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Background: An association has been observed between alcohol and cheese 
intake and the onset of inflammatory bowel disease (IBD), necessitating further 
exploration from a genetic structural perspective.

Methods: The present analysis was focused on the intake of alcohol and cheese 
in conjunction with IBD genome-wide association study (GWAS) data, with the 
objective of exploring genetic correlations and identifying common loci. Initially, 
overall genetic correlations were assessed employing two methodologies: 
linkage disequilibrium score regression (LDSC) and genetic covariance analyzer 
(GNOVA). Subsequently, local correlations were examined through the 
SUPERGNOVA method. A genetic overlap analysis between various traits was 
then conducted based on the statistical theory of conditional/conjunctional 
false discovery rate (cond/conjFDR). Ultimately, shared loci between the two 
traits were identified via conjFDR analysis and multi-trait analysis of GWAS 
(MTAG).

Results: Substantial overall correlations were noted at the genome-wide level 
between alcohol and cheese intake and both IBD and Crohn’s disease (CD), 
whereas the association with ulcerative colitis (UC) was of lesser significance. In 
the local genetic analysis, chromosome 16 emerged as a key region implicated 
in the relationship between alcohol and cheese intake and IBD (including both 
CD and UC). The conjFDR analysis confirmed the genetic overlap between the 
two diseases. Furthermore, both conjFDR and MTAG analyses identified multiple 
shared genetic loci, with nine genes (Y_RNA, DENND1B, GCKR, KPNA7, CLN3, 
SLC39A8, FUT2, ERAP2, and SMAD3) being.

Conclusion: The present study provides genetic evidence supporting the 
comorbidity of alcohol and cheese intake with IBD, offering novel insights 
into potential strategies for the prevention and treatment of IBD through the 
modulation of alcohol and cheese consumption.
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1 Introduction

Inflammatory bowel disease (IBD) is characterized as a 
non-specific, immune-mediated, chronic, relapsing gastrointestinal 
disorder, which is further classified into Crohn’s disease (CD) and 
ulcerative colitis (UC) (1). The global incidence of IBD has been 
rising, with the prevalence in Western populations projected to reach 
1% by 2030, thereby imposing a considerable burden on global health 
and economies (2, 3). Currently, a comprehensive understanding of 
the etiology and pathogenesis of IBD remains incomplete. 
Furthermore, factors such as genetic predisposition, a compromised 
intestinal mucosal barrier, urbanization, dietary components, and 
disruptions in gut microbiota and mucosal immunity have been 
implicated, any of which could potentially trigger the onset of IBD (4). 
Alcohol and cheese intake, which are common dietary practices in 
many cultures, have been reported to be significantly linked with the 
development of IBD (5, 6). Given that observational studies are 
frequently influenced by confounding factors, a reevaluation of these 
associations from the standpoint of genetic overlap is intended.

In recent years, genome-wide association studies (GWAS) 
pertaining to both IBD and dietary habits, such as alcohol and cheese 
intake, have advanced to a more sophisticated stage, thereby 
establishing a foundation for investigating the genetic overlap between 
these traits. Currently, numerous innovative and reliable statistical 
genetic methods have been developed. LD Score Regression (LDSC) 
estimates genome-wide genetic correlations using GWAS summary 
statistics while accounting for linkage disequilibrium (LD) and sample 
overlap (7). Genetic covariance analyzer (GNOVA) calculates 
annotation-stratified genetic covariance, providing precise insights 
into shared genetic components (8). SUPERGNOVA identifies local 
genetic correlations, addressing challenges such as extensive LD and 
sample overlap to uncover heterogeneous genetic sharing (9). 
Conjunctional False Discovery Rate (ConjFDR) detects shared genetic 
loci by leveraging cross-trait SNP enrichment and maximizing 
conditional FDR values (10). Lastly, Multi-Trait Analysis of GWAS 
(MTAG) enhances statistical power to identify trait-specific genetic 
associations by integrating summary statistics from multiple traits 
while accounting for genetic correlation and sample overlap (11). 
Together, these methods provide a comprehensive framework for 
uncovering shared genetic architectures. These methods, including 
LDSC, ConjFDR, and MTAG, have demonstrated their utility in 
identifying shared genetic architectures between schizophrenia and 
metabolic syndrome (12), uncovering both global and local genetic 
correlations between inflammatory bowel disease and systemic lupus 
erythematosus (using GNOVA and SUPERGNOVA) (13), and 
systematically exploring the shared genetics between Alzheimer’s 
disease and cardiovascular traits (involving MTAG) (14).The genetic 
associations between IBD and alcohol and cheese intake remain 
unclear. To enhance the investigation of the genetic overlap between 
IBD and alcohol and cheese intake, these methods have been adapted 
with the aim of providing a more comprehensive understanding of 
their shared genetic framework.

