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Amino acids are fundamental components of all living cells, serving not only 
as the building blocks of proteins but also as crucial sources of energy and 
precursors to key metabolites and signaling molecules. Amino acid transporters, 
specialized membrane proteins, facilitate the movement of amino acids across 
plasma membranes and between various cells and organ compartments. The 
malfunction, absence, or overexpression of specific amino acid transporters is 
linked to several human diseases. Among the extensive family of solute carrier 
proteins (SLCs), which comprises 458 transporters, the SLC7 transporter family, 
inclusive of CATs (Cationic Amino Acid Transporters) and LATs (L-type Amino Acid 
Transporters), is particularly instrumental in cellular amino acid uptake. Disruptions 
in amino acid transport can lead to significant metabolic abnormalities in diabetes, 
characterized by impaired insulin signaling and altered glucose metabolism. A 
deeper understanding of amino acid transporters’ roles in metabolic processes 
and insulin signaling could shed light on the pathogenesis of diabetes and unveil 
novel therapeutic targets for this pervasive metabolic syndrome.
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1 Introduction

The SLC7 transporter family, which includes several subfamilies such as the cationic 
amino acid transporters (CATs, SLC7A1–4) and the large neutral amino acid transporters 
(LATs, SLC7A5/8), plays a pivotal role in the cellular uptake of amino acids (1). These 
transporters are involved in a multitude of physiological processes, including protein synthesis, 
neurotransmitter production, and cellular signaling (2–4). Dysregulation of these transporters 
is increasingly recognized for its role in the pathogenesis of metabolic disorders such 
as diabetes.

Diabetes is marked by metabolic chaos, resulting in chronic hyperglycemia and 
compromised insulin signaling (5). This metabolic derangement is characterized by the 
defective handling of glucose, encompassing its uptake, utilization, and storage, as well 
as disturbances in both lipid and amino acid metabolism (6–8). These disruptions are 
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central to the development of insulin resistance, β-cell dysfunction, 
and the hyperglycemic state that typifies diabetes mellitus 
(7, 9–11).

The role of amino acid transport is particularly critical in 
metabolic pathways and insulin signaling (12, 13). Amino acids not 
only provide the substrate for protein synthesis but also serve as 
precursors to various metabolic intermediates (14). Moreover, amino 
acids function as signal transducers, orchestrating metabolic pathways 
such as the mTOR pathway, a key regulator of cell growth and 
metabolic function (13, 15). Among the amino acid transporters, 
those belonging to the SLC7 family are of special importance due to 
their role in mediating cellular amino acid uptake, thereby directly 
affecting metabolic regulation and insulin signaling (16–18). The 
dysregulation of amino acid transport is implicated in the development 
of insulin resistance and, consequentially, diabetes (13, 19).

2 SLC7 transporters and metabolic 
function

2.1 Amino acid sensing and insulin 
signaling

Amino acid sensing is a critical cellular process involving the 
detection of amino acids through various signaling pathways, most 
notably by the mechanistic target of rapamycin complex 1 (mTORC1) 
(20–22). Amino acids activate mTORC1, a regulatory hub influencing 
protein synthesis and autophagy (23). Disturbances in amino acid 
sensing, particularly with branched-chain amino acids (BCAAs), have 
been linked to metabolic disorders, including insulin resistance and 
diabetes (22, 24–26).

Insulin signaling is another pivotal pathway, commencing with 
the binding of insulin to its receptor and governing glucose uptake, 
protein synthesis, lipid metabolism, and gene expression (27–29). Akt, 
an essential downstream effector of insulin signaling, is instrumental 
in facilitating glucose uptake into cells (28, 30–33). Dysregulation of 
this pathway is a contributing factor to insulin resistance and 
associated metabolic diseases (30, 34, 35), including Type 2 diabetes, 
non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and obesity-
related complications.

The interconnection between amino acid sensing and insulin 
signaling encompasses intricate interactions. BCAAs, for instance, 
affect insulin sensitivity and signaling, whereas insulin signaling 
modulates mTORC1 activity (36–38). The mTOR signaling pathway 
stands as a crucial mediator in the dialogue between insulin action 
and amino acid availability (20, 39, 40). Insulin activation of mTOR 
leads to the activation of ribosomal S6 kinase 1 (S6K1), promoting the 
phosphorylation of S6, which in turn regulates translation initiation 
(15, 41, 42). Notably, the activation of mTOR or S6K1 can lead to the 
phosphorylation of the insulin receptor substrate-1 (IRS-1) (43–45), 
thereby inhibiting insulin signaling pathways (46). Understanding the 
intricate crosstalk between these pathways is vital for elucidating the 
molecular basis of metabolic diseases and forging pathways toward 
targeted therapeutic interventions.

