,905) p-value

Age (year) 56.83 ± (10.94) 56.32 ± (10.92) 60.44 ± (10.41) <0.001

Sex (%) 0.002

  Male 7,729 (47%) 6,673 (47%) 1,056 (53%)

  Female 8,301 (53%) 7,452 (53%) 849 (47%)

Race/Ethnicity (%) <0.001

  Mexican American 1,941 (5.6%) 1,834 (6.1%) 107 (1.9%)

  Other Hispanic 1,593 (4.5%) 1,482 (4.9%) 111 (1.9%)

  Non-Hispanic White 7,410 (74%) 6,187 (73%) 1,223 (84%)

  Non-Hispanic Black 3,528 (9.8%) 3,165 (10%) 363 (7.0%)

  Other Race 1,558 (6.0%) 1,457 (6.1%) 101 (5.0%)

Education level (%) <0.001

   < High school 3,303 (13%) 2,838 (12%) 465 (17%)

  High school 3,621 (23%) 3,079 (22%) 542 (29%)

   > High school 9,106 (64%) 8,208 (66%) 898 (54%)

Marital status (%) 0.749

  Unmarried 1,938 (10%) 1,707 (10%) 231 (10%)

  Married 14,092 (90%) 12,418 (90%) 1,674 (90%)

PIR 3.33 ± (1.59) 3.37 ± (1.58) 3.06 ± (1.63) <0.001

BMI (kg/m2) 29.42 ± (6.50) 29.56 ± (6.51) 28.45 ± (6.39) <0.001

Waist circumference (cm) 101.53 ± (15.59) 101.54 ± (15.52) 101.44 ± (16.05) 0.475

WHtR 0.60 ± (0.09) 0.60 ± (0.09) 0.60 ± (0.09) 0.027

Physical activity (%) 0.081

  Inactive 12,170 (75%) 10,677 (75%) 1,493 (78%)

  Active 3,860 (25%) 3,448 (25%) 412 (22%)

Smoking status (%) <0.001

  No 8,502 (53%) 7,995 (57%) 507 (26%)

  Yes 7,528 (47%) 6,130 (43%) 1,398 (74%)

Hypertension (%) <0.001

  No 8,708 (59%) 7,830 (61%) 878 (52%)

  Yes 7,322 (41%) 6,295 (39%) 1,027 (48%)

Diabetes (%) <0.001

  No 13,160 (86%) 11,668 (87%) 1,492 (83%)

  Yes 2,870 (14%) 2,457 (13%) 413 (17%)

Congestive heart failure (%) <0.001

  No 15,458 (97%) 13,729 (98%) 1,729 (93%)

  Yes 572 (2.5%) 396 (1.9%) 176 (6.9%)

Coronary heart disease (%) <0.001

  No 15,204 (96%) 13,519 (96%) 1,685 (90%)

  Yes 826 (4.4%) 606 (3.7%) 220 (9.7%)

Heart disease (%) <0.001

  No 15,248 (96%) 13,549 (97%) 1,699 (92%)

  Yes 782 (3.8%) 576 (3.2%) 206 (8.4%)

Stroke (%) <0.001

  No 15,313 (97%) 13,544 (97%) 1,769 (94%)

  Yes 717 (3.3%) 581 (3.0%) 136 (6.1%)

(Continued)
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across various subgroups. As illustrated in Figure  3, none of the 
stratification variables—including age (40–65 years, ≥65 years), sex 
(male, female), race/ethnicity (Mexican American, other Hispanic, 
non-Hispanic White, non-Hispanic Black, other races), marital status 
(unmarried, married), educational level (< high school, high school, 
> high school), PIR (<1.3, 1.3–3.5, ≥3.5), smoking status (non-smoker, 
smoker), diabetes (no, yes), hypertension (no, yes), congestive heart 
failure (no, yes), coronary heart disease (no, yes), heart disease (no, 
yes), stroke (no, yes), physical activity (inactive, active), and BMI 
(normal weight, overweight, obese) (41)—significantly modified the 
association between the LCD score and the odds of COPD prevalence 
(P for interaction >0.05).