This study aims to address critical gaps in our understanding of the 
genetic associations between IBD and dietary factors, specifically alcohol 
and cheese intake, by focusing on two main objectives: (1) to evaluate the 
genetic correlation between these traits and (2) to identify shared genetic 
loci. By employing state-of-the-art statistical methodologies, this research 
contributes to the field by providing novel insights into the shared genetic 

architecture between dietary factors and IBD, thereby advancing the 
current knowledge of their potential interactions. Specifically, we utilize 
LDSC (7) and GNOVA (8) to assess genome-wide genetic correlations, 
while SUPERGNOVA (9) is implemented to explore local genetic 
correlations. For shared loci identification, we leverage cond/conjFDR 
(10) and MTAG (11), both of which are well-established methods for 
identifying genetic risk loci across comorbid traits. The findings from this 
study are expected to offer significant contributions by clarifying the 
genetic underpinnings linking alcohol and cheese intake to IBD and 
potentially guiding future research in nutritional genomics and 
precision medicine.

2 Materials and methods

2.1 GWAS data

The GWAS data for IBD and its subtypes (CD and UC), as 
provided by de Lange et al. (15), were selected for this study due to 
their representation of the largest and most recent patient cohort. The 
GWAS data for alcohol and cheese intake were obtained from the IEU 
GWAS database1, with the corresponding IDs “ukb-b-5779” and “ukb-
b-15926,” respectively. The study populations in these datasets were 
exclusively of European ancestry. For alcohol intake data, the 
definition includes the overall intake of all forms of alcoholic beverages 
but does not explicitly distinguish between fermented alcoholic drinks 
(e.g., wine and beer) and distilled alcoholic beverages (e.g., spirits). 
While this definition provides a comprehensive measure of overall 
alcohol intake, it may fail to capture the specific effects of different 
types of alcoholic beverages on disease associations. In our study 
design, we acknowledged this limitation and further analyzed it in the 
discussion section. The flow chart of this study is shown in Figure 1.

2.2 Global and local genetic correlation 
analyses

The LDSC and GNOVA are particularly advantageous for 
investigating overall genetic correlations. The LDSC calculation 
process is comprised of two steps: ① transforming all GWAS datasets 
into the LDSC format through the use of the munge_sumstats.py 
parameters, and ② estimating the genetic correlation (rg) between two 
traits by applying the -rg, −ref-ld-chr, and -w-ld-chr parameters. 
Genetic covariance is assessed by GNOVA through the exploitation of 
shared genetic variants between the two diseases (8). The genetic 
correlation is subsequently derived from the genetic covariance and 
trait heritability. The rg value, a critical metric in both analyses, ranges 
from −1 to +1. The sign (“±”) indicates the direction of the effect, 
while the magnitude reflects the strength of the correlation. A 
Bonferroni correction is applied to adjust the p-values.

