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Pregnancy is a period characterized by extensive physiological changes in both 
the mother and fetus. During this period, the nutritional status of the mother has a 
profound and irreversible impact on her health and the growth and development 
of the fetus. The fetus depends exclusively on the mother and drives nutrients 
through the placenta. Therefore, mothers must be provided with a well-balanced 
diet that is adequate in both macro- and micronutrients. Most pregnant women 
generally manage to get adequate macronutrients; however, many women fail to 
get micronutrients up to the recommended dietary allowance. Micronutrients such 
as vitamins and minerals are necessary for preventing congenital abnormalities 
and the optimal development of the brain and body of the fetus. Their inadequacy 
can lead to complications like anemia, hypertension, pre-eclampsia, maternal and 
fetal hypothyroidism, premature infants, intrauterine growth restriction, stillbirth, 
and other negative pregnancy outcomes. New studies recommend the use of 
prenatal micronutrient supplements to prevent birth defects and health issues 
caused by deficiencies in folic acid, iron, iodine, and calcium during pregnancy. 
This is especially important in developing nations where deficiencies are prevalent. 
Also while using these supplements, their upper limits (UL) must be considered 
to avoid overload. In this review, we  provide an overview of the four most 
critical micronutrients during pregnancy: iron, folic acid, iodine, and calcium. 
We provide insight into their sources, RDAs, deficiency consequences, and the 
need for supplementation while considering the risk of micronutrient overload. 
To maximize the potential benefits while minimizing the risk of nutrient overload, 
although knowledge gaps remain.
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1 Introduction

Pregnancy is a period of rapid and extensive physiological changes 
that increase maternal nutritional requirements (1, 2). The first 
1,000 days of a newborn’s life (from gestation to second birthday) are 
considered the “golden opportunity” for determining their health in 
life (3). Therefore, the nutritional status of the mother before and 
during pregnancy has a significant and irreversible impact on the 
growth of infants including birth weight, as well as the mother’s health 
(4). Adequate macronutrients and micronutrients are mandatory to 
promote healthy gestation. Their deficiency can trigger a state of 
biological competition between the mother and infant (5), leading to 
complications such as anemia and hypertension, as well as impaired 
function, growth, and development in the infant. In addition to 
negative pregnancy outcomes, micronutrient deficiencies can also 
affect adulthood, intergenerational health, morbidity, and infant 
mortality (6, 7).

Every 2 minutes, a woman dies during pregnancy or childbirth, 
revealing alarming setbacks for women’s health in recent years. 
Among the most essential micronutrients, the four most vital ones 
are (1) iron, (2) folic acid/B9, (3) calcium, and (4) iodine (see 
graphical abstract). Iron is the most critical nutrient in the body 
because it helps in the production of hemoglobin and myoglobin 
and the metabolism of proteins (8–10). Insufficient iron intake can 
cause anemia and iron deficiency anemia. Globally, iron deficiency 
is affecting about 45 million pregnant women (11–13). That is why 
the idea that iron supplementation should be  universal during 
pregnancy is under discussion (14–16). However, iron 
supplementation can also cause some gastrointestinal problems, like 
nausea (17). Folic acid is involved in the development of neural tube 
and protein metabolism and prevents the development of birth 

defects in the fetus, pre-eclampsia, spontaneous miscarriage, and 
placental anomalies in the mother (18–21). Despite the benefits of 
folic acid supplementation, its overconsumption can cause some 
adverse effects like increased insulin resistance and low levels of 
adiponectin in children, leading to childhood obesity (22). Adequate 
calcium intake is crucial for fetal bone development and reducing 
risks of preeclampsia and preterm delivery, which is why its 
intestinal absorption doubles in pregnancy (23–25). Hypocalcemia 
is not very common during pregnancy but occurs due to 
hypoparathyroidism and extremely low dietary calcium intake (26, 
27). On the other hand, excessive calcium supplementation can lead 
to hypercalcemia and kidney stone risk (28, 29). Iodine is essential 
for thyroid hormone production, particularly during pregnancy due 
to increased maternal thyroid demand, a higher glomerular filtration 
rate, and fetal needs (30–35). According to the International Council 
for Control of Iodine Deficiency Disorders (ICCIDD), and the 
World Health Organization (WHO), the iodine requirement for 
pregnant and lactating women is 250 μg/day. However, excessive 
iodine intake can lead to thyroid disorders in both the mother and 
fetus, posing risks such as hypothyroidism, goiter, and negative 
pregnancy outcomes, including macrosomia (36–38). Therefore, 
women should consume micronutrient dosages according to their 
own country’s recommendations throughout gestation to support a 
healthy pregnancy and fetal growth (Table 1).

