
Frontiers in Nutrition 01 frontiersin.org

Predicting 3-year all-cause 
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Objectives: The composition of abdominal adipose tissue and muscle mass has 
been strongly correlated with the prognosis of rectal cancer. This study aimed 
to develop and validate a machine learning (ML) predictive model for 3-year all-
cause mortality after laparoscopic total mesorectal excision (LaTME).

Methods: Patients who underwent LaTME surgery between January 2018 
and December 2020 were included and randomly divided into training and 
validation cohorts. Preoperative computed tomography (CT) image parameters 
and clinical characteristics were collected to establish seven ML models for 
predicting 3-year survival post-LaTME. The optimal model was determined 
based on the area under the receiver operating characteristic curve (AUROC). 
The SHAPley Additive exPlanations (SHAP) values were utilized to interpret the 
optimal model.

Results: A total of 186 patients were recruited and divided into a training cohort 
(70%, n = 131) and a validation cohort (30%, n = 55). In the training cohort, the 
AUROCs of the seven ML models ranged from 0.894 to 0.949. In the validation 
cohort, the AUROCs ranged from 0.727 to 0.911, with the XGBoost model 
demonstrating the best predictive performance: AUROC = 0.911. SHAP values 
revealed that subcutaneous adipose tissue index (SAI), visceral adipose tissue 
index (VAI), skeletal muscle density (SMD), visceral-to-subcutaneous adipose 
tissue ratio (VSR), and subcutaneous adipose tissue density (SAD) were the five 
most important variables influencing all-cause mortality post-LaTME.

Conclusion: By integrating body composition, multiple ML predictive models 
were developed and validated for predicting all-cause mortality after rectal 
cancer surgery, with the XGBoost model exhibiting the best performance.
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1 Introduction

According to statistics, colorectal cancer ranks third among malignancies in terms of 
incidence and is the second leading cause of cancer-related deaths, with rectal cancer 
specifically occupying the eighth position and accounting for one-third of all colorectal 
malignancy cases (1, 2). Importantly, survival rates for patients diagnosed at early to 
intermediate stages decline with advancing tumor stages (3), underscoring the critical need 
for accurate prognosis prediction in this patient population.
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The classical Tumor-Node-Metastasis (TNM) staging system is 
the primary basis for evaluating prognosis and guiding treatment 
strategies in rectal cancer patients (4). However, this system’s precision 
and reliability remain insufficient to fully meet the comprehensive 
demands of clinical practice (5, 6). Consequently, there is a pressing 
need to explore and incorporate multidimensional biomarkers and 
clinical indicators to optimize further and refine the prognostic 
prediction framework for rectal cancer. Research has demonstrated 
that the content and proportions of visceral adipose tissue, 
subcutaneous adipose tissue, and skeletal muscle are correlated with 
clinical outcomes in colorectal cancer patients, exerting substantial 
influences on disease onset, progression, and prognosis (7–9). These 
tissue areas and densities can be conveniently and accurately obtained 
through preoperative CT/MR imaging modalities (10, 11).

In recent years, machine learning (ML), a novel form of artificial 
intelligence (AI), has gained increasing prominence in data mining 
and has been widely applied in medical data analysis due to its prowess 
in handling large datasets (12, 13). Prior studies have predominantly 
focused on the relationship between individual or multiple abdominal 
components and rectal cancer prognosis (9–11), as well as the 
development and validation of predictive models such as nomograms 
(14, 15). Nevertheless, there is a paucity of reports regarding the 
integration of abdominal adipose tissue and muscle with ML models 
to predict postoperative outcomes following LaTME.

Thus, we aim to develop a model that predicts 3-year all-cause 
mortality in patients after LaTME. This model has the potential to 
facilitate the early identification of patients with shorter survival 
prognoses, enabling timely interventions for optimal survival 
outcomes. Furthermore, we  aspire for this model to guide the 
formulation of standardized nutritional protocols and the refinement 
of nutritional therapies.

2 Materials and methods

2.1 Patients and study design

This study enrolled 186 patients who underwent LaTME from 
January 2018 to December 2020  in the Gastrointestinal Surgery 
Department of the Second Affiliated Hospital of Soochow University. 
Inclusion criteria were: (1) preoperative pathological diagnosis 
confirming rectal cancer; (2) complete CT scans and clinical data within 
2 weeks prior to surgery; and (3) surgical approach being LaTME.