SUPERGNOVA is utilized to assess the correlation between two traits 
across various chromosomal locations. The entire genome is partitioned 
into 2,353 segments, and the similarity between trait pairs, influenced by 
genetic variations in each region, is determined (9). When the p-value of 

1 https://gwas.mrcieu.ac.uk/
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a corresponding segment falls below the Bonferroni-corrected threshold 
(p < 0.05/2,353), the segment is considered statistically significant, 
indicating a locus with a local genetic association.

2.3 Conditional quantile–quantile plots

The conditional quantile-quantile (Q–Q) plot is utilized as a visual 
tool to illustrate genetic overlap results, highlighting the enrichment 
of polygenic effects across phenotypes. The Q–Q plot is divided into 
three p-value segments: “p < 0.10,” “p < 0.01,” and “p < 0.001.” If, as the 
p-value decreases, the proportion of SNPs associated with one 
phenotype (e.g., alcohol intake) progressively shifts leftward relative 
to another phenotype (e.g., IBD), this reflects an enrichment effect 
and suggests a genetic overlap between the two traits (16). The 
generation of Q–Q plots in this study was carried out using the 
precimed/mixer package2 in Python 3.11.

2.4 CondFDR/ConjFDR analysis

Within the empirical Bayesian statistical framework, condFDR and 
conjFDR were introduced by Ole A. A statistical method for identifying 
shared risk loci between two traits was proposed by Andreassen et al. (17). 
In comparison to other approaches, this method is capable of identifying 
loci that do not meet the significance threshold, while maintaining high 
confidence in the loci detected (17). In condFDR analysis involving two 
traits, one trait (e.g., alcohol intake) is used as a reference for genetic loci, 

2 https://github.com/precimed/mixer

while the genetic loci associated with the other trait (e.g., IBD) are then 
screened (18). This method utilizes the association between variants and 
one trait (e.g., alcohol intake) to reorder the test statistics and recalculate 
the associations between these variants and the second trait (IBD). The 
process is bidirectional, and the conjFDR value represents the maximum 
of the condFDR values derived from the bidirectional analysis. 
Subsequently, conjFDR analysis is performed to identify genetic loci 
shared by both traits. The significance level was set at “condFDR ≤0.05.” 
Detailed analysis procedures for conjFDR are available on the website3. 
The SNPs associated with the identified loci were uploaded to the 
SNP2Gene module of FUMA4 (19) for the identification of 
annotated genes.

2.5 Cross-trait meta-analysis

The MTAG analysis for alcohol and cheese intake and IBD 
(including CD and UC) was conducted using Python 3.11.5 (11). 
MTAG, as an alternative statistical method for detecting genetic risk 
variants across traits, offers the advantage of enhanced statistical 
power and broader applicability (11). Furthermore, MTAG effectively 
addresses the issue of sample overlap. The methodology is based on 
the shared variance–covariance matrix of effect sizes across different 
traits (11). Upon completion of the MTAG analysis, a GWAS dataset 
related to both traits was acquired. This dataset was subsequently 
uploaded to FUMA (19) to identify common genetic risk loci and 
tissue enrichment results.

3 https://github.com/precimed/pleiofdr

4 https://fuma.ctglab.nl/

FIGURE 1

Flowchart of the study. IBD, inflammatory bowel disease; LDSC, linkage disequilibrium score regression; MTAG, multi-trait analysis; TWAS, 
transcriptome-wide association studies.
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3 Results

3.1 Global and local genetic correlation

In the LDSC analysis, significant positive genetic correlations were 
identified between alcohol intake and IBD (rg = 0.0835, p = 0.0045), as 
well as with CD (rg = 0.1207, p = 2.163e-05), whereas the correlation with 
UC did not attain significance (rg = 0.0219, p = 0.5085) (Table 1). In 
contrast, a negative genetic correlation was observed between cheese 
intake and IBD (rg = −0.0929, p = 0.0028), as well as with CD 
(rg = −0.1483, p = 5.2972e-06), while the correlation with UC remained 
non-significant (rg = −0.0112, p = 0.7482) (Table 1). These findings were 
further supported by the GNOVA data (Table 1).

