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Background: Spinal diseases and their associated symptoms are prevalent 
across all age groups, and their incidence severely affects countless individuals’ 
quality of life. The role of daily habits in the progression of these diseases is 
increasingly emphasized in research. Moreover, there are reports suggesting 
associations between dietary factors and the onset of spinal diseases. However, 
the exact causal relationship between dietary factors and spinal diseases has not 
been fully elucidated.

Methods: We obtained GWAS data on 16 dietary intake and 187 dietary likings 
from the UK Biobank, and GWAS data on 23 types of spinal disorders from 
FinnGen R10. The analysis of causal effects was conducted using the Inverse 
Variance Weighted (IVW) test, and to ensure robustness, MR-Egger, Weighted 
median, and Bayesian weighted Mendelian randomization (BWMR) were utilized 
to validate the direction. Sensitivity analysis was conducted using the Cochran 
Q test and MR-Egger intercept test. Additionally, Multivariable MR (MVMR) was 
employed to examine the independent effect of alcohol intake frequency.

Results: In summary, our study identified statistically significant causal 
associations between four dietary intake and 10 dietary linkings with various 
spinal disorders through univariable MR, with degenerative spinal changes 
showing the most significant dietary influence. Alcohol intake was identified as 
the primary risk factor, with other risk factors including poultry intake and likings 
for various types of meat. Protective factors mainly included intake and liking 
of fruits and vegetables. Additionally, various supplementary analytical methods 
along with heterogeneity and pleiotropy tests have confirmed the robustness of 
our results. To avoid the interference of diet-related diseases, multivariable MR 
analysis was conducted, showing that the incidence of cervical disc disorders 
may be influenced by gout, diabetes, and hypertension.

Conclusion: This study indicates a potential causal relationship between dietary 
factors and the risk of spinal disorders, providing insights for the early detection 
and prevention. However, the specific pathogenic mechanisms require detailed 
basic and clinical research in the future.
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1 Introduction

Spinal disease (SPD) is one of the most common diseases across 
all age groups, imposing significant and measurable burdens on 
affected patients and healthcare economies (1). SPD encompasses a 
variety of conditions, including degenerative spinal diseases, spinal 
deformities, and inflammatory, infectious, and immune-related spinal 
diseases, as well as disorders of the spinal cord and associated neural 
symptoms. The spine, a complex structure, provides critical protection 
and support for the spinal cord across various body positions and 
postures (2). As individuals age, the spine endures excessive loads, 
leading to widespread degenerative abnormalities affecting both the 
bony structures and intervertebral discs (2, 3). Degeneration of 
intervertebral discs, known as intervertebral disc degeneration 
(IVDD), serves as the pathological basis for many degenerative spinal 
conditions. This degeneration is characterized by a gradual reduction 
in proteoglycan and water content within the nucleus pulposus of the 
discs (4, 5). Symptoms arising from IVDD include low back pain, disc 
herniation, spinal stenosis, and cervical spondylosis (6). With the 
progression of IVDD, the discs may rupture, potentially compressing 
nerves and causing lumbar radiculopathy and sciatica (7, 8). Although 
the exact mechanisms leading to IVDD have not been fully established, 
several contributing factors are recognized, including genetic 
predisposition, age, obesity, smoking, trauma, and abnormal 
non-physiological mechanical loads (9–11). Current clinical treatments 
for IVDD primarily consist of conservative and surgical options that 
alleviate symptoms and reduce pain but do not reverse the condition, 
highlighting the need for early intervention to slow disease progression 
(6). Regarding spinal deformities, these are abnormalities in the 
alignment, formation, or curvature of one or more parts of the spine 
(12). Common spinal deformities include scoliosis, kyphosis, lordosis, 
spinal instability, spinal osteochondrosis, and kissing spine. In 
adolescents, persistent idiopathic scoliosis is prevalent, whereas in the 
elderly, degenerative scoliosis and kyphosis are more common (13, 14). 
Spinal osteochondrosis, also known as Scheuermann’s disease, is the 
second most common growth-related spinal deformity. It affects 
approximately 4–6% of the general population and 1–8% of 
adolescents, with patients presenting with back pain at twice the 
prevalence seen in the general population, and its prevalence may 
be increasing (15, 16). Inflammatory, infectious, and immune-related 
spinal diseases, such as discitis, ankylosing spondylitis, and spinal 
enthesopathy, can lead to inflammatory back pain and excessive spinal 
bone formation (17). Developmental and degenerative anomalies 
affecting spinal substructures can compress the spinal cord and 
associated neural elements, leading to conditions such as myelopathy 
and cauda equina syndrome, which in turn cause neurological 
complications including pain and paralysis, significantly diminishing 
the patient’s quality of life and life expectancy (18).