Exclusion criteria were: (1) emergency surgery; (2) open surgery; 
(3) preoperative adjuvant therapies such as radiotherapy or 
chemotherapy; and (4) clinical stage IV or inoperable cases due to 
massive tumors (Figure 1). All procedures performed in this study 
adhered to the principles outlined in the Declaration of Helsinki of 
1964. Studies involving human subjects were reviewed and approved 
by the Ethics Committee of the Second Affiliated Hospital of Soochow 
University (NO: JD-HG-2024-037).

2.2 Data collection

For the patients included in this study, the following indicators 
were retrospectively collected from our hospital’s electronic medical 
record system:

 1 Baseline Characteristics of the Patients: Age, gender, comorbidities 
(hypertension, diabetes), postoperative adjuvant therapy, operative 
duration, and postoperative hospital stay.

 2 CT Measurement Parameters: Skeletal muscle index (SMI), 
subcutaneous adipose tissue index (SAI), visceral adipose tissue 
index (VAI), skeletal muscle density (SMD), subcutaneous adipose 
tissue density (SAD), visceral adipose tissue density (VAD), and 
visceral-to-subcutaneous adipose tissue area ratio (VSR).

 3 Blood Laboratory Indicators: Albumin-to-alkaline phosphatase 
ratio (AAPR) (16), inflammatory burden index (IBI) (17), 
prognostic nutritional index (PNI) (18), and carcinoembryonic 
antigen (CEA).

 4 Pathological Characteristics: TNM staging, nerve invasion, 
vascular invasion, and lymph node positivity ratio (LNR). No 
significant correlations were observed among these variables 
(Figure 2).

2.3 Image analysis

For the analysis of body composition, Slice-O-Matic software (V5.0; 
TomoVision) was employed to calculate visceral adipose tissue (VAT) 
and subcutaneous adipose tissue (SAT) parameters at the L4-L5 
intervertebral disc level, using two consecutive CT transverse slices 
(5 mm apart) and averaging the results. Anatomical knowledge and 
tissue-specific Hounsfield unit (HU) ranges were applied to delineate 
cross-sectional areas, with skeletal muscle ranging from −29 to +150 
HU, VAT from −150 to −50 HU, and SAT from −190 to −30 HU (10). 
Additionally, the mean radiodensity of each tissue was obtained. For 
each patient’s CT, two individuals (Li and Zhou), trained in the 
software’s usage, independently outlined the target regions, and the 
average of their measurements was taken. In cases of significant 
discrepancy, a third party verified the outlines (Supplementary Figure S1).

The SMI, SAI, and VAI were derived using normalized areas of 
skeletal muscle, SAT, and VAT, respectively. Skeletal muscle tissue 
density (SMD), subcutaneous adipose tissue density (SAD), and 
visceral adipose tissue density (VAD) were obtained by averaging the 
radiodensity across the total cross-sectional area based on preoperative 
CT scans. The visceral-to-subcutaneous fat area ratio (VSR) was 
calculated to assess visceral obesity (19).

2.4 Follow-up visits

This study employed a combined approach of outpatient revisit 
and telephone follow-up. The initial follow-up was conducted 1 month 
post-surgery, followed by visits every 1–3 months during the first 
postoperative year, transitioning to every 6 months in the second year. 
From the third year onwards, annual follow-ups were scheduled. The 
follow-up period concluded in December 2023 or upon the patient’s 
demise, with the primary outcome measure being survival outcome 
(alive or dead) at the 3-year post-operative mark.

2.5 Establishment of ML model

Patients were randomly assigned in a 7:3 ratio to a training 
cohort (n = 131) and a validation cohort (n = 55). We leveraged ML 
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models, including Decision Tree (DT), K-Nearest Neighbors (KNN), 
Light Gradient Boosting Machine (LightGBM), Logistic Regression 
(LR), Random Forest (RF), Support Vector Machine (SVM), and 
Extreme Gradient Boosting (XGBoost), to construct and validate 
our models. Grid search, coupled with 5-fold cross-validation, was 
employed to identify optimal parameters for each of the seven ML 
models, optimizing for the area under the receiver operating 
characteristic curve (AUROC). We calculated sensitivity, specificity, 
accuracy, positive predictive value (PPV), negative predictive value 
(NPV), recall, and F-score to comprehensively evaluate 
model performance.