In this context, we  highlight the significant role of the SLC7 
transporter family in mediating cellular amino acid availability, 
thereby influencing insulin signaling and regulation of the mTOR 
pathway (20, 38, 40, 47–49) (Table 1).

2.2 Glucose homeostasis

Amino acids are known to potentiate insulin-mediated glucose 
uptake, particularly in the case of macroneutral amino acids such as 
leucine, valine, and isoleucine (50, 51). This effect is often attributed 
to the activation of the mTOR signaling pathway, which enhances the 
translocation of the glucose transporter GLUT4 to the cell membrane, 
thereby facilitating glucose uptake (15, 52–54). Additionally, a 
correlation has been observed, in several studies, between elevated 
amino acid levels-especially of branched-chain amino acids 
(BCAAs)-and the emergence of insulin resistance as well as metabolic 
syndrome (22, 26). A plausible explanation for this association is that 
excessive amino acid concentrations result in aberrant activation of 
the insulin signaling pathway, which, in turn, interferes with glucose 
uptake and metabolism (14, 17, 53, 55, 56).

Integral to the transport system are the large neutral amino acid 
transporters, LAT1, and LAT2, which share approximately 48% 
sequence homology (32, 57, 58). They form transporter complexes 
with 4F2hc, namely 4F2hc-LAT1 (SLC3A2-SLC7A5) and 4F2hc-
LAT2 (SLC3A2-SLC7A8), which are essential for the proper 
localization of LATs to the plasma membrane (1, 3, 4, 59). LAT1 
preferentially transports large neutral amino acids with branched or 
aromatic side chains, whereas smaller neutral amino acids are the 
substrates of choice for LAT2 (60–63). Fluctuations in amino acid 
concentrations can modulate various components of the insulin 
signaling cascade, such as the insulin receptor, insulin receptor 
substrate-1 (IRS-1), Akt, and mTORC1 (17, 33, 64). The presence of 
certain amino acids consequently enhances the functionality of the 
insulin signaling pathway, further promoting glucose uptake and 
metabolism (8, 9, 34).

In sum, current evidence indicates that shifts in amino acid 
metabolism can exert significant effects on glucose uptake and 
metabolism through a host of cellular mechanisms. For instance, 
studies have demonstrated that elevated levels of branched-chain 
amino acids (BCAAs) can disrupt insulin signaling pathways, thereby 
impairing glucose uptake in skeletal muscle cells (65, 66). This 
disruption may be associated with the activity of SLC7 transporters, 
such as LAT1 (SLC7A5), which facilitate the uptake of BCAAs into 
cells (67). When LAT1 is overactive, it can lead to an excessive influx 
of BCAAs, triggering metabolic stress and subsequent insulin 
resistance (68, 69).

Nevertheless, a more comprehensive understanding of the 
complex interactions among SLC7 transporter activity, amino acid 
concentrations, and glucose homeostasis remains a critical area for 
further investigation. Specifically, the precise regulatory mechanisms 
by which SLC7 transporters respond to dynamic changes in amino 
acid profiles and how these responses, in turn, modulate glucose 
metabolism across different tissues are not fully elucidated. 
Additionally, the role of post-translational modifications, such as 
phosphorylation and glycosylation, in fine-tuning SLC7 transporter 
function within the context of amino acid-glucose crosstalk requires 
in-depth exploration (70).

Such insights underscore the significance of maintaining amino 
acid equilibrium and transporter functionality in the management of 
metabolic health and disease. For example, in diabetes patients, 
dysregulation of SLC7 transporters and imbalances in amino acid 
metabolism may exacerbate hyperglycemia. Therefore, developing 
targeted therapies that can restore the proper activity of SLC7 
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transporters and rebalance amino acid levels could potentially offer 
novel strategies for improving glucose control and overall 
metabolic health.