Dietary habits refer to the long-term patterns and behaviors related 
to food consumption that individuals develop and maintain in their 
daily lives. Positive dietary behaviors are crucial strategies for 
maintaining personal health. In contrast, poor dietary choices 
characterized by excessive consumption of processed foods, added salts, 
and unhealthy fats are associated with an increased risk of chronic 
diseases such as obesity, diabetes, and cardiovascular diseases (19, 20). 
As society has evolved, the drivers of dietary behaviors have shifted 
from the necessity of consuming merely available food to choosing 
from a diverse selection of options (21). Liking for the certain food 

reflect an individual’s hedonic response to food, which is strongly 
correlated with the amount of food consumed, and this liking is 
genetically more stable than the actual quantity of food intaked (21, 22). 
Dietary behaviors are importantly linked to spinal health; a systematic 
review has shown that plant-based diets may alleviate chronic 
musculoskeletal pain, whereas higher intake of protein, fats, sugars, and 
calories are positively correlated with pain intensity (23). Furthermore, 
studies indicate that a daily intake of fruits and vegetables is associated 
with a lower risk of lower back pain (24). Caffeine intake might be a risk 
factor for IVDD, especially if the intervertebral disc is already damaged 
or degenerated (25). Several studies suggest that the development of 
degenerative spinal diseases may result from the interplay between 
genetic and environmental factors. Specific genetic variations may 
influence the structure and function of bones and cartilage, and these 
effects can be  further modulated by environmental factors such as 
micronutrient intake. One example is the polymorphism of the VDR 
gene, where the ApaI A allele has been associated with the occurrence 
of IVDD, potentially affecting disc metabolism and degeneration by 
regulating the vitamin D signaling pathway. This highlights the critical 
role of gene–environment interactions in the progression of spinal 
diseases (26, 27). While dietary patterns play a significant role in 
musculoskeletal health, it is important to note that the conclusions of 
these studies are mostly correlational and do not establish causality.

Mendelian randomization (MR) analysis is an analytical method 
that utilizes genetic instrumental variables from genome-wide 
association studies (GWAS) to assess the causal relationship of specific 
exposures on outcomes (28), mirroring the principles of randomized 
controlled trials (RCTs) (29). Because single nucleotide polymorphisms 
(SNPs) are randomly allocated at conception, MR analysis can 
effectively eliminate confounding factors and reverse causation (29). 
Previous studies have revealed causal relationships between dietary 
intake and low back pain using Mendelian randomization analysis; 
however, these studies did not explore dietary likings or other spinal 
diseases. To address this gap, this study employs MR analysis to 
investigate the causal relationships between dietary factors (16 dietary 
intake and 187 dietary likings) and various spinal diseases, providing 
a basis for designing more effective and precisely targeted dietary 
intervention plans to prevent the progression of specific spinal diseases.

2 Methods

2.1 Study design

We first utilized a two-sample Mendelian randomization (MR) 
analysis to examine the causal effects of dietary intake and likings on 
the risk of spinal and related diseases. In this analysis, single nucleotide 
polymorphisms (SNPs) strongly associated with 16 dietary intake and 
187 dietary likings were used as instrumental variables (IVs). The MR 
analysis was based on three core assumptions: (1) the Correlation 
assumption, stipulating that SNPs are closely related to the exposure 
(dietary factors); (2) the Independence assumption, asserting that SNPs 
are not associated with any potential confounders, such as obesity or 
tobacco use; (3) the Exclusion assumption, positing that SNPs influence 
the outcome (spinal and related diseases) solely through the exposure 
(dietary factors) (Figure  1a). Furthermore, to identify potential 
confounders and mediators, we  included diseases and phenotypes 
significantly related to diet based on previous research, and selected 
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important causal relationships in the two-sample MR analysis for 
multivariable Mendelian Randomization (MVMR) analysis (Figure 1b).

2.2 GWAS data source

In exploring the impact of dietary factors, we utilized two sets of 
genome-wide association studies (GWAS) data, specifically focusing 
on 16 dietary intake habits and 187 dietary likings (21). The 16 dietary 
intake GWAS data we included encompassed alcohol intake frequency, 
beef intake, bread intake, cereal intake, cheese intake, coffee intake, 
cooked vegetable intake, dried fruit intake, fresh fruit intake, lamb/
mutton intake, oily fish intake, non-oily fish intake, pork intake, 
poultry intake, salad/raw vegetable intake and tea intake. These GWAS 
summary-level data were obtained from the UK Biobank (UKB) and 

are accessible for download via the Integrative Epidemiology Unit 
(IEU) open GWAS project.1 The 16 ordinary dietary intake information 
was collected through a touchscreen questionnaire, with detailed 
specifics provided in Supplementary Table S1. Further details are 
available for public inquiry on the UKB website.2 The GWAS summary 
data of food liking was obtained from 161,625 participants from the 
UK Biobank. The degree of liking for each specific food was assessed 
using a 9-point scale and was categorized into three dimensions: 
“Highly-palatable,” “Acquired,” and “Low-caloric” (21). The 
information on food liking is also collected by questionnaires, with 