3.3 Machine learning model performance 
and validation

Machine learning represents a sophisticated approach to pattern 
recognition, allowing machines to draw conclusions by processing 
extensive datasets (42). The predicted efficacy of diverse machine 
learning models was evaluated using metrics like accuracy, Brier score, 
and AUC. The random forest model attained the maximum accuracy, 
the lowest Brier score, and an AUC value of 0.713, positioning it 
among the top three models (Figure 4A). Moreover, it demonstrated 
superior performance on the ROC and DCA curves compared to 
others, indicating both strong predictive performance and clinical 
relevance (Figures  4B,D). The calibration curve was close to the 
diagonal line, suggesting the model is well-calibrated and does not 
exhibit significant overfitting (Figure  4C). Thus, based on these 
performance evaluation metrics, the random forest model displayed 
the best, nearly perfect predictive capability.

After the random forest model was selected, the data were 
partitioned into training and validation sets, with 70% allocated to the 
training set and 30% to the validation set. The training set was used to 
analyze independent risk factors, perform importance ranking, and 
construct a regression equation. Internal validation was performed 
using the original dataset as the test set, with the ROC curve 
demonstrating an area under the curve (AUC) of 0.716, indicating 
good discrimination and predictive ability (Figure 5A). Among the 
variable importance rankings, the LCD score made a significant 
contribution to the predictive model (Figure 5B). To further evaluate 
model performance and convergence during training, the OOB 
classification error rate curve was plotted. The curve showed a gradual 
decrease in error rate as the number of decision trees increased, 

eventually stabilizing, indicating that the model reached a relatively 
stable state (Figure 5C).

4 Discussion

In a study involving 16,030 NHANES participants, we applied 
PSM to minimize group differences by matching participants with 
similar key characteristics, ensuring balanced baseline features 
between COPD and non-COPD groups. We found that the average 
LCD score of COPD patients was significantly lower than that of 
non-COPD patients, further supporting the linear negative correlation 
between the LCD score and COPD, which is not influenced by various 
confounding factors. Subsequent subgroup analyses confirmed that 
this correlation remained stable across different groups. Utilizing 
community data, we collected information through interviews and 
employed eight machine learning methods (including BT, DT, LR, 
MLP, NB, KNN, RF, and SVM-RBF) to construct predictive models. 
After conducting discrimination, fitting, and clinical efficacy 
assessments, we determined that the random forest model is the most 
efficacious for assessing the correlation between the LCD score and 
the odds of COPD prevalence, demonstrating strong predictive 
capability. Our findings underscore the significance of low 
carbohydrate intake in reducing the odds of COPD prevalence.

Current data underscores the vital importance of dietary nutrition 
in the onset and advancement of respiratory illnesses. Consequently, 
a growing body of research has started exploring how dietary patterns 
and nutritional factors influence the prevention and treatment of 
COPD. A meta-analysis conducted by Zheng PF et al. (43) indicates 
that unhealthy dietary patterns, particularly high intakes of red meat, 
processed meats, refined grains, sweets, desserts, and fried potatoes, 
correlate with a heightened risk of developing COPD. Such high-
carbohydrate diets may lead to excessive carbon dioxide production, 
thereby increasing the respiratory burden (44–47). A three-week 
controlled trial involving 60 COPD patients revealed that the 
low-carbohydrate group exhibited a modest yet statistically significant 
increase in forced expiratory volume in 1 s (FEV1) when compared 
with the high-carbohydrate group. Additionally, Ricciardolo FL et al. 
(48) found that the high concentrations of nitrates, nitrites, and 
nitrosamines in cured and processed meats can generate reactive 
nitrogen species in the body, further exacerbating airway and lung 
inflammation, leading to DNA damage and mitochondrial respiratory 
inhibition, which may contribute to the gradual deterioration of lung 
function. Clinical studies by Walter RE et al. (49) and Cazzola M et al. 

