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Background: Short-chain fatty acids (SCFAs), derived from the fermentation of 
dietary fiber by intestinal commensal bacteria, have demonstrated protective 
effects against acute lung injury (ALI) in animal models. However, the findings 
have shown variability across different studies. It is necessary to conduct 
a comprehensive evaluation of the efficacy of these treatments and their 
consistency.

Objective: This systematic review and meta-analysis aimed to explore the effects 
of SCFAs on ALI based on preclinical research evidence, in order to provide new 
treatment strategies for ALI.

Methods: We included studies that tested the effects of SCFAs on ALI in animal 
models. This study was performed according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive 
search for relevant studies was conducted in the PubMed, Embase, Web of 
Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) 
databases up to February 2024. The data were extracted in accordance with the 
established selection criteria, and the risk of bias was evaluated for each study.

Results: A total of 16 articles were finally included in the meta-analysis. The 
results indicated that the SCFAs significantly reduced lung wet-to-dry weight 
(SMD = −2.75, 95% CI = −3.46 to −2.03, p < 0.00001), lung injury scores 
(SMD = −5.07, 95% CI = −6.25 to −3.89, p < 0.00001), myeloperoxidase 
(SMD = −3.37, 95% CI = −4.05 to −2.70, p < 0.00001), tumor necrosis 
factor-alpha (SMD = −3.31, 95% CI = −4.45 to −2.16, p < 0.00001) and 
malondialdehyde (SMD = −3.91, 95% CI = −5.37 to −2.44, p < 0.00001) levels 
in animal models of ALI. The results of the subgroup analysis indicated that the 
efficacy of SCFAs varies significantly with dosage and duration of treatment.

Conclusion: SCFAs can reduce inflammation and oxidative stress in animal 
models of ALI. The clinical efficacy of SCFAs for ALI deserves further in-depth 
research.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/
display_record.php?RecordID=584008, CRD42024584008.
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1 Introduction

In recent years, with the outbreak of novel epidemic respiratory 
viruses, the deaths caused by the acute lung injury (ALI) has 
significantly increased, posing a substantial threat to human health 
(1, 2). ALI is a serious disease characterized by excessive 
inflammatory responses, usually triggered by various direct or 
indirect factors, including pneumonia, sepsis, trauma, and blood 
transfusions (3, 4). During the acute exudative phase of ALI, a large 
number of immune cells accumulate at the site of injury, initiating a 
series of inflammatory signaling pathways and releasing a range of 
pro-inflammatory cytokines (5). Subsequently, the inflammation 
disrupts the barrier function of the alveolar epithelium and 
endothelium, leading to increased permeability of the alveolar-
capillary membrane (6). As a consequence of this persistent acute 
inflammatory process, the majority of patients with ALI will rapidly 
experience a deterioration in their respiratory function, which will 
eventually progress to the more severe form of and acute respiratory 
distress syndrome (ARDS) (7). Despite some advancements in the 
scientific understanding of the pathophysiological mechanisms 
underlying ALI, current treatment approaches still mainly depend 
on supportive therapies, including mechanical ventilation (8). ALI/
ARDS remains one of the most fatal clinical syndromes in intensive 
care (4, 9). In light of these developments, researchers engaged in 
both clinical and preclinical studies are directing their attention 
toward the creation of novel treatments and medications, with the 
objective of providing patients with ALI/ARDS more efficacious 
therapeutic alternatives.

The emerging theory of the gut-lung axis elucidates a robust 
interconnection between the gut and the lungs (10). The gut 
microbiota and their metabolites have been demonstrated to play a 
role in the pathogenesis of various lung diseases, including asthma 
and respiratory infections, by regulating both innate and adaptive 
immunity (11). A substantial body of research indicates that the 
release of short-chain fatty acids (SCFAs) represents a pivotal 
mechanism through which the gut microbiota maintains host health 
and gut homeostasis (12). SCFAs are a type of fatty acid produced by 
beneficial bacteria in the gut through the fermentation of dietary 
fiber (13). In the intestines, the primary SCFAs include acetate, 
propionate, and butyrate (12). SCFAs can be absorbed and utilized by 
intestinal epithelial cells, with a portion serving as an energy source 
for cellular metabolic activities, while another portion enters the 
peripheral circulation to function as signaling molecules that regulate 
the host’s biological responses (14). They play an important role in 
regulating gut microbiota balance, maintaining intestinal barrier 
function, suppressing inflammation, and improving immune system 
function (15). The relationship between elevated levels of SCFAs in 
the gut and improved lung health is becoming increasingly clear (16). 
In patients with impaired immune function, an elevated 
concentration of SCFAs in their feces is associated with a markedly 
reduced risk of developing lung infections (14, 17). Currently, 
researchers have begun to explore the effects of exogenous 