3 SLC7 family members in diabetes 
pathophysiology

3.1 SLC7 transporter alterations in diabetes

Alterations in the expression or function of solute carrier family 
7 (SLC7) transporters are implicated in the pathogenesis of diabetes, 
with effects spanning multiple tissues integral to glucose and amino 
acid metabolism (71, 72). Empirical evidence has confirmed the 
presence of impaired amino acid transport in the skeletal muscle of 
individuals with Type 1 Diabetes (T1D) (73–76). For example, studies 
have shown that specific mutations or dysregulation in SLC7 
transporters can lead to reduced BCAA uptake in skeletal muscle cells, 
disrupting the normal amino acid-glucose metabolic crosstalk. 
Alterations in SLC7 transporter expression or activity within muscle 
tissues may contribute to the development of insulin resistance and 
broader metabolic dysfunction. In particular, the transporter LAT1 is 
critical for the uptake of branched-chain amino acids (BCAAs) like 
leucine, which play a significant role in insulin secretion from 
pancreatic beta cells. Elevated plasma levels of BCAAs, notably 
leucine, isoleucine, and valine, are commonly observed in individuals 
with Type 2 Diabetes (T2D) (16, 77–79). The increased BCAA levels 
are thought to activate certain intracellular signaling pathways, such 
as the mTOR pathway, which can lead to insulin resistance when 
overactivated (80). These increased amino acid levels correlate with 
insulin resistance and a heightened risk of developing T2D (81, 82). 
Additionally, Type 2 diabetes is often characterized by aberrant amino 
acid metabolism in the liver—a key site for regulating gluconeogenesis, 

lipid metabolism, and insulin sensitivity (83–85). Modifications in 
SLC7 transporter expression or functionality within hepatocytes exert 
profound influences on these metabolic processes. For instance, 
changes in the activity of SLC7A14, a member of the SLC7 family, can 
lead to the accumulation of lysosomal γ-aminobutyric acid (GABA), 
which impairs hepatic insulin sensitivity via inhibiting mTOR 
complex 2 (mTORC2)’s activity (86). It is also noteworthy that certain 
antidiabetic medications, such as metformin and thiazolidinediones, 
have been documented to affect amino acid metabolism and SLC7 
transporter activity across various tissues (87–89). Metformin, for 
example, has been shown to restrict the tertiary control of BCAA 
cellular uptake by suppressing the activity of certain amino acid 
transporters, including those in the SLC7 family (90).

To sum up, the precise molecular underpinnings that link SLC7 
transporter alterations to diabetes remain to be fully delineated. A 
deeper comprehension of these relationships holds the potential to 
unlock novel therapeutic targets and strategies for 
diabetes management.

3.2 SLC7 and insulin resistance

Numerous studies utilizing animal models and human biological 
samples have enhanced our understanding of the ways in which SLC7 
transporter expression or function is altered in the context of insulin 
resistance. Skeletal muscle, a primary tissue responsible for insulin-
stimulated glucose uptake, is a focal point of such research (91–93). 
Evidence suggests that in insulin-resistant animal models, the 
downregulation of SLC7A5 (LAT1) and SLC7A8 in skeletal muscle 
leads to impaired amino acid transport (94). This reduction in amino 
acid uptake can disrupt the activation of the mammalian target of 
rapamycin (mTOR) pathway, which relies on amino acid availability 
for its proper function (95). Since the mTOR pathway is closely 

TABLE 1 The specific functions of SLC7 transporters in metabolism-related pathway.

Amino acid sensing Insulin signaling mTOR pathway (38, 49)

HATs (Lat1, 

Lat2)

Bind with 4F2hc (proper localization and 

function on the cell surface)

Increasing glucose uptake in response to insulin 

stimulation (promoting the transport of large 

neutral amino acids)

Considered to be major regulators of the amino 

acid-dependent mTORC1 signaling pathway

Promote the trans-membrane transport of large 

neutral amino acids (Especially branched or 

aromatic amino acids)

Promoting the phosphorylation of insulin 

receptor subunits

Activating the mTORC1 signaling pathway by 

transporting amino acids (especially arginine and 

leucine)

Promoting protein synthesis and cell 

proliferation

rBAT 

(SLC3A1)

Binding to LAT1 or LAT2 promotes the 

reabsorption of cystine by renal tubules 

(maintain the homeostasis of cystine levels)

The binding to LAT1 or LAT2 helps to enhance 

the efficiency of insulin signaling.

The presence of rBAT enhances the stability and 

function of LAT1 or LAT2 on the cell membrane, 

(enhanced the activation of the mTOR signaling 

pathway)

rBAT ensures the proper functioning of HATs in 

the kidney (maintains the balance and 

metabolism of amino acids)

4F2hc 

(SLC3A2)

4F2hc acts as a chaperone protein for LAT1 or 

LAT2, contributing to their proper folding, 

expression, and localization to the cell 

membrane.

The presence of 4F2hc helps protect LAT1 or 

LAT2 from protein degradation and enhances 

their stability on the cell membrane, thereby 

maintaining the normal function of the insulin 

signaling pathway.

Binding of 4F2hc helps protect LAT1 or LAT2 

from protein degradation and enhances their 

stability on the cell membrane, (affecting the 

activation of the mTOR signaling pathway and 

protein synthesis)
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intertwined with insulin signaling, its disruption can ultimately lead 
to decreased insulin sensitivity and impaired glucose metabolism 
(96–100).