From the local genetic correlation findings using SUPERGNOVA 
analysis, it was identified that alcohol intake and IBD had positive 
correlations on chromosomes 16, 10, and 4. In terms of CD, a negative 
correlation with alcohol intake was detected on chromosome 19, with 
positive correlations noted on chromosomes 5, 10, and 16. For UC, only 
a positive correlation on chromosome 16 was identified (Table 2). Cheese 
intake displayed negative correlations with both IBD and its subtypes (CD 
and UC) on chromosome 16. Additionally, CD located on chromosome 
5 is negatively correlated with cheese intake (Table 2). Comprehensive 
analytical details are presented in Supplementary Tables S1–S6.

3.2 ConjFDR analysis identifies shared 
genomic loci between two traits

As illustrated by the Q–Q plots (Figures 2, 3), it was noted that 
with the decrease in association p-values for one trait (e.g., alcohol 
intake), there is an evident increase in the leftward shift of the 
association curve for another trait (e.g., IBD). This pattern suggests a 
robust correlation between these two traits, implying the presence of 
common genetic risk loci and genetic overlap.

Through ConjFDR analysis, high-confidence shared risk loci were 
identified after processing the overlapping genes for two traits. When 
conjFDR <0.05, a total of 57 shared risk loci were identified between 
alcohol intake and IBD, among which 37 genes exhibited consistent 
directional effects for both traits (Z > 0 for both) (Figure  4A and 
Supplementary Table S7). For alcohol intake, 42 shared genetic loci 
were identified in CD and 12 in UC, with 31 and 6 genes showing 
consistent directional effects, respectively (Figures  4B,C and 
Supplementary Tables S8, S9).

Several shared loci were identified for cheese intake in IBD (24), 
CD (26), and UC (14) conditions (Figures  5A–C and 
Supplementary Tables S10–S12). Consistent effects of cheese intake 
were observed for six genes in IBD, eight genes in CD, and six genes 
in UC, respectively.

TABLE 1 Genetic correlation of alcohol, cheese intake and IBD (including CD and UC).

Trait1 Trait2 LSDC-Genetic 
correlation

LSDC-P GNOVA-Genetic 
correlation

GNOVA-P

IBD Alcohol intake 0.0835 0.0045 0.0607 0.0046

CD Alcohol intake 0.1207 2.163e-05 0.102 1.2958e-06

UC Alcohol intake 0.0219 0.5085 0.0057 0.7945

IBD Cheese intake −0.0929 0.0028 −0.0546 0.0224

CD Cheese intake −0.1483 5.2972e-06 −0.1111 5.4474e-06

UC Cheese intake −0.0112 0.7482 −0.0232 0.331

IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.

TABLE 2 The results of local genetic correlation between alcohol, cheese intake and IBD and CD.

Trait1 Trait2 chr Start End Genetic 
correlation

h2_1 h2_2 p

IBD Alcohol intake 16 27,446,054 29,023,966 0.990260824 0.001852106 0.000596502 1.17E-08

IBD Alcohol intake 10 33,656,119 36,017,592 0.815440581 0.002409804 0.000109213 5.26E-07

IBD Alcohol intake 4 1,478,711 3,612,028 0.791045237 0.000826533 0.000299523 1.71E-05

CD Alcohol intake 19 48,697,961 49,485,758 −0.91004321 0.001832887 0.000313803 1.91E-08

CD Alcohol intake 5 95,822,732 96,867,936 1.123421517 0.002747509 5.98E-05 9.19E-08

CD Alcohol intake 16 27,446,054 29,023,966 0.996540504 0.002146098 0.000586489 1.50E-07

CD Alcohol intake 10 33,656,119 36,017,592 0.802529366 0.004476241 0.000109311 2.20E-07

UC Alcohol intake 16 27,446,054 29,023,966 1.002533886 0.000973262 0.000586455 4.23E-09