In comparing the predictive performance of these ML models, 
we relied on AUROC as well as a composite assessment of multiple 
metrics to gauge the overall efficacy. Regarding model interpretability, 
we utilized Shapley Additive exPlanations (SHAP) values to elucidate 
the clarity and explainability of the best-performing model. 
Specifically, we  generated SHAP beeswarm plots ranking the 
predictive variables based on the optimal model selected, thereby 
facilitating insight into their relative importance. In addition, 
we elucidate the effect of individual attributes on the predictive power 
of the optimal model, thus providing a localized explanation.

2.6 Statistical methods

All statistical analyses and visualizations in this study were 
conducted using the R programming language (version 4.4.1). The 
normality of continuous variables was assessed using the Shapiro–
Wilk test and Q-Q plots. Descriptive statistics for normally distributed 
variables are presented as mean ± standard deviation [mean (SD)], 
whereas median and interquartile range (median [IQR]) are reported 
for non-normally distributed variables. Categorical variables are 
expressed as absolute numbers and percentages [n (%)]. The Student’s 
t-test was employed for comparisons of continuous variables, and the 
chi-squared (χ2) test was used for categorical variables. Statistical 
significance was set at a two-sided p-value of <0.05.

3 Results

3.1 Baseline characteristics

A total of 186 patients were recruited for this study, comprising 
112 males (60.22%) and 74 females (39.78%). The median age was 

FIGURE 1

Flowchart of the study.
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66 years. At the 3-year postoperative follow-up, 146 patients were 
alive, while 40 had deceased. Among the participants, 76 had 
comorbid hypertension, and 21 had diabetes. 
Supplementary Table S1 summarizes the baseline characteristics 
comparison between different survival outcomes. Notably, no 
significant differences were observed in clinical features and CT 
parameters between the training cohort and the validation cohort 
(p > 0.05) (Table 1).

3.2 Establishment and evaluation of the 
model

A total of 186 patients were enrolled and randomly assigned to a 
training cohort (n = 131) and a validation cohort (n = 55) in a 7:3 
ratio. Seven machine learning models were selected for this study: DT, 
KNN, LightGBM, LR, RF, SVM, and XGBoost. Among these, LR 
exhibited the optimal performance in the training cohort, with an 
AUROC of 0.949 (Supplementary Table S2). Conversely, in the 

validation cohort, XGBoost surpassed the others, achieving an 
AUROC of 0.911 (Figure 3).

To assess the predictive efficacies of these seven models, 
we employed the DeLong test, which revealed that only the KNN 
model displayed a statistically significant difference in predictive 
performance compared to the rest (p < 0.05). The calibration curve 
and DCA for each model are presented in Supplementary Figures S2, 
S3, respectively. All other models, without notable variations among 
themselves, demonstrated superior predictive capabilities 
(Supplementary Table S3). Considering the AUROC, sensitivity, and 
other pertinent metrics in the validation set (Table 2), XGBoost stood 
out as the most performant mode. Consequently, XGBoost was chosen 
for further predictive analysis and exploration.

3.3 Model explainability

As XGBoost emerged as the optimal model for predicting 
all-cause mortality in rectal cancer, Figure 4A presents the ranking of 

FIGURE 2

Variable correlation heatmap. The blue color represents positive correlation, while red indicates negative correlation. The intensity of the color signifies 
the strength of the correlation.
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TABLE 1 Baseline patient characteristics.

Variables Total (n = 186) Training cohort 
(n = 130)

Validation cohort 
(n = 56)

p-value

Baseline characteristics of the patients

Age [mean (SD), year] 66.05 ± 11.12 67.22 ± 11.02 63.32 ± 10.95 0.028

Sex, n (%) 0.927

Female 74 (39.78) 52 (40.00) 22 (39.29)

Male 112 (60.22) 78 (60.00) 34 (60.71)

Hypertension, n (%) 0.131

No 104 (55.91) 68 (52.31) 36 (64.29)

Yes 82 (44.09) 62 (47.69) 20 (35.71)