Furthermore, research involving human adipose tissue has 
revealed changes in SLC7 transporter expression, notably of LAT1 
(SLC7A5), in individuals affected by obesity and insulin resistance (70, 
101, 102). LAT1-mediated amino acid uptake in adipocytes promotes 
the synthesis of triglycerides, contributing to adipocyte hypertrophy. 
Additionally, elevated amino acid levels taken up by LAT1 can trigger 
the activation of the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) pathway in adipocytes, leading to the 
production of pro-inflammatory cytokines (103). This chronic 
low-grade inflammation within adipose tissue is a key factor in the 
development of systemic insulin resistance (101, 104, 105) (Figure 1).

While LAT1 inhibitors present a promising therapeutic strategy, 
it is crucial to consider their potential side effects. For example, as 
LAT1 is involved in intestinal amino acid absorption, inhibition of 
LAT1 may disrupt this process, potentially leading to malnutrition 
(106). In addition, given the role of LAT1 in maintaining amino acid 
balance across the blood-brain barrier (107), its inhibition could affect 
the normal functioning of the central nervous system by altering the 
levels of amino acids available to the brain.

3.3 SLC7 and β-cell function

Amino acids, notably leucine and arginine, act as important 
secretagogues for insulin, inducing its release from pancreatic β-cells 
(108–111). Specific SLC7 family transporters, such as LAT1 (SLC7A5) 
and CAT-1 (SLC7A1), mediate the uptake of these amino acids into 
β-cells (110, 112–114). Once inside the β-cells, leucine, for example, 
binds to specific sensors, which then trigger a cascade of intracellular 
events. It activates the Sestrin2-GATOR2-GATOR1 axis, a key regulator 
in the mTORC1 activation pathway (115). This activation ultimately 
leads to the translocation of mTORC1 to the lysosomal surface, where 
it can interact with its upstream activator, Rheb-GTP (116). The SLC7-
mediated amino acid transport is essential for this process, as a sufficient 

influx of amino acids is required to maintain the proper function of the 
sensors and downstream signaling components.

The activation of mTORC1 by amino acids, facilitated by SLC7 
transporters, exerts multiple beneficial effects within β-cells. It stimulates 
protein synthesis through the phosphorylation of ribosomal protein S6 
kinases (S6Ks) and eukaryotic initiation factor 4E-binding proteins 
(4E-BPs) (117–119). This enhanced protein synthesis is crucial for the 
production of various proteins involved in insulin biosynthesis and 
secretion machinery, such as insulin itself, proinsulin-converting 
enzymes, and components of the secretory granules. Moreover, mTORC1 
activation also promotes β-cell growth and proliferation. It upregulates 
the expression of cyclins and cyclin-dependent kinases (CDKs), which 
are key regulators of the cell cycle progression (120). By enhancing β-cell 
mass and function, the SLC7-mTORC1 axis contributes to maintaining 
normal insulin secretion in response to physiological demands.

Beyond their role in amino acid transport, SLC7 transporters, such 
as SLC7A11 (also known as xCT), play a crucial role in the uptake of 
cystine, an essential precursor for the synthesis of the antioxidant 
glutathione (15, 121–124). Pancreatic β-cells are highly vulnerable to 
oxidative stress due to their relatively low antioxidant defense system 
and high endogenous production of reactive oxygen species (ROS) (125, 
126). Oxidative stress can lead to DNA damage, protein oxidation, and 
lipid peroxidation within β-cells, ultimately resulting in impaired insulin 
secretion, β-cell dysfunction, and apoptosis. Cystine, once transported 
into the β-cells by SLC7A11, is reduced to cysteine. Cysteine is then 
incorporated into the glutathione synthesis pathway, where it combines 
with glutamate and glycine, catalyzed by specific enzymes, to form 
glutathione. Glutathione acts as a major intracellular antioxidant, 
scavenging ROS and maintaining the redox balance within β-cells (127–
130). Thus, the transport of cystine via SLC7 transporters provides a 
vital protective mechanism against oxidative damage, safeguarding the 
normal function and survival of pancreatic β-cells (Figure 2).