supplementation of SCFAs in the treatment of ALI in animal 
experiments. For example, some studies have found that 
supplementing with SCFAs can significantly reduce the lung injury 
scores, lung wet-to-dry (W/D) ratio, myeloperoxidase (MPO), tumor 
necrosis factor-alpha (TNF-α), and malondialdehyde (MDA) levels 
in animal models of ALI (18–20). However, other studies have 
reached contradictory conclusions (21, 22). Therefore, it is necessary 
to summarize the results of the relevant publications to more 
comprehensively assess the impact of SCFAs on ALI.

Although there is currently an absence of clinical evidence 
regarding the application of SCFAs in patients with ALI/ARDS, the 
results of preclinical studies in animal experiments are invaluable for 
clinical practice and provide a crucial foundation for in-depth 
research into disease pathology and mechanisms (23). Our study 
aimed to evaluate the efficacy and potential mechanisms of SCFAs in 
ALI/ARDS animal models through a systematic review and meta-
analysis. The findings could provide robust support for future 
experimental design and clinical application.

2 Materials and methods

2.1 Search strategy

A search in databases including PubMed, Cochrane Library, 
Embase, Web of Science, and China National Knowledge 
Infrastructure was performed from inception to February 2024.

The keywords of the search were as follows: “actue lung injury,” 
“acute respiratory distress syndrome,” “ALI,” “ARDS,” “short chain 
fatty acid,” “SCFA,” “acetate,” “propionate,” “butyrate.” After manual 
screening, additional studies were identified from relevant reviews 
and citations (the detailed search strategy is shown in 
Supplementary Table S1).

2.2 Inclusion and exclusion criteria

Studies included in this review must meet the following criteria: 
(1) the participants were rat or mouse animal models of ALI/ARDS; 
(2) the intervention drugs were solutions of SCFAs such as sodium 
acetate, sodium propionate or sodium butyrate, while the control 
group could be either a blank control or an equal volume of PBS or 
normal saline; and (3) the literature was published in Chinese and 
English. The exclusion criteria were as follows: (1) reviews, clinical 
trials, case reports, and protocols; (2) articles for which the full text 
was not available.

2.3 Data extraction

Two researchers independently reviewed the literature, extracted 
data and cross-checked the data, and the third researcher negotiated 
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and adjudicated in case of disagreement. The main content of the data 
extraction included: first author’s name, year of publication, sample 
size of each group, animal species, modeling methods, duration, 
types and dose of SCFAs, and outcome-related indicators. For articles 
that only reported data in the form of images, we used Origin 2022 
software to extract relevant data from the images. When 
administering different doses or durations of SCFAs, we recorded all 
data meticulously for subsequent subgroup analysis. The primary 
outcome measure was the lung W/D ratio and lung injury scores, 
while the secondary outcome measures included MPO, TNF-α, 
and MDA.

2.4 Quality assessment

The SYRCLE’s risk of bias tool was used to assess the risk of bias 
in the included studies (24). It was developed on the basis of the 
Cochrane risk of bias tool and consisted of 10 entries. The results 
were assessed using “yes,” “no” and “unclear” to represent low, high 
and unclear risk of bias, respectively (25).

2.5 Statistical analyses

The analysis was conducted using RevMan 5.2 (Cochrane 
Collaboration, Oxford, United Kingdom) and Stata 14.0 (StataCorp, 
TX, United  States) software. Considering that the results of the 
outcome indicators were all continuous variables, the standardized 
mean difference (SMD) was calculated with 95% confidence interval 
(CI) as the overall effects. Heterogeneity was assessed using I2, and a 
value exceeding 50% was considered to indicate high heterogeneity. 
For each outcome measure, specified a random-effects model of 
analysis. Subgroup and sensitivity analyses were performed to explore 
potential heterogeneity between studies and to identify different 
sources of confounding. The presence of publication bias was 
identified through the use of funnel plots and Egger’s test. Finally, 
we employed trim-and-fill methods to detect potential asymmetry 
and to assess the robustness of the conclusions.