Characteristic Overall (n = 16,030) Non-COPD (n = 14,125) COPD (n = 1,905) p-value

Magnesium intake (mg) 306.18 ± (127.34) 307.24 ± (126.51) 298.61 ± (132.87) 0.010

Calcium intake (mg) 939.88 ± (473.15) 940.61 ± (468.44) 934.65 ± (505.47) 0.187

Vitamin D intake (mcg) 4.77 ± (4.61) 4.75 ± (4.58) 4.90 ± (4.85) 0.498

Fat intake score 4.99 ± (3.92) 5.04 ± (3.92) 4.68 ± (3.94) 0.005

Protein intake score 2.72 ± (3.13) 2.78 ± (3.15) 2.36 ± (3.02) <0.001

Carbohydrate intake score 3.91 ± (3.12) 3.92 ± (3.12) 3.91 ± (3.17) 0.699

LCD score 11.63 ± (7.14) 11.73 ± (7.15) 10.95 ± (7.01) 0.003

Mean ± SD for continuous variables: p values were calculated using weighted Student’s t-tests. For categorical variables, n (%), p values were calculated using weighted Chi-square tests. PIR, 
poverty-to-income ratio; BMI, body mass index; WHtR, waist-to-height ratio; LCD score, low-carbohydrate-diet score; COPD, chronic obstructive pulmonary disease.

TABLE 1 (Continued)
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TABLE 2 Weighted baseline characteristics of study participants stratified by COPD status, post-PSM.

Characteristic Overall(n = 3,764) Non-COPD(n = 1,882) COPD(n = 1,882) p-value

Age (year) 60.23 ± (10.85) 60.12 ± (11.29) 60.35 ± (10.38) 0.595

Sex (%) 0.582

  Male 2,104 (53%) 1,067 (54%) 1,037 (52%)

  Female 1,660 (47%) 815 (46%) 845 (48%)

Race/Ethnicity (%) 0.511

  Mexican American 220 (2.1%) 113 (2.3%) 107 (2.0%)

  Other Hispanic 211 (2.0%) 100 (2.2%) 111 (1.9%)

  Non-Hispanic White 2,355 (84%) 1,155 (83%) 1,200 (84%)

  Non-Hispanic Black 690 (6.8%) 327 (6.6%) 363 (7.0%)

  Other Race 288 (5.5%) 187 (6.0%) 101 (5.0%)

Education level (%) 0.236

   < High school 894 (16%) 438 (16%) 456 (17%)

  High school 1,051 (28%) 520 (26%) 531 (29%)

   > High school 1,819 (56%) 924 (58%) 895 (55%)

Marital status (%) 0.975

  Unmarried 3,329 (90%) 1,674 (90%) 1,655 (90%)

  Married 435 (10%) 208 (10%) 227 (10%)

PIR 3.08 ± (1.63) 3.08 ± (1.62) 3.07 ± (1.63) 0.919

BMI (kg/m2) 28.55 ± (6.13) 28.65 ± (5.86) 28.45 ± (6.39) 0.121

Waist circumference (cm) 101.42 ± (15.48) 101.42 ± (14.87) 101.43 ± (16.07) 0.581

WHtR 0.60 ± (0.09) 0.60 ± (0.09) 0.60 ± (0.09) 0.376

Physical activity (%) 0.520

  Inactive 2,959 (78%) 1,486 (79%) 1,473 (78%)

  Active 805 (22%) 396 (21%) 409 (22%)

Smoking status (%) 0.402

  No 1,008 (27%) 501 (28%) 507 (27%)

  Yes 2,756 (73%) 1,381 (72%) 1,375 (73%)

Hypertension (%) 0.752

  No 1,769 (52%) 893 (53%) 876 (52%)

  Yes 1,995 (48%) 989 (47%) 1,006 (48%)

Diabetes (%) 0.617

  No 2,952 (83%) 1,475 (84%) 1,477 (83%)