4 Potential therapeutic implications

4.1 Drug targets now available inhibitors 
targeting

Inhibitors aimed at LAT1 are currently under consideration for 
cancer therapy, taking advantage of the transporter’s role in facilitating 
amino acid transport and supporting the proliferation of cancer cells 
(131–133). For instance, JPH203, developed in Japan, has entered 
clinical trials. It has shown potential in pre-clinical studies by blocking 
LAT1-mediated amino acid transport, thus impeding cancer cell 
growth and proliferation (131). Another example is the inhibitor 
developed by the research group at the University of Eastern Finland 
(134). This inhibitor was found to be  hemocompatible and could 
induce apoptosis in cancer cells. It also has a more permanent structure 
and better selectivity for LAT1 compared to JPH203, as it does not 
undergo certain metabolic reactions that might weaken its anti-cancer 
effect. Additionally, compounds like 2-aminobicyclo-[2.2.1]-heptane-
2-carboxylic acid (BCH) and α-(methylamino)-isobutyric acid 
(MeAIB) have been studied for their inhibitory effects on LAT1. BCH 
competitively inhibits LAT1’s transport function and has been used in 
research on cancer cell growth, while MeAIB can interfere with LAT1-
mediated amino acid transport, although they may not be as potent as 
some other specific inhibitors (135, 136). Beyond oncology, these 

FIGURE 1

Simple carrier model for the mechanism of SLC7A5 and SLC7A8 
transports changes contribute to insulin resistance by mTOR 
pathway.
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inhibitors may hold promise for treating metabolic disorders such as 
diabetes by influencing amino acid availability and modifying insulin 
signaling pathways (137). In addition to small molecule inhibitors, 
biologic agents, including antibodies and engineered proteins, present 
another avenue for targeting SLC7 transporters with specificity (71, 
138, 139). These biologics could obstruct the transporter’s activity, tailor 
its substrate selectivity, or modulate associated signaling pathways. 
Particularly noteworthy is the potential of monoclonal antibodies 
directed against extracellular domains of SLC7 transporters to attenuate 
transporter function, thereby influencing metabolic processes governed 
by amino acid flux. A composite approach that combines therapies 
targeting SLC7 transporters with established treatments for diabetes—
like insulin sensitizers and drugs that lower glucose levels—might 
produce compounded benefits. Such a strategy has the potential to offer 
a comprehensive treatment by tackling various dimensions of insulin 
resistance and metabolic dysregulation in diabetes patients.

4.2 Nutraceutical approaches

Dietary strategies that alter amino acid consumption may play a 
role in modulating SLC7 transporter activity, subsequently affecting 
metabolic health. Diets that are purposefully enriched with specific 
amino acids have been suggested to boost insulin sensitivity and 
enhance glucose regulation (19, 140, 141). The role of branched-chain 
amino acids (BCAAs) deserves particular attention, as high levels of 
circulating BCAAs are linked to insulin resistance and an increased 
risk of diabetes (17). Dietary adjustment of BCAA intake, or targeting 
their metabolic pathways, presents a compelling avenue for therapeutic 
interventions. There are many Dietary adjustment of BCAA intake, or 
targeting their metabolic pathways, presents a compelling avenue for 

therapeutic interventions. Emerging clinical evidence supports this 
notion. For instance, a study published in Diabetologia in 2023 
demonstrated that metformin, a common anti-diabetic drug, 
suppresses the catabolic pathway of BCAAs in the liver of normal and 
obese mice, leading to BCAA accumulation and limiting its glucose-
lowering efficacy. However, enhancing BCAA catabolism with small-
molecule compounds or reducing BCAA intake through a low-BCAA 
diet significantly potentiated metformin’s anti-diabetic effects. 
Additionally, intermittent protein restriction, which reduces dietary 
BCAA intake, also notably improved the efficacy of metformin in 
treating Type 2 diabetes (77). Another recent study in 2025 from Gut 
Microbes, 30 participants at cardiometabolic risk were enrolled, and 
the MF diet group consumed cereal products rich in polyphenols, 
dietary fiber, slow-digestible starch, and ω-3 fatty acids. The results 
showed that the MF diet intervention significantly decreased serum 
BCAA levels, with leucine and isoleucine decreasing by 5 and 7%, 
respectively, (p < 0.05). This indicates that dietary modulation can 
effectively regulate BCAA levels, potentially improving insulin 
resistance and metabolic health (142). Furthermore, research on 
pancreatic ductal adenocarcinoma published in Nature Cell Biology 
revealed that targeting BCAT2, an enzyme involved in BCAA 
catabolism, or restricting BCAA intake in the diet could slow down 
the progression of the cancer in pre-clinical animal models. These 
findings not only highlight the role of BCAA metabolism in cancer 
development but also suggest that dietary and metabolic pathway-
targeting strategies may have broader therapeutic applications beyond 
diabetes (143).