Diabetes, n (%) 0.241

No 165 (88.71) 113 (86.92) 52 (92.86)

Yes 21 (11.29) 17 (13.08) 4 (7.14)

Chemotherapy, n (%) 0.951

No 87 (46.77) 61 (46.92) 26 (46.43)

Yes 99 (53.23) 69 (53.08) 30 (53.57)

Radiation, n (%) 0.265

No 154 (82.80) 105 (80.77) 49 (87.50)

Yes 32 (17.20) 25 (19.23) 7 (12.50)

Operation time [median (IQR), 

min]
225.00 (195.00, 280.00) 227.50 (195.00, 280.00) 220.00 (187.50, 276.25) 0.522

Postoperative hospital stay 

[median (IQR), day]
11.00 (9.00, 13.00) 11.00 (9.00, 13.75) 10.00 (9.00, 12.00) 0.461

CT measurement parameters

Tumor size [median (IQR), 

mm]
35.00 (30.00, 50.00) 35.00 (25.75, 50.00) 40.00 (30.00, 51.25) 0.139

Distance from the tumor to 

anus [median (IQR), cm]
9.55 (5.43, 11.10) 9.95 (5.43, 11.10) 8.90 (5.47, 10.85) 0.504

SMI [mean (SD), cm/kg2] 43.66 ± 8.10 43.59 ± 8.06 43.82 ± 8.25 0.854

SAI [mean (SD), cm/kg2] 47.76 ± 21.76 46.39 ± 20.31 50.94 ± 24.71 0.192

VAI [mean (SD), cm/kg2] 40.72 ± 22.23 40.59 ± 21.82 41.04 ± 23.34 0.898

SMD [mean (SD), U] 32.67 ± 7.17 32.50 ± 7.30 33.07 ± 6.93 0.617

SAD [mean (SD), U] −97.34 ± 9.03 −97.33 ± 8.82 −97.36 ± 9.61 0.986

VAD [mean (SD), U] −94.08 ± 8.36 −94.12 ± 8.36 −93.98 ± 8.43 0.917

VSR [median (IQR)] 0.79 (0.56, 1.13) 0.86 (0.59, 1.15) 0.73 (0.52, 1.01) 0.174

Blood laboratory indicators

AAPR [mean (SD)] 0.54 ± 0.16 0.54 ± 0.17 0.54 ± 0.13 0.971

IBI [median (IQR)] 12.10 (9.43, 17.50) 11.93 (9.47, 17.05) 12.49 (9.17, 18.18) 0.944

PNI [median (IQR)] 49.90 (46.23, 52.38) 49.90 (46.05, 52.60) 50.00 (47.10, 52.08) 0.97

CEA [median (IQR), ng/L] 3.70 (2.51, 6.54) 3.63 (2.52, 5.86) 3.77 (2.52, 9.88) 0.404

Pathological characteristics

TNM stage, n (%) 0.059

I/II 128 (68.82) 84 (64.62) 44 (78.57)

III 58 (31.18) 46 (35.38) 12 (21.43)

Nerve invasion, n (%) 0.685

No 146 (78.49) 101 (77.69) 45 (80.36)

(Continued)
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feature importance within the XGBoost model. The top five most 
influential features of the XGBoost model are SAI, VAI, SMD, VSR, 
and SAD. Furthermore, Figure 4B depicts how individual features 
contribute to the predictive effect on the dependent variable within 
the model, with each point representing the SHAP value of a specific 
feature for a sample. Figure 5 illustrates the trends in how these five 
features impact the model’s predictions.

4 Discussion

This study established and validated seven ML models to 
predict 3-year all-cause mortality following LaTME. Among the 
compared ML models, XGBoost demonstrated notable superiority. 
To our knowledge, this is the first study utilizing interpretable 
machine learning based on abdominal body composition to predict 
3-year all-cause mortality after LaTME. While various nomogram 
models have been previously developed (20–22), our work 
distinguishes itself by introducing a high-performance ensemble 
machine learning model, which holds the potential to refine 

strategic resource allocation and inform more effective patient 
management strategies.