  Yes 812 (17%) 407 (16%) 405 (17%)

Congestive heart failure (%) 0.587

  No 3,461 (94%) 1,734 (94%) 1,727 (94%)

  Yes 303 (5.8%) 148 (5.6%) 155 (6.1%)

Coronary heart disease (%) 0.492

  No 3,376 (91%) 1,696 (92%) 1,680 (91%)

  Yes 388 (8.8%) 186 (8.5%) 202 (9.2%)

Heart disease (%) 0.757

  No 3,399 (92%) 1,704 (93%) 1,695 (92%)

  Yes 365 (7.6%) 178 (7.4%) 187 (7.8%)

Stroke (%) 0.706

  No 3,497 (94%) 1,745 (95%) 1,752 (94%)

  Yes 267 (5.7%) 137 (5.5%) 130 (5.8%)

Magnesium intake (mg) 298.41 ± (128.27) 298.00 ± (123.18) 298.82 ± (133.24) 0.695

Calcium intake (mg) 934.73 ± (514.88) 935.15 ± (524.25) 934.31 ± (505.40) 0.990

(Continued)
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FIGURE 2

Results of the RCS analysis, adjusted for age, sex, race/ethnicity, educational level, marital status, PIR, BMI, waist circumference, WHtR, physical 
activity, smoking status, hypertension, diabetes, congestive heart failure, coronary heart disease, heart disease, stroke, magnesium intake, calcium 
intake, vitamin D intake.

TABLE 3 Weighted logistic regression analysis of the association between LCD score and COPD.

Crude model OR (95%CI) 
p-value

Model 1 OR (95%CI) p-
value

Model 2 OR (95%CI) p-
value

LCD score 0.98 (0.97, 0.99) <0.001 0.98 (0.97, 0.99) <0.001 0.98 (0.96, 0.99) <0.001

LCD score quartile

Low Ref. Ref. Ref.

Lower Middle 0.78 (0.63, 0.96) 0.020 0.78 (0.63, 0.96) 0.018 0.77 (0.63, 0.95) 0.015

Upper Middle 0.75 (0.59, 0.94) 0.012 0.74 (0.59, 0.93) 0.009 0.74 (0.59, 0.93) 0.010

High 0.63 (0.50, 0.80) <0.001 0.63 (0.50, 0.79) <0.001 0.61 (0.48, 0.78) <0.001

P for trend <0.001 <0.001 <0.001

Data are presented as OR (95% CI). Crude model: Did not adjust for any potential confounders; Model 1: Adjusted for age, sex, race/ethnicity, educational level, marital status, PIR; Model 2: Adjusted 
for age, sex, race/ethnicity, PIR, marital status, educational level, BMI, waist circumference, WHtR, physical activity, smoking status, hypertension, diabetes, congestive heart failure, coronary heart 
disease, heart disease, stroke, magnesium intake, calcium intake, vitamin D intake; Quantiles: Low (1st quantile), Lower Middle (2nd quantile), Upper Middle (3rd quantile), High (4th quantile).

Characteristic Overall(n = 3,764) Non-COPD(n = 1,882) COPD(n = 1,882) p-value

Vitamin D intake (mcg) 4.93 ± (5.26) 4.97 ± (5.65) 4.88 ± (4.84) 0.631

Fat intake score 4.96 ± (3.91) 5.23 ± (3.87) 4.68 ± (3.94) 0.002

Protein intake score 2.55 ± (3.10) 2.73 ± (3.17) 2.37 ± (3.02) 0.010

Carbohydrate intake score 4.02 ± (3.16) 4.13 ± (3.14) 3.92 ± (3.18) 0.045

LCD score 11.53 ± (7.06) 12.09 ± (7.05) 10.96 ± (7.02) <0.001

Mean ± SD for continuous variables: p values were calculated using weighted Student’s t-tests. For categorical variables, n (%), p values were calculated using weighted Chi-square tests. PIR, 
poverty-to-income ratio; BMI, body mass index; WHtR, waist-to-height ratio; LCD score, low-carbohydrate-diet score; COPD, chronic obstructive pulmonary disease.