Interestingly, BCAAs are not the only components related to 
relevant transporters. Other reported components also play important 
roles. It has been reported that alliin, a component of garlic, is a novel 
substrate of SLC7A5 (144). This finding indicates that exploring a 
wider range of substrates of SLC7A5 could potentially open up new 
perspectives for therapeutic strategies, whether in diabetes treatment 
or other related fields. To sum up, adopting a personalized approach 
to nutrient intake that considers individual metabolic profiles and 
dietary preferences may improve the success rate of such interventions. 
Personalized nutritional recommendations designed to optimize 
amino acid consumption and modulate SLC7 transporter activity hold 
promise for superior metabolic outcomes, potentially leading to more 
effective diabetes management (145–148).

4.3 Diabetes treatment

In the realm of diabetes treatment, recent research has 
increasingly recognized the potential of targeting SLC7 transporters 
as a novel therapeutic strategy. For instance, emerging evidence 
suggests that small-molecule inhibitors designed to modulate the 
activity of specific SLC7 transporters, such as LAT1 (SLC7A5), can 
significantly improve insulin sensitivity and glucose homeostasis in 
pre-clinical diabetic models (80). These inhibitors work by altering 
the amino acid transport dynamics within key metabolic tissues. In 
skeletal muscle, by reducing the excessive influx of branched-chain 
amino acids (BCAAs) mediated by LAT1, they help alleviate the 
associated insulin resistance. A study in rodent models demonstrated 
that administration of a selective LAT1 inhibitor led to decreased 
plasma BCAA levels, enhanced insulin-stimulated glucose uptake in 
skeletal muscle, and ultimately, improved glycemic control (149). In 

FIGURE 2

Simple signaling pathway map of SLC7 transporter protein changes 
affecting β-Cell Function and corresponding islet reactions. BCAA-
activated mTORC1 and the following S6K1 phosphorylated insulin 
receptor substrate sites serine inhibit IRS-1. Modulating impaired 
protein kinase B, also known as Akt, activation through negative 
feedback attenuates insulin responses, such as increasing protein 
and glycogen synthesis, promoting glycolysis and lipid accumulation, 
affects cell differentiation and proliferation.
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the clinical context, understanding the role of SLC7 transporters also 
has implications for optimizing the use of existing antidiabetic 
medications. Genetic variations in SLC7 transporter genes have been 
shown to influence patients’ responses to drugs like metformin. 
Metformin, a first-line treatment for type 2 diabetes, has been 
reported to interact with SLC7 transporters in hepatocytes, 
modulating amino acid metabolism and contributing to its glucose-
lowering effects (150). By delving deeper into these interactions, 
personalized treatment strategies can be developed to maximize the 
efficacy of antidiabetic drugs based on an individual’s genetic makeup 
and metabolic profile. Interestingly, while this review encompasses 
research on SLC7 transporters in both diabetes and cancer, there are 
notable overlaps in the molecular mechanisms regulated by these 
transporters in the two conditions. For example, the mTOR signaling 
pathway, which is crucial for β-cell growth and function in diabetes 
and is also involved in tumorigenesis, is influenced by SLC7-mediated 
amino acid transport in both contexts (59).

This shared pathway highlights the potential for cross-fertilization 
of research findings between diabetes and cancer fields. Insights 
gained from cancer research on SLC7 transporters, such as the 
development of targeted therapies, may offer new perspectives for 
diabetes treatment, and vice versa. This connection not only justifies 
the inclusion of cancer-related information but also enriches our 
understanding of the broader role of SLC7 transporters in human 
health and disease.

5 Research methods and models

5.1 Experimental techniques

Investigating the SLC7 family’s function and its influence on 
cellular metabolism, particularly amino acid transport, requires a 
diverse array of experimental methodologies. To assist researchers in 
gaining a deeper understanding of this significant biological family 
and to enrich the scientific toolkit with more robust data acquisition 
methods, we present a summary of experimental techniques applicable 
to the study of the SLC7 family. The foundational experimental 
approach involves transporter assays (151–153). These assays gauge 
the activity of SLC7 transporters by monitoring the uptake or efflux of 
specific amino acids. This category encompasses techniques such as 
uptake assays using radioactive or fluorescently labeled amino acids 
and electrophysiological methods designed to evaluate transporter 
kinetics and function. However, a critical consideration in such assays 
is the need to distinguish transporter-mediated uptake from 
intracellular metabolic processing (e.g., protein synthesis, catabolism). 
To address this, researchers often employ non-metabolic substrate 
analogues, such as α-methylated amino acids (e.g., α-methylleucine), 
which are recognized by transporters (e.g., LAT1) but cannot 
be incorporated into cellular metabolism (154, 155). For example, 
α-methylleucine specifically binds to LAT1 (SLC7A5) to measure 
transporter activity without interference from endogenous amino acid 
utilization (156, 157). When such analogues are not used, uptake data 
may reflect a combination of transport and metabolic fate, 
necessitating cautious interpretation of results. This category also 
encompasses electrophysiological methods designed to evaluate 
transporter kinetics and function, providing insights into ion-coupled 
transport mechanisms.