IBD Cheese intake 16 27,446,054 29,023,966 −1.07026065 0.001852106 0.000135665 6.36E-08

CD Cheese intake 16 27,446,054 29,023,966 −1.074673695 0.002146098 0.000133144 3.93E-07

CD Cheese intake 5 95,822,732 96,867,936 −0.910343556 0.002747509 0.000109742 2.14E-06

UC Cheese intake 16 27,446,054 29,023,966 −1.084419189 0.000973262 0.000133136 2.07E-06

h2: represents the observed genetic contribution, the larger the better. P: the statistically significant association is defined to be p < 0.05/2353 = 2.12495E-05. IBD, inflammatory bowel disease; 
CD, Crohn’s disease.
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FIGURE 2

Conditional quantile-quantile plot. The dashed line indicates the expected line under the null hypothesis, and the deflection to the left indicates the 
degree of pleiotropic enrichment. (A) Alcohol intake-IBD. (B) IBD-Alcohol intake. (C) Alcohol intake-CD. (D) CD-Alcohol intake. (E) Alcohol intake-UC. 
(F) UC-Alcohol intake. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.

FIGURE 3

Conditional quantile-quantile plot. The dashed line indicates the expected line under the null hypothesis, and the deflection to the left indicates the 
degree of pleiotropic enrichment. (A) Cheese intake-IBD. (B) IBD-Cheese intake. (C) Cheese intake-CD. (D) CD-Cheese intake. (E) Cheese intake-UC. 
(F) UC-Cheese intake. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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3.3 MTAG

Following the MTAG analysis of alcohol intake and IBD, a GWAS 
dataset relevant to both traits was derived. Subsequent Fuma annotation 
of these results identified 94 shared risk loci (Figure  6A and 
Supplementary Table S13), of which five genes (Y_RNA, DENND1B, 
GCKR, KPNA, and CLN3) overlapped with the conjFDR analysis results 
(Figure  6B). For CD, 79 genes were recognized (Figure  6C and 

Supplementary Table S14), among these, Y_RNA, DENND1B, GCKR, 
SLC39A8, CLN3, and FUT2 were consistently identified in both 
conjFDR and MTAG analyses (Figure 6D). The MTAG analysis for UC 
revealed 49 shared loci (Figure  6E and Supplementary Table S15), 
although no common genes were identified between the conjFDR and 
MTAG analyses for this condition (Figure 6F).

The MTAG results for cheese intake and IBD indicated 94 
shared loci (Figure 7A and Supplementary Table S16). ERAP2, 

FIGURE 4

(A) ConjFDR Manhattan plot of IBD and alcohol intake. (B) ConjFDR Manhattan plot of CD and Alcohol intake. (C) ConjFDR Manhattan plot of UC and 
alcohol intake. The shared risk loci between Alcohol intake and IBD, CD and UC were marked. The statistically significant causality is defined to 
be conjFDR < 0.05. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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SMAD3, and Y_RNA were pinpointed as overlapping genes in 
both conjFDR and MTAG analyses (Figure  7B). For CD, 25 
shared loci were identified (Figure  7C and 
Supplementary Table S17), with SLC39A8, ERAP2, and SMAD3 
being the overlapping genes (Figure 7D). The MTAG analysis for 
UC revealed 49 shared loci (Figure  7E and 
Supplementary Table S18), but no overlapping genes were 
identified between the two analyses (Figure 7F).

4 Discussion

This study conducted a comprehensive genetic analysis 
of the relationship between alcohol and cheese intake and 
IBD, including its subtypes. By employing both genome-wide 
and localized genetic methods, we  uncovered important 
insights into these associations. These findings not only 
enhance our understanding of IBD pathogenesis but also 

FIGURE 5

(A) ConjFDR Manhattan plot of IBD and cheese intake. (B) ConjFDR Manhattan plot of CD and Cheese intake. (C) ConjFDR Manhattan plot of UC and 
Cheese intake. The shared risk loci between Cheese intake and IBD, CD and UC were marked. The statistically significant causality is defined to 
be conjFDR < 0.05. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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provide new perspectives on the role of dietary factors in 
complex diseases.