Obesity has been well-established as a risk factor for the 
development and progression of multiple cancer types, including lung 
(23), pancreatic (24), gastric (25), and colorectal cancers (26). However, 
some studies have suggested that obesity may paradoxically serve as a 
protective factor for certain diseases (27, 28). Nevertheless, the intricate 
relationship between obesity and prognosis in rectal cancer patients 
remains largely unelucidated, primarily due to the limitations of BMI, 
which fails to distinguish between adipose tissue and skeletal muscle 
or to delineate adipose tissue distribution. One study proposed that 
quantified fat-free mass index (FFMI) and fat mass-to-fat-free mass 
ratio (FM/FFM) may better predict functional outcomes in pre-frail 
elders than BMI (29). Previous research has shown that low skeletal 
muscle index (SMI) adversely impacts colorectal cancer prognosis (30, 
31). Regarding subcutaneous adipose tissue (SAT) and visceral adipose 
tissue (VAT), most studies have focused on their cross-sectional areas 
in relation to colorectal cancer prognosis without considering 
confounding factors such as height. Therefore, quantifying body 
composition through indices like SAI and VAI can mitigate the 

TABLE 1 (Continued)

Variables Total (n = 186) Training cohort 
(n = 130)

Validation cohort 
(n = 56)

p-value

Yes 40 (21.51) 29 (22.31) 11 (19.64)

Vascular invasion, n (%) 0.08

No 152 (81.72) 102 (78.46) 50 (89.29)

Yes 34 (18.28) 28 (21.54) 6 (10.71)

LNR [median (IQR)] 0.00 (0.00, 0.13) 0.00 (0.00, 0.16) 0.00 (0.00, 0.06) 0.056

TNM, Tumor-Node-Metastasis [The 8th edition of the American Joint Committee on Cancer (AJCC) staging system]; SMI, skeletal muscle index; SAI, subcutaneous adipose tissue index; VAI, 
visceral adipose tissue index; SMD, skeletal muscle density; SAD, subcutaneous adipose tissue density; VAD, visceral adipose tissue density; VSR, visceral-to-subcutaneous adipose tissue area 
ratio; AAPR, albumin-to-alkaline phosphatase ratio; IBI, inflammatory burden index; PNI, prognostic nutritional index; CEA, carcinoembryonic antigen.

FIGURE 3

Performance of seven ML models in the training cohort as assessed by the AUROC (A), with corresponding visual representation in a bar chart (B).
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influence of confounders, enhancing the accuracy of abdominal 
obesity assessment. Our study further highlights SMD and SAD as 
robust predictors of all-cause mortality in rectal cancer patients, 
consistent with prior findings (10, 32). Feliciano EMC et al. suggested 
that higher radiological density of VAT or SAT may indicate lower lipid 
content in adipocytes, potentially reflecting weight loss, a hallmark of 
disease progression. However, their analysis of patients maintaining 
stable weight between scans yielded similar results (10), suggesting that 
the underlying mechanisms may require further investigation.

It is noteworthy that in our study, the SAI emerged as the strongest 
predictor of three-year survival among rectal cancer patients, aligning 
with findings from several studies which indicate that a low SAI is 
independently associated with an increased mortality rate (33, 34). 
Intriguingly, these studies point out that a low VATI is not an 
independent risk factor for the prognosis of rectal cancer patients (33, 
34). The finding that having a high VAI without concurrent high 
subcutaneous obesity increases the risk of mortality contrasts with 
conclusions drawn from multiple studies (35, 36). This discrepancy 

may be attributed to the influence of demographic factors such as 
different disease types, age, gender, and ethnicity (37), or it could 
be  related to variations in TNM staging. However, no definitive 
conclusion has been reached, and further investigation is required.

Our study also highlights SMD and SAD as strong predictors of 
survival outcomes in rectal cancer patients, consistent with previous 
research (30, 31). Feliciano et al. suggest that higher VAT or SAT 
radiodensity may reflect lower lipid content in adipocytes, potentially 
due to weight loss, which is a hallmark of progressive disease. 
However, they found similar results when restricting their analysis to 
patients who maintained stable weight between imaging sessions (31). 
A clearer mechanism may require further research. In our study, VSR 
was also identified as a significant predictor, with findings similar to 
those reported in several other studies (38, 39). Furthermore, VSR is 
recognized as an effective indicator for assessing body fat distribution. 
By identifying key variables associated with increased risk, SHAP can 
facilitate early interventions and personalized treatment planning, 
enabling more informed and individualized clinical decision-making.