1 https://gwas.mrcieu.ac.uk/

2 https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100050

FIGURE 1

Schematic representation of the (a) univariable Mendelian randomization analysis and (b) multivariable Mendelian randomization analysis. Three key 
assumptions of MR: (1) genetic variants must be associated with exposures; (2) genetic variants must not be associated with confounders; (3) genetic 
variants must affect outcomes only through exposures, not through other pathways.
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participants rating their liking for each food item on a scale of nine 
levels, ranging from “Extremely dislike” to “Extremely like.” Details of 
the questionnaire can be  found at https://biobank.ndph.ox.ac.uk/
showcase/showcase/docs/foodpref.pdf. Details regarding the intake 
and liking of each food item can be found in the original article and 
research. The basic information of GWAS data for a total of 203 dietary 
factors used as exposures for mendelian randomization in this study is 
presented in Supplementary Tables S2.

The GWAS summary results for spinal and related diseases were 
acquired from the FinnGen R10 database.3 We endeavored to collect 
the spine and its associated conditions data from the FinnGen R10 
GWAS database available, including spondylosis, early lumbar disc 
prolapse (operated), intervertebral disc degeneration, low back pain, 
sciatica, cervical disc disorders, infection of the intervertebral disc 
(pyogenic), ankylosing spondylitis (strict definition), ankylosing 
spondylitis, spinal enthesopathy, scoliosis, spinal instabilities, spinal 
osteochondrosis, spinal stenosis, kissing spine, kyphosis, lordosis, 
osteochondrodysplasia with defects of growth of tubular bones and 
spine, diseases of the spinal cord, cauda equina syndrome, spinal cord 
benign neoplasm, spinal meninges benign neoplasm, and pain in the 
thoracic spine. And we classified these diseases according to the site or 
nature of occurrence into degenerative spinal disorders; inflammatory, 
infectious, and immunity spinal disorders; structural spinal disorders; 
spinal cord and neurologically associated disorders; other spinal 
disorders. The basic information for the GWAS data on the 23 spinal 
and related diseases is presented in Supplementary Tables S3, and 
detailed case information and diagnostic criteria for each disease can 
be  found at https://risteys.finregistry.fi/ (30). For example, the 
diagnosis of IVDD is based on the International Classification of 
Diseases, specifically ICD-10 (M51), ICD-9722, and ICD-8725 
coding standards.

2.3 Instrumental variable selection

In order to identify genetic predictors associated with dietary 
intake and liking, we  implemented a stringent quality control 
procedure. Single-nucleotide polymorphisms (SNPs) that reached the 
genome-wide statistical significance threshold (p < 5.0 × 10−8) for 
association with each dietary intake and liking category were 
considered as potential instrumental variables (IVs). To ensure 
compliance with the assumptions of Mendelian randomization (MR), 
we conducted a linkage disequilibrium (LD) analysis using data from 
the 1,000 Genomes Project, focusing on individuals of European 
ancestry. SNPs that did not meet the criteria (R2 < 0.001, clumping 
distance = 10,000  kb) were excluded from further analysis. 
Additionally, SNPs with a minor allele frequency (MAF) below 0.01 
were excluded from the analysis. Moreover, to avoid weak instrumental 
bias in MR analysis, we calculated the F statistic of each IV. F was 
calculated using the formula:
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R2 represents the proportion of variation interpreted by selected 
SNPs, N represents the number of participants, EAF represents the 
effect allele frequency, and β is the estimated effect of the SNP to assess 
its ability to uniquely predict the outcome. Typically, IVs with low F 
statistics (<10) were removed (31).

2.4 Univariable and multivariable 
Mendelian randomization analyses

We employed the inverse variance weighted (IVW) method as the 
primary approach for analyzing the MR data (32, 33). To ensure the 
robustness of our findings, we  also conducted several sensitivity 
analyses using alternative methodologies, including the commonly 
used MR-Egger regression and weighted median (WM) methods, the 
former can estimate the causal effects using the slope coefficient of 
Egger regression (34), while the latter can prevent up to 50% of invalid 
instrumental variables (IVs) in mendelian randomization analysis (35). 
Additionally, we  utilized the Bayesian weighted Mendelian 
randomization (BWMR), which addresses violations of the 
instrumental variable assumptions due to pleiotropy by Bayesian 
weighted adjustment. This model also considers the uncertainty arising 
from weak effects due to polygenicity, further enhancing the robustness 
of causal inference (36). In analyzing the association between alcohol 
exposure and spinal diseases, and due to the close to 100 instrumental 
variables (IVs), we introduced the Contamination mixture method 
(ConMix) to obtain more robust estimates of causal effects (37). 
Although some of these methods did not yield statistically significant 
results, we  considered the findings positive if the IVW method 
produced significant results (p < 0.05). To assess the impact on spinal 
and related diseases, we calculated odds ratios (OR) along with 95% 
confidence intervals (CIs).