First, our genome-wide genetic correlation analysis revealed a 
significant positive association between alcohol consumption and 
both IBD and CD, while cheese intake showed a negative correlation. 
These associations align with emerging evidence suggesting that 
alcohol consumption may exacerbate intestinal inflammation 
through its effects on the gut microbiome (20). Previous 
observational studies have reported that alcohol use disorder shares 
microbial characteristics with those observed in IBD patients (21, 
22), and large retrospective studies have shown an increased IBD 
risk among individuals with alcohol use disorder. This may 
be  attributed to excessive alcohol consumption disrupting gut 
permeability and increasing bacterial translocation (23). Notably, 
neither alcohol nor cheese intake showed a significant association 
with UC. Consistent with our findings, a prospective cohort study 
investigating the dietary habits of UC patients in remission reported 
no significant risk of UC relapse with moderate alcohol consumption 
(24). These findings highlight the differential impacts of dietary 

factors on IBD subtypes, particularly CD, where stronger 
associations were observed.

Our study adds a genetic perspective to these observations, 
minimizing confounding factors and providing more robust evidence 
for the causal relationship between alcohol intake and IBD. In 
contrast, cheese consumption, a major source of fermented foods, may 
protect against IBD by modulating the gut microbiota and reducing 
markers of systemic inflammation (25). Experimental studies in mice 
have shown that whey protein from cheese production can enhance 
mucin synthesis and stimulate beneficial gut microbiota, alleviating 
colitis symptoms (26). Our findings complement these studies by 
identifying genetic evidence supporting the protective effects of cheese 
intake, particularly against CD. However, cheese consumption had no 
significant impact on UC. This disparity may be linked to the distinct 
pathological characteristics of these diseases, with CD affecting any 
part of the gastrointestinal tract in a discontinuous pattern, while UC 
is restricted to the colonic mucosa (27).

Secondly, local genetic analysis identified chromosome 16 as a 
key region mediating the effects of alcohol and cheese intake on 

FIGURE 6

(A) Manhattan map of genetic risk loci for IBD and Alcohol intake by MTAG. (B) Intersection gene map of IBD and Alcohol intake after conjfdr and 
MTAG analysis. (C) Manhattan map of genetic risk loci for CD and Alcohol intake by MTAG. (D) Intersection gene map of CD and Alcohol intake after 
conjfdr and MTAG analysis. (E) Manhattan map of genetic risk loci for UC and alcohol intake by MTAG. (F) Intersection gene map of UC and Alcohol 
intake after conjfdr and MTAG analysis. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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IBD, including its subtypes. This region is particularly intriguing 
due to the presence of genes such as SLC39A8, FUT2, and ERAP2, 
which play roles in immune regulation and gut health (28–30). For 
example, variations in the FUT2 gene are associated with 
alterations in gut microbiota composition, which may influence 
individual susceptibility to IBD (31). Additionally, the ERAP2 
gene, critical for antigen presentation and immune responses, has 
variations that could lead to abnormal reactions to gut microbiota, 
promoting the development of IBD (32). The observed positive and 
negative correlations of alcohol and cheese intake with IBD, 
respectively, further support the hypothesis that this genomic 
region may serve as a nexus for the interaction between diet and 
genetics in influencing IBD.