3 Results

3.1 Selection and characteristics of 
included studies

As shown in Figure 1, we initially obtained 868 articles, of which 
316 were identified as duplicates and subsequently excluded. In 
addition, seven articles were identified through citation searches. 
According to the predetermined screening criteria, 18 eligible articles 
were finally included (18–21, 26–39). All studies described the 
species of experimental animals, with 10 articles using mice and the 
remainder using SD rats. The most frequently utilized modeling 
methods in all articles were intratracheal injection of 
lipopolysaccharide (LPS) and cecal ligation and puncture (CLP) to 
induce ALI. A total of 11 articles used sodium butyrate as the 
intervention, while three articles employed acetate, two articles used 
a solution of mixed SCFAs, one used propionate, and one used both 
acetate and propionate simultaneously. A detailed account of the 

specific details and characteristics of each included study can 
be found in Table 1 and Supplementary Table S2.

3.2 Risk of bias assessment

The overall result is shown in Figure 2 and Supplementary Table S3. 
Of the 18 articles included, only three clearly reported the use of a 
random number table for animal randomization (20, 33, 36), while 
the remaining articles merely mentioned “randomization” without 
specifying the method and were therefore rated as “unclear.” Based 
on the descriptions of animal housing conditions in 14 articles (18–
21, 26, 28–30, 33, 35–39), it could be concluded that animals were 
randomly housed during the experiments. In the integrity report 
entries, we found that two articles did not provide accurate sample 
size data, thereby potentially posing a higher risk of bias (28, 37). To 
ensure the reliability of the analysis results, we only recorded the 
characteristics of these two studies and did not include their 
experimental data. In the end, a total of 16 articles were included in 
this meta-analysis.

3.3 Meta-analysis of primary outcomes

3.3.1 Lung W/D ratio
Lung W/D ratio is a direct indicator of pulmonary edema and an 

important measure for assessing the severity of ALI (40). A total of 
11 articles (18–21, 27, 29, 31, 33, 35, 36, 38), including 22 studies, 
reported the levels of W/D ratios. The results indicated that the 
SCFAs intervention significantly reduced the lung W/D ratio 
(I2 = 70%; SMD = −2.88, 95% CI = −3.63 to −2.13, p < 0.00001) in 
comparison to the control group (Figure 3).

3.3.2 Lung injury scores
A total of 10 articles (19, 21, 27, 29, 30, 33–36, 39), which include 

16 studies, reported changes in lung injury scores. The results indicate 
that SCFAs intervention can effectively reduce lung injury scores 
(I2 = 74%; SMD = −5.07, 95% CI = −6.25 to −3.89, p < 0.00001) 
compared to the control group (Figure 4).

3.4 Meta-analysis of secondary outcomes

3.4.1 MPO
MPO serves as a marker of neutrophil activation and is 

significantly increased in tissue injury and various associated 
inflammatory diseases (41). A total of 8 articles (20, 29–32, 34, 35, 
38), including 16 studies, compared lung tissue MPO activities 
between the SCFAs and control groups. The SCFAs intervention 
groups showed lower MPO activities (I2 = 44%; SMD = −3.37, 95% 
CI = −4.05 to −2.70, p < 0.00001) than the control group (Figure 5).

3.4.2 TNF-α
TNF-α is a pleiotropic cytokine that leads to the development of 

inflammatory responses in ALI (42). A total of 7 articles (18, 21, 27, 
29, 31, 33, 35), including 15 studies, reported changes in TNF-α levels 
in the bronchoalveolar lavage fluid (BALF). Compared to the control 
group, the SCFAs intervention could significantly reduce the TNF-α 
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levels (I2 = 66%; SMD = −3.31, 95% CI = −4.45 to −2.16, p < 0.00001; 
Figure 6).

3.4.3 MDA
MDA is one of the most frequently examined biomarkers of 

oxidative stress (43). A total of 7 articles (20, 21, 27, 29, 32, 35, 39), 
including 12 studies, compared lung tissue MDA levels between 
SCFAs and control groups. The SCFAs intervention significantly 
alleviated MDA expression (I2 = 87%; SMD = −3.91, 95% CI = −5.37 
to −2.44, p < 0.00001) compared to the control group (Figure 7).