Heterogeneity was evaluated using Cochran’s Q test for the IVW 
and MR-Egger estimates. To investigate potential pleiotropic bias, 
we utilized the MR-Egger regression technique. When the p-value of 
the heterogeneity test is less than 0.05, the Inverse Variance Weighting 
(IVW) method with multiplicative random effects will be employed 
to ensure the robustness of the results. These rigorous analytical 
approaches were employed to ensure the reliability and validity of the 
study’s outcomes. To control for the proportion of false positives in 
multiple testing, we separately performed a false discovery rate (FDR) 
correction for nominally significant associations between dietary 
factors and each selected disease. A PFDR value <0.05 was considered 
as statistically significant. For significant results after FDR correction, 
indicate a significant association; if the initial results of IVW are 
significant but become non-significant after FDR correction, it suggest 
a potential association.

Finally, to uncover potential vertical pleiotropic pathways that 
could arise from specific dietary-related diseases, we  performed 
multivariable Mendelian randomization (MR) analyses. The analyses 
were conducted to estimate the causal effect of dietary-related diseases 
on spinal diseases, including gout, obesity, hypertension, smoking, 
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diabetes and coronary artery disease, after adjusting for five dietary-
related diseases or phenotypes, to assess the potential mediating effects 
of these factors on the risk of spinal diseases. The selection of 
instrumental variables and the parameter settings for multivariable MR 
(MVMR) were consistent with those used in univariable MR.

All statistical analyses were conducted using the “TwoSampleMR,” 
“MendelianRandomization” and “MVMR” package in the R software 
environment (version 4.3.0).

3 Results

3.1 Selection of IVs

To investigate the association between dietary factors and the risk 
of spinal and related diseases, we conducted a MR analysis involving 
203 dietary traits and spinal and related diseases. We ensured the use 
of robust genetic instruments (p-values <5 × 10−8) to establish the 
independence of these traits by excluding palindromic SNPs. The 
instrumental variables exhibited F-statistics that were all significantly 
greater than 10, indicating the absence of weak instrument bias. These 
measures were implemented to ensure the reliability and validity of 
our findings. Detailed information of SNPs for each trait could 
be found in Supplementary Tables 4, 8.

3.2 Exploring the causal effect of dietary 
intake on spinal and related diseases

When statistically significant results after FDR correction show 
contradictory trends between dietary intake and liking in the direction 
of odds ratio (OR), we consider the results to be unreliable and discard 
them. As is depicted in Figure 2, after FDR adjustment, four dietary 
intake traits were identified as statistical significance (PFDR < 0.05) and 
with IVW method used as main method. Alcohol intake frequency 
increase the risk of ankylosing spondylitis (OR: 1.581, 95%CI:1.182–
2.116, Pfdr = 0.033), cervical disk disorders (OR:1.224, 95%CI:1.056–
1.418, Pfdr = 0.037), early lumbar disc prolapse (operated) (OR:1.349, 
95%CI:1.153–1.579, Pfdr = 0.003), IVDD (OR:1.206, 95%CI:1.082–1.344, 
Pfdr = 0.012) and low back pain (OR:1.283, 95%CI:1.145–1.436, 
Pfdr = 0.0001); poultry intake increase the risk of low back pain (OR:3.067, 
95%CI:1.655–5.684, Pfdr = 0.002). For the protective dietary factors, dried 
fruit intake decrease the risk of cervical disk disorders (OR:0.523, 
95%CI:0.355–0.771, Pfdr = 0.017), IVDD (OR:0.645, 95%CI:0.483–0.862, 
Pfdr = 0.024), low back pain (OR:0.457, 95%CI:0.332–0.630, Pfdr = 2.75E-
05), pain in thoracic spine (OR:0.416, 95%CI:0.235–0.733, Pfdr = 0.039), 
sciatica (OR:0.582, 95%CI:0.394–0.860, Pfdr = 0.035) and spondylosis 
(OR:0.531, 95%CI:0.352–0.802, Pfdr = 0.042); cereal intake decrease the 
risk of low back pain (OR:0.645, 95%CI:0.478–0.872, Pfdr = 0.015). For 
the 14 major associations identified above, although the statistical 
significance of the p-value may not be evident when using methods other 
than IVW, our primary focus is on the direction of the odds ratio (OR). 
When multiple methods consistently demonstrate the effect of dietary 
intake on spinal diseases, we consider the results reliable. Additionally, 
we cannot overlook the associations that are no longer significant after 
FDR correction or those that were not significant before correction. The 
magnitude of the OR and the width of the confidence interval (CI) used 
to explain these potential associations also hold significant importance 

in statistics (38, 39). For sensitive analysis, The intercept of MR-Egger 
indicated that there was no horizontal pleiotropy which showed the 
robustness of the results. Detailed information for all MR results and 
sensitive analysis between dietary intake and spinal diseases could 
be found in Supplementary Tables 5, 6, 7, respectively.