Thirdly, our study identified nine shared genes—Y_RNA, 
DENND1B, GCKR, KPNA7, CLN3, SLC39A8, FUT2, ERAP2, and 
SMAD3—linking dietary intake and IBD. These findings provide 
novel insights into the genetic mechanisms underlying these 
associations. Among these, Y_RNA, DENND1B, GCKR, and 
KPNA7, validated as risk genes (Z  > 0), likely contribute 

significantly to the connection between alcohol intake and IBD. For 
instance, KPNA7, a regulator of NF-κB signaling, plays a key role 
in inflammatory changes in IBD (33). DENND1B, associated with 
various aspects of immune function, may promote IBD through its 
effects on cell signaling and inflammatory responses (34). Prior 
GWAS studies have confirmed DENND1B as a susceptibility locus 
for CD (35). Meanwhile, Y_RNA, a non-canonical RNA linked to 
immune signaling and inflammatory diseases, has emerging 
evidence associating it with alcohol-related immune pathways 
(36–38). Certain variations in the GCKR gene may influence an 
individual’s metabolism and response to alcohol. Additionally, 
these variations are associated with susceptibility to IBD, 
potentially affecting intestinal barrier function (39). The 
association between CLN3, alcohol consumption, and IBD requires 
further investigation.

For cheese intake and IBD, SMAD3 stood out as a protective 
gene for CD and IBD. SMAD3 is involved in TGF-β signaling, and 
its deletion impairs TGF-β pathway functionality, hindering 
mucosal healing in CD mouse models. This underscores its 

FIGURE 7

(A) Manhattan map of genetic risk loci for IBD and cheese intake by MTAG. (B) Intersection gene map of IBD and cheese intake after conjfdr and MTAG 
analysis. (C) Manhattan map of genetic risk loci for CD and cheese intake by MTAG. (D) Intersection gene map of CD and Cheese intake after conjfdr 
and MTAG analysis. (E) Manhattan map of genetic risk loci for UC and Cheese intake by MTAG. (F) Intersection gene map of UC and Cheese intake after 
conjfdr and MTAG analysis. IBD, inflammatory bowel disease; CD, Crohn’s disease; UC, ulcerative colitis.
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potential role in maintaining gut homeostasis (40, 41). ERAP2 is 
another significant gene identified in the relationship between 
cheese intake and IBD. Variations in ERAP2 may modulate the 
response to lactic acid bacteria or fatty acids present in cheese, 
thereby influencing IBD susceptibility and symptoms (42). 
SLC39A8 encodes a zinc/manganese transporter protein that 
participates in various cellular metabolic processes and is closely 
associated with the pathogenesis of IBD (43). Cheese, as a dairy 
product rich in manganese and zinc, may indirectly affect IBD 
through its impact on trace element balance and gut microbiota 
(44). The identification of these shared loci highlights potential 
therapeutic targets and provides a genetic foundation for exploring 
dietary modifications as strategies for the prevention or 
management of IBD.

This study makes a significant contribution to understanding 
the genetic basis of dietary influences on IBD. By integrating 
genome-wide and local genetic approaches with multiple statistical 
methods, we minimized biases and enhanced the robustness of our 
findings. However, certain limitations should be acknowledged. 
First, the potential for linkage disequilibrium cannot be entirely 
excluded. Second, despite employing rigorous methods to control 
for confounding factors, residual influences from behavioral, 
social, and environmental factors may persist. The GWAS data on 
alcohol intake did not distinguish between fermented alcoholic 
beverages (e.g., wine and beer) and distilled alcoholic beverages 
(e.g., spirits). This lack of classification may impact the precision 
and interpretability of the observed associations between alcohol 
intake and disease risk. Future studies could focus on developing 
datasets that differentiate between types of alcoholic beverages to 
explore their distinct effects on disease more comprehensively. 
Lastly, our findings are limited to individuals of European ancestry, 
which restricts the generalizability of the results. Future research 
should include diverse populations and incorporate functional 
validation to strengthen the clinical and biological relevance of 
these findings.

5 Conclusion

In summary, our findings provide novel genetic insights into 
the relationship between alcohol and cheese intake and IBD. The 
identification of shared loci, particularly those involved in immune 
regulation and microbiome interactions, offers valuable 
perspectives on diet-gene interactions in IBD. These results not 
only advance the current understanding of IBD etiology but also 
pave the way for personalized dietary recommendations and 
targeted therapeutic interventions.
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