3.5 Subgroup analysis of primary outcome 
indicators

We conducted subgroup analyses basing on the following variables: 
the modeling methods, types of SCFAs, dosage, duration, animal 
species, and administration route. For the dosage subgroup analysis, 
we excluded one study because it did not define the drug dosage (39).

3.5.1 Lung W/D ratio
The results of the subgroup analysis showed that the 400 mg/kg/d 

dosage group may have a more significant effect in reducing W/D levels 
(I2 = 88%; SMD = −8.31, 95% CI = −13.02 to −3.59, p = 0.0006) 
compared to other dosages. Additionally, intervention duration 
exceeding 24 h may provide better results (I2 = 24%; SMD = −3.81, 
95% CI = −4.91 to −2.70, p < 0.00001) compared to shorter treatment 
durations. The analysis also indicated that SCFAs showed better efficacy 
in rat models (I2 = 82%; SMD = −3.90, 95% CI = −5.28 to −2.52, 
p < 0.00001). There were no statistically significant differences between 

the subgroups concerning the modeling method, type of SCFAs, and 
administration route (p > 0.05). The results of all subgroups were 
consistent with the overall results (Table 2; Supplementary Figures 
S1–S6).

3.5.2 Lung injury scores
In 15 studies involving drug dosage, we found that a dosage of 

400 mg/kg/d was more effective in reducing lung injury scores 
(I2 = 69%; SMD = −7.46, 95% CI = −10.48 to −4.45, p < 0.00001) 
compared to other dosage groups. Additionally, a treatment duration 
of 24 h to 7 days may yield more pronounced effects (I2 = 64%; 
SMD = −6.87, 95% CI = −9.55 to −4.18, p < 0.00001). No statistically 
significant differences were found among the subgroups regarding the 
modeling method, type of SCFAs, animal species, and administration 
route (p > 0.05; Table 3; Supplementary Figures S7–S12).

3.6 Sensitivity analysis

In order to explore the stability of the results, a sensitivity analysis 
was conducted on five meta-analyses. Eliminating any single study did 
not reverse the overall effects of SCFAs on the ALI 
(Supplementary Figure S13). It suggested that the meta-analyses 
results were relatively stable.

3.7 Publication bias

The funnel plots of the five meta-analyses exhibited asymmetry 
(Supplementary Figure S14), and the results of Egger’s test were 

FIGURE 1

PRISMA flow diagram of the study selection process.
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TABLE 1 Main characteristics of the 18 included studies.

Author (Year) Animal species 
(Gender)

Model Sample 
size (EG/

CG)

Intervention

Type of SCFAs Method of 
intervention

Medication 
time

Duration

Chu (18) C57BL/6 J mice 

(Male)

Hyperoxia-induced ALI 6/6 Sodium acetate (200 mM) Oral administration Pre-treatment 3 weeks

Cui (19) SD rats (Male) Acute Pancreatitis-induced ALI 10/10 Sodium butyrate (5 mg/kg/d) Intravenous injection Post-treatment 12 h

Ding (20) SD rats (Male) LPS-induced ALI 10/10 Sodium butyrate (1 g/kg/d) Intravenous injection Post-treatment 6 h

Hildebrand (2021) 

(26)

C57BL/6 mice (Male) LPS-induced ALI 12/12 Sodium acetate, propionate, butyrate (50 mM each) Oral administration Pre-treatment 2 weeks

Hung (27) SD rats (Male) I/R-Induced ALI 6/6 Sodium acetate (100 mg/kg/d, 200 mg/kg/d, 400 mg/

kg/d)

Pulmonary artery perfusion Post-treatment 60 min

Li (28) BALB/c mice (Male) LPS-induced ALI 10/10 Sodium butyrate (500 mg/kg) Intraperitoneal injection Pre-treatment 24 h

Liang (29) SD rats (Female) Burn-induced ALI 8/8 Sodium butyrate (400 mg/kg/d) Intraperitoneal injection Post-treatment 12 h, 24 h, 48 h

Liu (31) ICR mice (Female) LPS-induced ALI 10/10 Sodium butyrate (25 mg/kg/d) Intragastric administration Pre-treatment 12 h

Ni (30) BALB/c mice (Male) LPS-induced ALI 3/3 Sodium butyrate (10 mg/kg/d) Intragastric administration Pre-treatment 1 h, 3 h, 6 h, 12 h, 