3.3 Exploring the causal effect of food 
liking on spinal and related diseases

Diet liking does not solely reflect daily dietary preferences, but 
rather encompasses specific hedonic response toward each food, 
which exhibit a stronger genetic correlation than dietary intake (22). 
As is depicted in Figure 3, after FDR adjustment, 10 dietary liking 
traits were identified as statistic significance (PFDR < 0.05) and with 
IVW method used as main method. BBQ or grilled meat liking 
increase the risk of spinal stenosis (OR:1.631, 95%CI:1.371–1.942, 
Pfdr = 6.03E-06); beef or steak liking increase the risk of IVDD 
(OR:1.270, 95%CI:1.112–1.451, Pfdr = 0.023), sciatica (OR:1.437, 
95%CI:1.225–1.685, Pfdr = 0.001) and spinal stenosis (OR:1.470, 
95%CI:1.173–1.842, Pfdr = 0.035); chicken liking increase the risk of 
IVDD (OR:1.575, 95%CI:1.269–1.954, Pfdr = 0.003), pain in thoracic 
spine (OR:3.066, 95%CI:1.739–5.403, Pfdr = 0.018) and sciatica 
(OR:1.765, 95%CI:1.313–2.373, Pfdr = 0.014); ham liking increase the 
risk of spinal stenosis (OR:1.431, 95%CI:1.206–1.697, Pfdr = 0.002); red 
meat liking increase the risk of IVDD (OR:1.248, 95%CI:1.090–1.431, 
Pfdr = 0.036); roast chicken liking increase the risk of IVDD (OR:1.572, 
95%CI:1.288–2.308, Pfdr = 0.014) and sciatica (OR:1.724, 
95%CI:1.288–2.308, Pfdr = 0.014). For the protective dietary factors, 
avocado liking decrease the risk of IVDD (OR:0.876, 95%CI: 0.807–
0.951, Pfdr = 0.036); F-salty food liking (derived food-liking factor) 
decrease the risk of IVDD (OR:0.873, 95%CI: 0.803–0.949, 
Pfdr = 0.036); F-strong vegetable liking (derived food-liking factor) 
decrease the risk of early lumbar disc prolapse (operated) (OR:0.825, 
95%CI:0.746–0.913, Pfdr = 0.033) and IVDD (OR:0.825, 95%CI:0.746–
0.913, Pfdr = 0.033); F-wine liking (derived food-liking factor) decrease 
the risk of IVDD (OR:0.682, 95%CI:0.537–0.867, Pfdr = 0.036). The 
identification of the significance of data and sensitivity analysis 
operations are as previously described. Detailed information for all 
MR results and sensitive analysis between dietary liking and spinal 
diseases could be found in Supplementary Tables 9, 10, 11, respectively.

3.4 Multivariable MR analysis

Considering the overall significant associations (Pfdr < 0.05) and 
the number of SNPs used as instrumental variables for each exposure, 
we identified alcohol intake as the most critical risk factor.

We included five diseases or phenotypes associated with alcohol 
intake, including gout, obesity, hypertension, smoking, diabetes and 
coronary artery disease, for the MVMR analysis to evaluate the 
independent effects of alcohol intake frequency on six causality-
enriched outcomes (ankylosing spondylitis, cervical disk disorders, 
early lumbar disc prolapse (operated), IVDD, low back pain and 
sciatica). The results indicated that after adjusting diabetes (adjusted 
OR = 1.16 (0.99–1.36); p = 0.07), hypertension (adjusted OR = 1.10 
(0.93–1.30); p = 0.28), and gout (adjusted OR = 1.09 (0.89–1.34)), the 
causal relationships between alcohol intake and cervical disk disorders 
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was no longer significant. This suggests that these diseases may have 
potential mediating or direct effects in the progression of cervical disk 
disorders. All multivariable Mendelian randomization results are 
presented in Supplementary Table 12. Additionally, beyond focusing 
on changes in p-values, we also consider changes in the OR values in 
the causal relationship after adjusting diet-related factors; significant 
attenuation of OR values can also be considered indicative of potential 
mediating pathways (40, 41). Thus the variation in the OR values 
further illustrates that hypertension, diabetes, and gout may act as 
mediating factors in the progression of cervical disk disorders 
facilitated by alcohol consumption (original OR = 1.22).