TABLE 2 Evaluate the predictive performance of seven ML models in the validation cohort.

Indicator Models

XGBoost DT SVM RF LightGBM LR KNN

AUROC 0.911 0.903 0.892 0.89 0.883 0.854 0.727

Accuracy 0.804 0.875 0.804 0.768 0.804 0.839 0.589

Sensitivity 0.750 0.833 0.841 0.795 0.818 0.886 0.545

Specificity 1 0.886 0.667 0.667 0.75 0.667 0.75

PPV 1 0.667 0.902 0.897 0.923 0.907 0.889

NPV 0.522 0.951 0.533 0.471 0.529 0.615 0.31

Balance accuracy 0.875 0.86 0.754 0.731 0.784 0.777 0.648

Precision 1.000 0.667 0.902 0.897 0.923 0.907 0.889

Recall 0.750 0.667 0.841 0.795 0.818 0.886 0.545

F-score 0.857 0.857 0.871 0.843 0.867 0.897 0.676

DT, Decision Tree; KNN, K-Nearest Neighbors; LightGBM, Light Gradient Boosting Machine; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machine; XGBoost, Extreme 
Gradient Boosting; PPV, Positive Predictive Value; NPV, Negative Predictive Value.

FIGURE 4

SHAP summary plot for the top 10 clinical features contributing to the XGBoost model. SHAP feature importance is measured as the mean absolute 
Shapley values (A) and the attributes of the features in the model (B).
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Numerous studies have highlighted the strong association between 
nutritional-inflammatory indices, such as PNI (40), IBI (41), and AAPR 
(42), and cancer prognosis. However, in our study, these variables were 
less influential in the model compared to abdominal muscle and adipose 
tissue composition. Given the relatively small patient cohort, the 
contribution of these indices to the model warrants further investigation.

Our study is not without limitations. Firstly, as a single-center 
retrospective study with a limited patient sample, it cannot fully rule 
out selection bias. A larger sample size from multiple centers is needed 
to validate our findings. Increasing the sample size to approximately 
3,000 will provide a more robust dataset, enabling more reliable 
statistical analyses and potentially identifying stronger associations. 
Secondly, while the study included laboratory tests, clinicopathological 
features, and abdominal CT parameters, the CT measurements relied 
on average areas from two planes, which may not fully capture 
abdominal adipose tissue volume, thereby introducing potential 
errors. Lastly, due to the limitation of follow-up duration, our study 
focused solely on the 3-year all-cause mortality rate, without delving 
into the 5-year or longer-term rectal cancer-specific mortality rate. 
This, to a certain extent, constrained the accuracy of our model. 
Consequently, further research in this regard is imperative.

5 Conclusion

In summary, we have developed and validated seven machine 
learning models utilizing CT-derived body composition data to 
predict 3-year all-cause mortality following LaTME. Notably, the 
XGBoost model emerged as the most predictive, highlighting SAI, 
VAI, SMD, VSR, and SAD as the five most significant predictive 
variables influencing three-year survival post-LaTME. This 

underscores the potential clinical significance of integrating body 
composition metrics and advanced machine learning techniques in 
prognostic assessments for rectal cancer patients undergoing LaTME.
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Glossary

ML - machine learning

LaTME - laparoscopic total mesorectal excision

CT - computed tomography

AUROC - area under the receiver operating characteristic curve

SHAP - SHAPley Additive exPlanations

TNM - Tumor-Node-Metastasis

SMI - skeletal muscle index

SAI - subcutaneous adipose tissue index

VAI - visceral adipose tissue index

SMD - skeletal muscle density

SAD - subcutaneous adipose tissue density

VAD - visceral adipose tissue density

VSR - visceral-to-subcutaneous adipose tissue area ratio

AAPR - albumin-to-alkaline phosphatase ratio

IBI - inflammatory burden index

PNI - prognostic nutritional index Positive Predictive Value

NPV - Negative Predictive Value

CEA - carcinoembryonic antigen

DT - Decision Tree

KNN - K-Nearest Neighbors

LightGBM - Light Gradient Boosting Machine

LR - Logistic Regression

RF - Random Forest

SVM - Support Vector Machine

XGBoost - Extreme Gradient Boosting
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