24 h

Tang (32) SD rats (Male) Intestinal I/R-induced ALI 10/10 Sodium butyrate (400 mg/kg/d) Subcutaneous injection Post-treatment 1 h, 4 h

Xiang (2022) (33) SD rats (Male) LPS-induced ALI 5/5 Sodium acetate, propionate, butyrate (300 mg/kg/d, 

100 mg/kg/d, 100 mg/kg/d; 600 mg/kg/d, 200 mg/kg/d, 

200 mg/kg/d)

Intragastric administration Pre-treatment 7 days

Xiong (34) BALB/c mice (Male) Acute Pancreatitis-induced ALI 8/8 Sodium butyrate (200 mg/kg/d, 500 mg/kg/d) Intragastric administration Pre-treatment 7 days

Xu (35) C57BL/6 J mice 

(Male)

LPS-induced ALI 10/10 Sodium acetate (4 mmol/kg/d) Intraperitoneal injection Post-treatment 6 h

Yang (36) C57BL/6 J mice 

(Male)

CLP-induced ALI 6/6 Sodium butyrate (25 mg/kg/d) Intragastric administration Pre-treatment, Post-

treatment

24 h

Ying (37) C57BL/6 J mice 

(Male)

I/R-Induced ALI NA Sodium butyrate (5 mg/kg/d) NA Pre-treatment 1 week

Zhang L (38) C57BL/6 J mice 

(Male)

CLP-induced ALI 6/6 Sodium butyrate

(200 mg/kg/d)

Intraperitoneal injection Pre-treatment 18 h

Zhang TT (21) SD rats (Male) LPS-induced ALI 5/5 sodium propionate (300 mg/kg/d, 500 mg/kg/d) Intragastric administration Pre-treatment 7 days

Zhang YD (39) C57BL/6 mice (Male) ZnONPs-induced ALI 5/5 Sodium acetate (100 mM), Sodium propionate (100 mM) Oral administration Pre-treatment 21 days

EG, experimental group; CG, control group; LPS, lipopolysaccharides; CLP, cecal ligation and puncture; I/R, ischemia/reperfusion; NA, not applicable.
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statistically significant (p < 0.05). While these findings suggested a 
certain degree of publication bias, the trim-and-fill analyses indicated 
that publication bias did not affect the overall estimate 
(Supplementary Figure S15; no trimming was performed and the data 
remained unchanged). Consequently, the conclusions remained robust.

4 Discussion

As the role of gut microbiota and their metabolites in regulating 
immunity and inflammatory responses becoming increasingly clear, 
their relationship with lung disease (also known as gut-lung axis) have 

FIGURE 2

Risk of bias assessment results.

FIGURE 3

Forest plot of the effects of SCFAs intervention on the lung W/D ratio.
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attracted significant attention (10). SCFAs, produced by gut microbiota 
fermentation, are regarded as key molecules in the gut-lung axis, 
providing a novel therapy to alleviate even reverse the ALI 
deterioration (44, 45). To the best of our knowledge, this is the first 
systematic review and meta-analysis exploring the effects of SCFAs 
supplementation on ALI in animal research. The subgroup analysis 
results indicated that the therapeutic effects of SCFAs may be closely 
related to the dosage and duration of treatment, while being less 
influenced by the modeling method and the type of SCFAs. In 
particular, when the dosage reached 400 mg/kg/d and was 
administered continuously for 24 h to 7 days, the SCFAs showed a 
better efficacy. Despite the high heterogeneity and publication bias, 
SCFAs still significantly improved the inflammation levels and lung 
injury severity in ALI animals based on the overall results. 
Additionally, we obtained similar results through sensitivity analysis 

and trim-and-fill analysis, which enhanced the robustness of 
our findings.

The homeostasis of the gut actually impacts lung health (45). How 
is this effect mediated by SCFAs? Some studies have explored this 
in depth.

In fact, there is an immune mechanism regulated by the 
microbiota that exists between the respiratory and gastrointestinal 
tracts. The term “gut microbiota” refers to the complex ecological 
community composed of symbiotic and pathogenic microorganisms 
residing in the gut, encompassing thousands of species of bacteria, 
archaea, viruses, fungi, and other microbes (46, 47). These 
microorganisms maintain a dynamic balance and protect the gut 
through multifaceted mechanisms, such as synthesizing metabolites 
and toxins, providing nutrients, regulating the immune system, and 
preserving the function of the intestinal barrier (48, 49). Once the 

FIGURE 4

Forest plot of the effects of SCFAs intervention on the lung injury scores.