TABLE 2 (Continued)
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FIGURE 3

Subgroup analysis of the association between LCD score and COPD, stratified by age (40–65 years, ≥65 years), sex (male, female), race/ethnicity (Mexican 
American, other Hispanic, non-Hispanic White, non-Hispanic Black, other races), marital status (unmarried, married), educational level (< high school, high 
school, > high school), PIR (<1.3, 1.3–3.5, ≥3.5), smoking status (non-smoker, smoker), diabetes (no, yes), hypertension (no, yes), congestive heart failure (no, 
yes), coronary heart disease (no, yes), heart disease (no, yes), stroke (no, yes), physical activity (inactive, active), and BMI (<25, 25–30, and ≥ 30).
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FIGURE 4 (Continued)
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FIGURE 4

Comparison of eight machine learning models in terms of predictive performance. (A) Performance comparison based on accuracy, Brier class, and 
AUC, highlighting predictive accuracy and reliability. (B) ROC curves illustrating the discriminative ability of each model. (C) Calibration curves assessing 
the agreement between predicted probabilities and observed outcomes for the eight models. (D) DCA evaluating the clinical utility of each model 
across a range of threshold probabilities.
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FIGURE 5

Random forest model evaluating the significance of the LCD score in predicting COPD. (A) ROC curve of the model after hyperparameter optimization. 
(B) Variable importance plot showing the contributions of different predictors. (C) The relationship between the number of decision trees and OOB 
error rate.

(50) have shown a significant association between high glycemic index 
foods, such as refined grains and desserts, and impaired lung function, 
with lung function impairment being a critical diagnostic criterion 
for COPD.

The influence of dietary patterns on COPD is a significant field of 
research, especially on the contribution of high-carbohydrate diets to 
elevated carbon dioxide production, which aggravates the respiratory 
burden in patients. Carbohydrates have a RQ of 1.0, meaning that for 
every unit of oxygen consumed, an equal amount of carbon dioxide is 
produced. In contrast, the RQ of fats is approximately 0.7, indicating 
that fat metabolism produces less carbon dioxide. Therefore, a diet rich 
in carbohydrates may result in elevated carbon dioxide generation, 
thereby intensifying the respiratory load in COPD patients (44, 46, 47). 
Clinical studies have confirmed this hypothesis. Research shows that 
COPD patients consuming a high-carbohydrate diet exhibit a 
significant increase in carbon dioxide production (VCO2) and 
respiratory rate, particularly within 30 to 60 min post-meal, with effects 
lasting up to 1.5 h (45, 47). Moreover, patients experience a marked 
increase in perceived breathlessness during physical activity (46). These 
findings suggest that high-carbohydrate diets not only affect basal 
metabolism but also directly worsen the respiratory burden in COPD 
patients. The increased carbon dioxide production significantly 
intensifies breathlessness, and for patients with impaired lung function, 
this additional burden may worsen discomfort and reduce exercise 

tolerance. For example, one study found that after consuming a high-
carbohydrate meal, the VCO2 in COPD patients increased from 0.23 L/
min to 0.29 L/min, and minute ventilation increased from 10.3 L/min 
to 12.8 L/min (44, 46). This change highlights the significant impact of 
a high-carbohydrate diet on the respiratory system and underscores the 
importance of dietary management in COPD patients, particularly 
reducing carbohydrate intake to decrease carbon dioxide production 
and alleviate respiratory burden.