4 Discussion

The results of this study encompass findings that are both 
statistically significant and suggestive. In this study, we  have 
collected the most comprehensive GWAS data available, 
encompassing both objectively measured dietary intake and 
subjectively dietary likings, as well as a wide range of potential spinal 
disease outcomes. Our MR analysis has found that degenerative 
spinal diseases are the most significant outcomes influenced by 
dietary factors. In terms of dietary intake, the consumption of 
alcohol and poultry has been identified as significant risk factors, 

FIGURE 2

(a) Bubble plot for the results of MR analysis. Dot size indicates p values generated by IVW method, which be color-coded according to p value 
thresholds of 0.05, 0.01, 0.005, and 0.001. Pfdr ≤ 0.05 be marked with an asterisk (*). (b) Forest plot of the causality between dietary intake and spinal 
diseases using IVW method. CI, confidence interval; FDR, false discovery rate; OR, odds ratio; IVW, Inverse variance weighted; MRE, Multiplicative 
random effects.
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whereas dried fruit and cereal have acted as protective factors. 
Regarding dietary likings, likings for chicken, roast chicken, beef or 
steak, red meat, grilled or BBQ meat, and ham was found to 
be associated with an increased risk of disease. Conversely, likings 
for vegetable, salty food, avocado, and red wine were found to 
be protective factors. This comprehensive evaluation highlights the 
complex interactions between diet and spinal health, emphasizing 
the importance of dietary choices in managing and potentially 
preventing spinal diseases. Additionally, to our knowledge, there has 
not yet been a Mendelian randomization analysis investigating the 
causal relationships between dietary likings and the risk of spinal 
diseases. This makes our study the most comprehensive MR analysis 
to date exploring the causal relationships between dietary factors 
and spinal health.

This MR analysis has found that Intervertebral Disc Degeneration 
(IVDD) is the primary spinal disease influenced by dietary factors. 
IVDD is a common degenerative condition associated with a range of 
spinal degenerative diseases, including low back pain, sciatica, disc 
herniation, and spinal stenosis. These diseases pose significant 
challenges to both patients and society (42). The intervertebral disc 
(IVD) is composed of the nucleus pulposus (NP), annulus fibrosus 
(AF), and cartilaginous endplates (CEP), all of which are vital for 
spinal movement and load distribution. The NP is particularly crucial 
as it contains a high concentration of water and extracellular matrix 
(ECM), which are pivotal in sustaining the disc’s functionality. 
Although the exact mechanisms underlying IVDD are still unclear, 
numerous studies have highlighted the role of inflammation in the 
disease’s progression (43–46).

This MR study confirmed that alcohol intake is a risk factor for 
various degenerative spinal diseases. Some retrospective studies have 
assessed the relationship between alcohol consumption and lower 
back pain, but they did not reach definitive conclusions (47, 48). 
However, a MR study later identified an increased risk of low back 
pain associated with alcohol intake (42). As IVDD is the most 
significant cause of lower back pain, the relationship between alcohol 
consumption and IVDD is receiving increasing clinical attention. A 
previous study through surveys found a higher prevalence of alcohol 
abuse in individuals with IVDD compared to the general population; 
however, the small sample size limited the generalizability of these 

findings (49). Khatun et al. found that alcohol consumption from 
adolescence to early adulthood has a detrimental effect on IVDD 
(50), while Ning Zhang and colleagues reviewed clinical evidence on 
alcohol consumption and IVDD, finding that moderate drinking 
could potentially reduce the risk of IVDD (51). However, compared 
to abstainers, individuals with low to moderate alcohol intake have 
healthier lifestyles overall, suggesting that the observed effects on 
IVDD may be confounded by lifestyle factors. High frequency of 
alcohol consumption could exacerbate inflammatory processes by 
promoting the expression of inflammatory markers such as TNF-α, 
leading to a progressively amplified inflammatory cascade and 
sustained inflammatory state, ultimately causing IVDD. Another 
possible explanation is that chronic alcohol consumption leads to 
methylation changes in the DNA of inflammation-related genes 
(including HERC5), playing a fundamental role in the transcription 
of inflammatory genes and exacerbating the inflammatory response, 
ultimately contributing to IVDD (52, 53). Furthermore, excessive 
alcohol consumption may disrupt hormonal balance, particularly 
estrogen levels (54). Estrogen has been shown to inhibit IVDD 
through various mechanisms, including the downregulation of 
MMP-3 and MMP-13, upregulation of type II collagen, inhibition of 
the NF-κB signaling pathway, reduction of inflammatory factors 
IL-1β and TNF-α, suppression of matrix metalloproteinases to reduce 
catabolism, upregulation of integrins α2 and β1, enhancement of 
IVD synthetic metabolism, activation of the PI3K/Akt pathway, 
mitigation of oxidative damage, and promotion of autophagy (55–
57). Furthermore, Chronic alcohol consumption not only impairs 
liver and kidney function but also induces long-term alterations in 
the gut microbiota, including a significant reduction in Lactobacillus 
and Bifidobacterium populations and an increase in inflammation-
related opportunistic pathogens such as Enterobacteriaceae. 
Additionally, excessive alcohol intake is closely associated with 
reduced vitamin D levels and influences the genetic polymorphism 
of the vitamin D receptor (VDR), which is considered a major 
contributing factor to low bone mineral density and bone diseases in 
patients. Vitamin D regulates the immune system through the VDR, 
enhancing intestinal epithelial barrier integrity, while the gut 
microbiota modulates immune cell activity by metabolizing short-
chain fatty acids (SCFAs). Together, these mechanisms synergistically 