FIGURE 5

Forest plot of the effects of SCFAs intervention on MPO activity in lung tissue.
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balance is disrupted, abnormal microorganisms may breach the 
intestinal barrier, enter the bloodstream, or migrate to the lungs, 
leading to systemic infections (sepsis) and lung damage (50). 
Among the various factors influencing gut microbiota, diet is 
considered one of the most effective interventions (51). Research 
shows that a high-fiber diet promotes the production of abeneficial 
metabolites, especially SCFAs (52). SCFAs construct and sustain the 
host’s intestinal defense system through various mechanisms, 
including stimulating the expression of intestinal mucins, 
enhancing the function of tight junction proteins (TJPs), and 
regulating the survival of intestinal neurons (53–55). In addition, 
SCFAs can promote the development of B cells and the 
differentiation and expansion of regulatory T cells (Tregs) (56–58). 
Subsequently, these lymphocytes migrate from the gut mucosa 
through the bloodstream and lymphatic system to reach distant 
effector sites, ultimately eliciting similar immune responses in 
mucosal areas throughout the body, including the respiratory 
mucosa (49, 59, 60).

Exceeding 90% of SCFAs are absorbed in the intestines, with a 
fraction dedicated to sustaining the metabolic functions of intestinal 
epithelial cells, while the remainder is disseminated through the 
circulatory system to a variety of organs (61). It has been demonstrated 
that SCFAs are present in the human respiratory tract, with their levels 
being closely correlated with the functional integrity of the gut microbiota 
(44). The capacity of SCFAs to regulate local immune responses is 
primarily dependent on two mechanisms: firstly, by directly inhibiting 
histone deacetylases (HDACs) to modulate gene expression, and secondly, 
by activating G protein-coupled receptors (GPCRs) to transmit signals. 
The GPCRs that can be activated by SCFAs are GPR41 (also known as 
FFAR3), GPR43 (also known as FFAR2), and GPR109A (62). These three 
receptors are widely distributed in various respiratory epithelial cells and 
immune cells, where they are capable of inhibiting LPS-induced 
pulmonary inflammatory signaling (63). As a result, they reduce alveolar 
edema and decrease the production of TNF-α in the ALI model (58, 64). 
However, different SCFA receptors exhibit varying affinities for different 
SCFAs. GPR41 displays a greater affinity for butyrate and propionate than 

FIGURE 6

Forest plot of the effects of SCFAs intervention on TNF-α in BALF.

FIGURE 7

Forest plot of the effects of SCFAs intervention on MDA level in lung tissue.
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for acetate, whereas GPR43 exhibits a higher preference for acetate over 
butyrate and propionate. GPR109A, on the other hand, is primarily 
activated by butyrate (44). Furthermore, propionate and butyrate are 
widely recognized as HDAC inhibitors. HDACs are enzymes that remove 
acetyl groups from histones, leading to the formation of compact 
chromatin structures that inhibit transcription (65). Thus, the inhibition 
of HDAC activity can promote gene transcription by increasing histone 
acetylation. In a mouse model of lung injury induced by polycyclic 
aromatic hydrocarbons, the restoration of butyrate levels in the gut has 
been demonstrated to reduce the HDAC level in the lung tissues, 
enhancing the expression of the Foxp3 gene and regulating Th17/Treg cell 
differentiation (66). In addition, other studies have shown that butyrate 
and propionate may reverse lung inflammation and oxidative stress by 
inhibiting HDAC activity, blocking the nuclear factor (NF)-kappaB 
signaling pathway, and suppressing the release of MDA in lung tissue (26, 
31, 67). A summary of the role of SCFAs in regulating systemic and 
pulmonary inflammation is provided in Figure 8.