As a specialized dietary intervention, LCD has been shown to 
improve respiratory function. The LCD score, by offering a more 
quantitative and personalized assessment, enables a more accurate 
evaluation of an individual’s response to dietary changes, thus further 
enhancing the benefits for respiratory function. Increasing the intake 
of fats and proteins while reducing carbohydrates can not only 
alleviate the burden on pulmonary ventilation but also suppress 
insulin secretion, contributing to better regulation of glucose and lipid 
metabolism (24). Although carbohydrates remain an essential 
nutrient, limiting their intake and choosing fiber-rich sources, such as 
millet and oats, is advisable to ensure balanced nutrition. Moreover, 
high-fat meals ought to emphasize unsaturated fatty acids present in 
plant-derived oils, such as tea and olive oil, while minimizing excessive 
animal fats to mitigate the risk of cardiovascular disease (51, 52). 
Notably, while some patients can tolerate the increased carbon dioxide 
load caused by a high-carbohydrate diet, this burden can significantly 
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worsen symptoms in individuals with severe pulmonary diseases. 
Therefore, it is crucial to develop personalized dietary plans tailored 
to each patient’s specific clinical condition and metabolic profile (44).

This study investigates the correlation between LCD scores and 
the odds of COPD prevalence in the US population utilizing data from 
the NHANES database. The findings indicate a possible correlation 
between reduced carbohydrate intake and lower odds of developing 
COPD, offering potential guidance for dietary interventions. By 
comparing eight machine learning algorithms, we identified the most 
effective model for predicting patients associated with odds of COPD 
prevalence. This model offers a practical method for early 
identification of individuals susceptible to COPD, facilitating the 
creation of targeted prevention and intervention strategies. A principal 
strength of our study lies in the use of a multi-stage probability 
sampling approach, which improves the representativeness and 
reliability of the results.

However, this study possesses specific limitations. First, the 
majority of the predictors utilized in our research were derived from 
self-reported data from individuals, potentially introducing bias. 
Nevertheless, the NHANES database employs a highly standardized 
data collection process, and the large sample size in our study helps to 
mitigate this bias to some extent. Second, although we conducted 
internal validation by dividing the research data set into training and 
validation subsets, we lacked an external cohort to further assess the 
model’s performance. Additionally, given that the study population 
was exclusively from the United States, caution is warranted when 
extrapolating these findings to other groups, as factors such as racial 
differences and geographic location may influence the results. Future 
research should focus on validating these results through the use of 
external datasets, particularly from different continents, to ensure 
broader applicability and robustness of the model.

5 Conclusion

In summary, this study highlights a significant relationship 
between LCD scores and the prevalence of COPD among American 
adults. The machine learning model developed using the random 
forest method showed solid predictive performance. Nonetheless, 
additional prospective research and randomized controlled trials are 
essential to corroborate these findings, investigate underlying 
mechanisms, and assess potential treatment implications.
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Glossary

LCD Score - Low Carbohydrate Diet Score

COPD - Chronic Obstructive Pulmonary Disease

RQ - Respiratory Quotient

CO₂ - Carbon Dioxide

VCO₂ - Carbon Dioxide Production

FEV1 - Forced Expiratory Volume in 1 s

FVC - Forced Vital CapacityPIR - Poverty-to-Income Ratio

BMI - Body Mass Index

WHtR - Waist-to-Height Ratio

DM - Diabetes Mellitus

CVD - Cardiovascular Disease

OGTT - Oral Glucose Tolerance Test

NHANES - National Health and Nutrition Examination Survey

NCHS - National Center for Health Statistics

CDC - Centers for Disease Control and Prevention

MEC - Mobile Examination Center

FNDDS - Food and Nutrition Database for Dietary Studies

GPAQ - Global Physical Activity Questionnaire

QA - Quality Assurance

QC - Quality Control

SP - Sample Person

PSM - Propensity Score Matching

RCS Curve - Restricted Cubic Splines Curve

ROC Curve - Receiver Operating Characteristic Curve

DCA - Decision Curve Analysis

AUC - Area Under the Curve

SD - Standard Deviation

IQR - Interquartile Range

OR - Odds Ratio

CI - Confidence Interval

MLP - Multilayer Perceptron

KNN - K-Nearest Neighbors

SVM-RBF - Support Vector Machine with a Radial Basis Function
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