FIGURE 3

Forest plot of the causality between dietary likings and spinal diseases using IVW method. CI, confidence interval; FDR, false discovery rate; OR, odds 
ratio; IVW, Inverse variance weighted; MRE, Multiplicative random effects.
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improve epithelial defense and immune regulation. Deficiency in 
vitamin D and gut microbiota dysbiosis collectively result in immune 
dysregulation, promoting the progression of chronic inflammation, 
which may represent a critical mechanism underlying chronic spinal 
disease (58–60). In summary, while the mechanisms by which high 
alcohol intake frequency triggers IVDD are not yet fully understood, 
our findings can help clinicians educate IVDD patients or those at 
high risk to reduce their drinking frequency, thus potentially 
decreasing the incidence of IVDD from a dietary habit perspective.

Likings for food is an individual’s hedonic response to food, a 
complex trait influenced by genetics, biology, psychology, and 
environment (61, 62). A study on children aged 7–10 years confirmed 
that food likings are significantly associated with children’s food 
choices and intake (63). Hence, discovering or fostering a liking for 
certain types of food can facilitate targeted dietary interventions. Our 
MR study identified the liking for wine as a protective factor of 
IVDD. This could be due to the broad acceptance of wine and its 
unique components. A cohort study based on the Swedish population 
showed that, compared to spirits and beer, the group that prefers 
drinking red wine had a lower incidence of heavy drinking and 
alcohol abuse (64). Another study on the types of alcoholic beverages 
consumed by American subpopulations revealed that individuals with 
a four-year college degree/higher education and higher incomes 
prefer wine over those with lower educational levels and middle to 
low incomes (65). This suggests that the group liking wine might 
be  more capable of controlling drinking patterns, having lower 
drinking frequency and alcohol intake, thereby reducing the risk of 
developing IVDD. As for the unique components in the wine, for 
instance, Resveratrol (RSV) is a polyphenolic phytoalexin found in 
various plants and wine and research indicates that RSV inhibits 
inflammation and oxidative stress, suppresses apoptosis and aging in 
NP cells, promotes autophagy, and enhances ECM synthetic 
metabolism and anti-catabolic metabolism, thereby preventing 
further degeneration of intervertebral disc cells (66, 67). Although our 
research highlights the positive role of the liking for wine in reducing 
the risk of IVDD, excessive drinking has been proven harmful, and 
merely a liking for wine as a protective factor necessitates further 
investigation into the specific intake levels of red wine in mitigating 
IVDD (68).

This MR analysis first revealed that that a liking for chicken, roast 
chicken, beef or steak, red meat, BBQ or grilled meat and ham as well 
the intake of poultry has been associated with a higher risk of spinal 
degenerative diseases. However, to our knowledge, there is currently 
no research exploring the causal relationship between meat 
consumption and IVDD. A possible explanation is that the processing 
of these foods, especially during baking, frying, and grilling, leads to 
the formation of significant amounts of Advanced Glycation 
End-products (AGEs), which are ingested into the body with the diet. 
The accumulation of AGEs can cause tissue damage and deformation 
and has been shown to be associated with diseases such as diabetes, 
cardiovascular diseases, kidney diseases, and neurodegenerative 
diseases (69–71). Studies indicate that as age increases, the deposition 
of AGEs in the IVD increases, and can be accelerated by diabetes and 
a high-AGEs diet, leading to the destruction of the annulus fibrosus 
(AF), nucleus pulposus (NP), and cartilaginous endplate (CEP), 
ultimately resulting in disc degeneration (72). Divya et al. validated 
the hypothesis that long-term consumption of a high-AGEs diet leads 
to gender-specific structural and functional changes in IVD using the 
mouse model (73). Dietary adjustments and interventions to reduce 

AGEs could be an effective measure to control the progression of 
spinal degenerative diseases. The pathogenesis of IVDD is closely 
associated with elevated levels of pro-inflammatory mediators in the 
body. A possible reason why the intake of cereal reduces the risk of 
IVDD is that these foods lower the body’s inflammatory state (74, 
75). Furthermore, these foods may improve symptoms associated 
with musculoskeletal disorders by modulating the immune system 
and pain perception (76, 77). A liking for vegetables and increased 
vegetable intake are related and may reduce the occurrence of spinal 
degenerative diseases by decreasing systemic and central 
inflammation (78). Research found that supplementing with 
Omega-3 fatty acids can reduce the serum AA/EPA ratio, alleviate 
systemic inflammation, and potentially protect against the 
progression of disc degeneration (79). This aligns with our findings 
that vegetables favored in the diet, such as spinach, avocados, and 
asparagus, which are rich in Omega-3 fatty acids, may lower the risk 
of spinal degenerative diseases.