Despite variations in receptor selectivity among different SCFAs 
that could influence their mechanisms, our findings showed that there 

are no significant differences in their effectiveness in alleviating 
ALI. We  hypothesized that short-chain fatty acids (SCFAs) may 
provide a lung-protective effect by activating and integrating various 
biological signaling pathways, rather than depending solely on the 
selective activation of a specific receptor. This multi-pathway, cross-
receptor mechanism elucidates the synergistic effects of different 
SCFAs in the body, emphasizing their potential as novel therapeutic 
strategies for ALI. Nevertheless, further in-depth research is still 
needed to fully elucidate the mechanisms of action of SCFAs and 
establish clear causal relationships.

Subgroup analysis indicated that higher dosages of SCFAs and 
longer treatment durations appeared to be more effective in alleviating 
pulmonary edema in ALI animal models. SCFAs, as HDAC inhibitors, 
can silence the transcription of specific inflammatory genes. Previous 
study reported that SCFAs can only effectively reduce HDAC activity 
at higher millimolar concentrations (68). High concentrations of 
butyrate (0.5 mM) directly inhibited the activation, proliferation, and 
production of cytokines (IFNγ, IL-17) in CD4 T cells by increasing 
histone acetylation, while low concentrations (0.065 mM) did not 

TABLE 2 Subgroup analysis for lung W/D ratio.

Variables Studies SMD (95% CI) I2 p for overall effect p for subgroup differences

Total 22 −2.88 (−3.63, −2.13) 70% <0.00001

Modeling method

LPS-induced ALI 11 −2.67 (−3.48, −1.86) 34% <0.00001 0.04

CLP-induced ALI 3 −1.71 (−2.53, −0.90) 0% <0.0001

Others 8 −4.12 (−6.01, −2.24) 86% <0.0001

Type of SCFAs

Sodium acetate 5 −2.18 (−3.22, −1.14) 59% <0.0001 0.11

Sodium propionate 2 −3.23 (−4.80, −1.67) 0% <0.0001

Sodium butyrate 13 −3.01 (−4.17, −1.86) 76% <0.00001

Mixed SCFAs 2 −5.22 (−7.52, −2.93) 0% <0.00001

Dosage

≤100 mg/kg/d 9 −1.99 (−2.76, −1.22) 33% <0.00001 0.05

200-350 mg/kg/d 5 −2.51 (−3.54, −1.48) 46% <0.00001

400 mg/kg/d 4 −8.31 (−13.02, −3.59) 88% 0.0006

≥500 mg/kg/d 3 −3.45 (−6.16, −0.73) 76% 0.01

Duration

<12 h 8 −1.84 (−2.54, −1.15) 34% <0.00001 0.005

12-24 h 8 −3.75 (−5.57, −1.93) 82% <0.0001

>24 h 6 −3.81 (−4.91, −2.70) 24% <0.00001

Species

Rats 12 −3.90 (−5.28, −2.52) 82% <0.00001 0.02

Mice 10 −2.12 (−2.69, −1.55) 0% <0.00001

Administration route

Intragastric administration 11 −2.46 (−3.16, −1.76) 9% <0.00001 0.08

Intraperitoneal injection 5 −6.23 (−9.52, −2.94) 90% 0.0002

Intravenous injection 2 −2.69 (−5.22, −0.17) 85% 0.04

Others 4 −1.81 (−2.80, −0.82) 44% 0.0004
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exhibit these effects. In comparison, acetate and propionate required 
higher concentrations (10 mM and 1 mM, respectively) to achieve 
similar inhibitory effects (22). Similarly, propionate could reshape the 
metabolic stress and immune function of alveolar macrophages 
following LPS exposure, contingent on its concentration and timing 
of administration (44). These findings were consistent with our 
previous observations and further supported the hypothesis that 
SCFAs may have a dose-dependent effect. However, the specific dose–
response relationship has not yet been clearly defined, which provides 
important evidence and direction for future studies on the optimal 
administration of SCFAs.

From the perspective of microbial ecology, SCFAs are 
primarily produced by the fermentation of dietary fiber and 
complex carbohydrates by gut bacteria, with Firmicutes and 
Bacteroidetes playing particularly important roles in this process 
(69). The two studies by Hildebrand (26) and Xiong (34) 
collectively revealed key changes in the gut microbiome during 
lung injury: significant decreases in Lactobacillus, Bacteroides, 
and Bifidobacterium, which were positively correlated with SCFAs 
concentrations, providing potential microbiological markers for 