Moving toward metabolic analysis, metabolomic techniques offer 
a holistic assessment of metabolite profiles within cells or tissues, 
thereby allowing for an inference of SLC7 transporter impact on 
cellular metabolism (158–161). Mass spectrometry and nuclear 
magnetic resonance (NMR) spectroscopy are two prevalent tools used 
in these comprehensive metabolic studies (162–164).

Protein  localization and trafficking studies provide critical 
information regarding the dynamics of SLC7 transporter distribution 
within cells in response to various stimuli (165, 166). Techniques such 
as immunofluorescence microscopy and subcellular fractionation 
assist in pinpointing the subcellular position of transporters (167, 
168), Furthermore, genetic manipulation techniques, including gene 
knockout and overexpression, allow for direct control over SLC7 
transporter expression in cellular or animal models. Pharmacological 
interventions utilizing inhibitors or activators can elucidate the 
functional significance of SLC7 transporters in cellular metabolism. 
Lastly, proteomic approaches reveal protein–protein interactions and 
post-translational modifications affecting SLC7 transporters, shedding 
light on their regulatory mechanisms (169–171).

5.2 Model systems

Animal models are indispensable tools for delineating the 
functions of the SLC7 family and offer invaluable perspectives on the 
transporters’ roles in metabolic disorders such as diabetes. Through an 
interdisciplinary approach that utilizes various model systems, 
researchers are able to gain precise insights into SLC7 transporter 
contributions to disease pathophysiology and target them for 
therapeutic interventions. Regarding in  vitro studies, cell culture 
models, particularly insulin-responsive cell types like adipocytes and 
myocytes, are instrumental (172–174), Such cell lines are leveraged to 
understand glucose and amino acid metabolism regulation under 
varying expressions of specific SLC7 transporters. Manipulating SLC7 
transporter expression in these cells—via overexpression or knockdown 
techniques—permits examination of their impact on both cellular 
metabolism and the insulin signaling cascade. Moreover, employing 
transporter and glucose uptake assays within these cell cultures enables 
analysis of the involvement of SLC7 transporters in the modulation of 
glucose and amino acid uptake. Turning to in vivo systems, animal 
models of diabetes, including mice with genetically induced type 1 or 
type 2 diabetes, deliver comprehensive insights into the systemic 
implications of SLC7 transporter dysfunction (175–178). Using genetic 
knockout or knock-in mouse models, researchers can expound on the 
specific SLC7 transporters’ influence on glucose equilibrium, insulin 
responsiveness, and β-cell physiology. Metabolic profiling in these 
models, including monitoring blood glucose, insulin, and amino acid 
concentrations, provides evidence of metabolic shifts linked to SLC7 
transporter alterations (179–181). However, it is crucial to note the 
differences in SLC7 transporter expression patterns between rodents 
and humans. For instance, studies have shown that the expression of 
LAT1 (a member of the SLC7 family) in human islets is notably higher 
than that in mice (102). Additionally, the liver LAT2 activity in mice is 
significantly lower compared to humans (182), which may have a 
profound impact on the observed metabolic phenotypes in mouse 
models and limit the direct translation of findings to human conditions. 
These species-specific expression differences highlight the need for 
caution when extrapolating results from animal models to humans. 
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Finally, human tissue samples, such as those from adipose tissue, 
skeletal muscle, and pancreatic islets, obtained from diabetic patients 
or healthy volunteers, present a direct window into SLC7 transporter 
activity in human metabolism. Transcriptomic and proteomic studies 
of these tissues aid in pinpointing variations in SLC7 transporter 
expression and functionality that are correlated with diabetes.