Our MVMR study results indicate that after including gout, 
diabetes, and hypertension, the causal relationship between alcohol 
intake frequency and cervical disc disorders becomes non-significant. 
This suggests the potential for a mediating effect of alcohol in the 
development of cervical disc disorders. The primary cause of cervical 
disc diseases is degenerative changes leading to cervical disc 
herniation or cervical spondylosis, with other causes including 
trauma-related acute cervical injuries (80). Alcohol has been 
considered a risk factor for gout for a long time. A follow-up study of 
health professionals reported a significant correlation between 
alcohol intake and increased risk of gout (81). Research by Saki 
Teramura et al. also identified hypertension and alcohol consumption 
as risk factors for hyperuricemia or gout in men (82). Furthermore, 
hypertension and diabetes have been linked to excessive drinking. 
However, few studies have assessed the correlation between gout, 
diabetes, hypertension, and cervical disc disorders. Hyperuricemia is 
a major risk factor for symptomatic gout and can lead to various 
complications, including gout, metabolic syndrome, coronary artery 
disease, and type 2 diabetes. Metabolic syndrome is characterized by 
a cluster of physiological and anthropometric abnormalities, 
including elevated blood sugar levels, obesity, hypertension, elevated 
triglycerides, and low HDL cholesterol (83–85). Thus, excessive 
alcohol intake can lead to complications such as hyperuricemia, gout, 
hypertension, or diabetes, which may indirectly affect the 
development of cervical disc disorders. To date, no studies have 
explored the relationship between hyperuricemia and cervical disc 
disorders, and this hypothesis requires further investigation to 
be confirmed. Furthermore, our MVMR analysis included only a 
subset of diseases. A systematic exploration is required to understand 
the interrelationships between more diet-related diseases and 
spinal disorders.

Furthermore, our MR study did not find statistically significant causal 
relationships between dietary factors and other spinal diseases 
unmentioned. Due to space constraints, we were unable to discuss all the 
spinal diseases included in our study; however, we  can provide an 
illustrative example. Previous research by Benjamin et al. demonstrated 
that obesity, particularly when accompanied by diabetes, is associated 
with a higher incidence of Staphylococcus aureus infections and poses a 
risk factor for inflammatory spinal discitis (86). Consequently, 
we consider that metabolic diseases such as obesity and diabetes may have 
a more significant role in discogenic infectious diseases compared to 
merely dietary factors. Sarcopenia and degenerative changes in the back 
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muscles have been identified as risk factors for adult degenerative spinal 
deformities with sagittal imbalance (87). A retrospective cohort study 
suggested that infections might lead to bone destruction, thus leading to 
spinal deformities (88). However, no studies have established a correlation 
between diet and spinal deformity. Moreover, our MR findings indicate 
that there is no causal relationship between dietary factors and spinal 
deformities. It is likely that dietary factors do not significantly influence 
the development of spinal deformities, which are more closely related to 
genetic susceptibility, daily posture, and spinal activity state.

5 Restrictions

Since our Mendelian randomization study was based on existing 
GWAS data available, the reliability of our conclusions is largely 
dependent on the quality of the GWAS data used. Additionally, due 
to limitations in the sources of the GWAS data, our study was 
confined to European populations. In the future, we hope to include 
more diverse populations and more comprehensive GWAS data 
covering a wider range of exposures and outcomes to derive more 
extensive and credible causal conclusions. Considering the limitations 
of MR, its findings should be  applied and generalized with great 
caution and require further external validation. Nevertheless, our 
study provides preliminary causal evidence linking dietary factors to 
spinal diseases.

6 Conclusion

In summary, our study has extensively delved into the impact of 16 
dietary intake and 187 dietary likings on 23 spinal diseases, and 
incorporated six diseases highly correlated with diet to differentiate 
confounding factors and explore mediating effects. Our findings reveal 
that degenerative spinal diseases are most significantly influenced by 
dietary factors, with alcohol intake emerging as the most significant risk 
factor. Additionally, the development of cervical disc disorders may 
be associated with certain diet-related diseases. These insights, providing 
direct or indirect causal evidence, enhance our understanding of how 
dietary factors can promote or protect against the occurrence and 
progression of spinal diseases. This knowledge not only enables targeted 
interventions to prevent or alleviate the progression of spinal diseases 
based on population dietary intake but also holds promise for predicting 
future risk of spinal diseases based on an individual’s current dietary 
intake and likings, allowing for timely interventions.
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