ALI. It is noteworthy that the interactions between different 
microorganisms (including bacteria, archaea, and fungi) and their 
metabolic products also influence the production and diversity of 
SCFAs (70). For instance, lactic acid can help create an acidic 
intestinal environment suitable for butyrate-producing bacteria, 
while pentanoate in feces may originate from symbiotic 
relationships between archaea and other intestinal bacteria (71, 
72). Moreover, SCFAs themselves can feedback-regulate the 
microbial community, promoting the growth of beneficial bacteria 
while inhibiting the virulence of intestinal pathogens (73). The 
interaction between the gut microbiome and SCFAs is a 
multilayered and complex system. Its mechanisms extend beyond 
nutrition and metabolism to include immune regulation, 
interactions among microbial lineages, and ultimately influence 
gut barrier function and the homeostasis of the gut-lung axis 
(74–76). However, there is currently no research that can provide 
a systematic and comprehensive elucidation of the specific 
processes and interrelationships of these mechanisms. Therefore, 
it is still necessary to explore strategies for targeting the regulation 
of the gut microbiome and SCFAs as potential treatments for ALI.

TABLE 3 Subgroup analysis for lung injury scores.

Variables Studies SMD (95% CI) I2 p for overall effect p for subgroup differences

Total 16 −5.07 (−5.25, −3.89) 74% <0.00001

Modeling method

LPS-induced ALI 6 −5.03 (−7.01, −3.05) 71% <0.00001

0.93CLP-induced ALI 2 −4.81 (−6.66, −2.96) 0% <0.00001

Others 8 −5.30 (−7.21, −3.40) 82% <0.00001

Type of SCFAs

Sodium acetate 2 −5.48 (−8.61, −2.35) 58% 0.0006

0.15
Sodium propionate 3 −3.10 (−4.67, −1.53) 31% 0.0001

Sodium butyrate 9 −5.65 (−7.45, −3.84) 81% <0.00001

Mixed SCFAs 2 −6.77 (−14.82, 1.29) 82% 0.1

Dosage

≤100 mg/kg/d 4 −5.94 (−7.49, −4.40) 28% <0.00001

0.001
200-350 mg/kg/d 4 −2.79 (−4.01, −1.57) 52% <0.00001

400 mg/kg/d 4 −7.46 (−10.48, −4.45) 69% <0.00001

≥500 mg/kg/d 3 −6.01 (−8.93, −3.09) 5% <0.0001

Duration

≤12 h 5 −5.72 (−7.25, −4.20) 50% <0.00001

0.0224-48 h 4 −6.87 (−9.55, −4.18) 64% <0.00001

≥7 days 7 −3.42 (−4.77, −2.07) 62% <0.0001

Species

Rats 9 −5.97 (−7.78, −4.16) 71% <0.00001
0.14

Mice 7 −4.22 (−5.73, −3.89) 84% <0.00001

Administration route

Intragastric administration 9 −4.51 (−6.06, −2.96) 74% <0.00001

0.48Intraperitoneal injection 4 −6.36 (−8.94, −3.79) 74% <0.00001

Others 3 −5.07 (−6.25, −2,29) 74% 0.0005
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5 Limitations

This study still has some limitations that warrant attention in future 
research. First, the quality scores of the included articles were relatively 
low, which may have resulted in selection bias, implementation bias, and 
measurement bias. Although we have taken measures to control these 
biases, they may still affect the reliability of the study results to some 
extent. Secondly, following the subgroup analysis, there was no significant 
improvement in heterogeneity within each subgroup. This may be related 
to the limited number of studies and insufficient variable information in 
the literature, which could have led to the omission of some potential 
factors. To more accurately determine the optimal treatment strategy, 
we recommend conducting more high-quality, multidimensional studies 
in the future to extensively investigate relevant variables and thoroughly 
analyze the dose-dependent efficacy of SCFAs. Additionally, we expect 
subsequent research to employ more standardized experimental designs 
and evaluation indicators to enhance the overall quality of animal 
experiments, thereby providing reliable scientific evidence for 
clinical applications.

6 Conclusion

This meta-analysis highlights the therapeutic potential of SCFAs 
in animal models of ALI. The overall evidence supports that SCFAs 
can alleviate the severity of ALI, suppress inflammatory responses, 
and reduce oxidative stress levels. Subgroup analyses further suggest 

that SCFAs may have a dose-dependent effect. These findings will 
provide important directions for further research and clinical 
applications in this field.
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