6 Challenges and future directions

6.1 Knowledge gaps

Despite the notable advancements in our grasp of how SLC7 family 
members influence the pathophysiology and management of diabetes, 
several significant knowledge gaps persist. Even though the expression 
of many SLC7 transporters is widespread, there is a notable lack of 
comprehensive understanding regarding their specific functions across 
various tissues and cell types. For instance, in the liver, while SLC7 
family members are known to be involved in amino acid metabolism, 
the precise roles they play in regulating gluconeogenesis and lipid 
metabolism remain unclear. The interplay between SLC7 transporters 
and key hepatic signaling pathways under diabetic conditions, such as 
the PI3K-AKT and AMPK pathways, has not been fully elucidated. In 
skeletal muscle, a major site of insulin-mediated glucose uptake, the 
contribution of different SLC7 transporters to the regulation of amino 
acid-induced insulin sensitivity and glucose disposal is poorly 
understood. It remains uncertain how alterations in SLC7 expression 
and function impact muscle protein synthesis and breakdown, which 
are critical processes in the context of diabetes-associated muscle 
wasting. Regarding islet beta cells, which are essential for maintaining 
glucose homeostasis through insulin secretion, the specific functions 
of SLC7 family members in beta cell development, proliferation, and 
survival are still largely unknown. Whether SLC7 transporters directly 
modulate insulin granule biogenesis and exocytosis, and how their 
dysregulation contributes to beta cell dysfunction and failure in 
diabetes, are questions that have yet to be thoroughly explored.

Additionally, the intricacies of how SLC7 transporter expression 
and activity are modulated by metabolic stimuli, hormonal influences, 
and during pathological states, still elude us. A deeper dive into the 
molecular mechanisms governing the regulation of SLC7 transporters 
stands to uncover critical insights into their involvement in diabetes 
pathogenesis. Such discoveries may pave the way to identifying new 
therapeutic targets and refining treatment options.

6.2 Emerging research

The latest insights from research focused on SLC7 transporters are 
shedding meaningful light on their involvement in metabolic 
disorders, including obesity, diabetes, and metabolic syndrome, 
providing promising directions for clinical intervention. The 
burgeoning evidence underscores the significance of these transporters 
in disease etiology, thus warranting investigations into the precise 
mechanisms by which SLC7 transporter dysregulation precipitates 
metabolic imbalance. Upcoming studies should aim to disentangle 
their roles in nutrient detection, energy homeostasis, and the intricate 
web of insulin signaling pathways. Research has only recently started 
unmasking the sophisticated regulatory factors that dictate SLC7 
transporter function. Notably, this includes exploring the realm of 

post-translational modifications, protein–protein binding events, and 
transcriptional governance. Further research endeavors should drill 
deeper into these areas to map out detailed regulatory landscapes. The 
goal will be to identify viable molecular targets through which SLC7 
transporter activity can be adjusted to better manage and potentially 
treat metabolic conditions.

7 Conclusion

The SLC7 family of transporters plays a critical and multifaceted role 
in metabolic processes that are highly relevant to diabetes, primarily 
through mechanisms linking amino acid sensing, insulin signaling, and 
pancreatic β-cell function. These transporters, such as LAT1 (SLC7A5) 
and CAT-1 (SLC7A1), mediate the uptake of essential amino acids (e.g., 
leucine, arginine) that activate the mTORC1 signaling pathway—a central 
hub for integrating nutrient availability with insulin secretion and glucose 
metabolism. For example, leucine transported by LAT1 in pancreatic 
β-cells promotes insulin granule biogenesis and β-cell proliferation, while 
in skeletal muscle, SLC7-mediated branched-chain amino acid uptake 
maintains mTORC1-dependent insulin sensitivity, preventing 
downstream insulin resistance via IRS-1 serine phosphorylation. 
Additionally, the cystine transporter xCT (SLC7A11) safeguards β-cells 
from oxidative stress by supporting glutathione synthesis, a critical 
antioxidant defense against glucolipotoxicity-induced apoptosis.

Beyond these mechanisms, SLC7 transporters regulate broader 
metabolic processes, including glucose homeostasis, inflammation, and 
lipid metabolism. Members of the family are responsible for transporting 
branched-chain amino acids (leucine, isoleucine, valine), whose 
dysregulated levels correlate with insulin resistance and β-cell 
dysfunction in type 2 diabetes. Their expression in key metabolic 
tissues—such as pancreatic β-cells, skeletal muscle, and adipose tissue—
highlights their role in maintaining metabolic equilibrium, from 
modulating insulin secretion to influencing glucose uptake and storage.

SLC7 transporters also extend their functions beyond 
metabolism, impacting neurotransmitter transport, synaptic 
efficacy, and brain amino acid balance, positioning them as 
promising targets for neurological disorders like epilepsy and 
Alzheimer’s disease. However, this review acknowledges limitations: 
while preclinical studies underscore their therapeutic potential, 
clinical trials remain scarce, and research has disproportionately 
focused on cancer rather than endocrine and metabolic diseases. 
Future investigations should prioritize clinical research and 
mechanistic studies in diabetes and related disorders, bridging the 
gap between foundational discoveries and translational applications. 
By elucidating the precise roles of SLC7 transporters in amino acid–
glucose crosstalk and β-cell survival, we can unlock novel strategies 
to restore metabolic health and address unmet therapeutic needs in 
diabetes and beyond.
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