Keeping in view the above-given importance of these 
micronutrients, it is critical to have a deeper understanding of 
pregnancy nutritional requirements. Therefore, this review provides 
insights into sources, bioavailability, Recommended Dietary 
Allowance (RDA), causes and consequences of deficiency, and the 
need for supplementation while considering the danger of 
micronutrient overload of the four most vital nutrients during 
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pregnancy: iron, folic acid, iodine, and calcium to assess and improve 
pregnant women’s health status.

2 Iron

In adult individuals, the amount of iron is about 35 to 45 mg per 
kg of body weight (39–41).

Iron plays a crucial role in the synthesis of myoglobin (in muscle 
tissue) and hemoglobin. Hemoglobin is used for the transportation of 
oxygen from the lungs to the tissues through red blood cells (8–10, 
39). During pregnancy, iron requirements increase more than twice, 
particularly in the 2nd and 3rd trimesters. Consequently, the iron 
RDA for pregnant women is up to 27 mg per day (42–46). Mothers 
require an increased intake of iron during pregnancy due to three 
primary factors. Firstly, an increase in the amount of maternal blood 
and plasma; secondly, a baby demands iron for its current metabolic 
activities and stores iron reserves for the next 6 months after birth as 
breastmilk is low in iron; and lastly, the placenta needs a significant 
amount of iron because of its accelerated metabolic functioning   (9, 
41, 47–49). Moreover, the daily use of iron during pregnancy is 
associated with a reduced risk of low birth weight (50). The total iron 
requirement during pregnancy is expected to be  1,040 mg, with 
300 mg for the fetus, 50 mg for the placenta, 450 mg for the increase 
of maternal red cell mass, and 240 mg for basal iron loss (51).

2.1 Sources

There are two different sources of dietary iron heme and no heme. 
Heme represents 40% of total iron in animal foods and exhibits a 
bioavailability range of 15 to 40% in the human body, indicating their 
greater ability to be absorbed and utilized (52). Moreover, non-heme 

iron is derived from plant-derived sources. Its bioavailability ranges 
from 1 to 15% and is more susceptible to alteration by various 
constituents present in food (53). Overall, the most well-known 
animal source of iron is the liver of the Bovidae family, which includes 
calf liver as well as liver from pigs, sheep, horses, and ducks. Other 
animal sources with great iron amounts are the kidney, the brewer’s 
yeast, and meats (54, 55).

2.2 Absorption and factors affecting 
absorption

Iron can only be absorbed when it is ferrous (Fe2+) or bound to a 
protein like heme. In the proximal duodenum, the low pH of gastric 
acid allows a ferric reductase enzyme, duodenal cytochrome B 
(Dcytb), to convert insoluble ferric (Fe3+) into absorbable ferrous ions 
(Fe2+). In enterocytes, iron can be stored as ferritin or transported 
through the basolateral membrane and into circulation as ferroportin 
(56) as shown in Figure 1. The bioavailability of dietary iron is not 
optimal due to potential interactions with other nutrients in food, 
such as calcium (present in milk-based products like cheese), 
polyphenols (in caffeine-containing foods like tea and coffee), phytate 
(in whole-grain-containing products, e.g., bread), and oxalic acid (in 
beetroot), which decreases iron absorption (57, 58). Conversely, 
several nutrients, such as fructose, copper, vitamin A, beta-carotene, 
and vitamin C, have been found to boost the absorption of iron (59). 
Among these options, vitamin C is the most promising for enhancing 
the absorption of iron (60). The effect of vitamin C has been proven 
to be amount-dependent (61, 62) and can increase the absorption of 
iron only when both nutrients are consumed together (63). Moreover, 
it has been reported taking 500 mg of ascorbic acid with food increases 
the absorption of iron six times, but ascorbic acid taken 4–8 h before 
is less effective (64). Despite stability issues of vitamin C during food 

TABLE 1 Showing recommended nutrient intake of different countries during pregnancy.

Countries Iron Folic acid Calcium Iodine Following

America 27 mg/day (233) 600 mcg /day of dietary 

folate equivalents (DFEs) 

(234)

≤ 18 years

19–50 years

1,300 mg/day

1,000 mg/day (235)

220 mcg (236) National Institute of Health 

(NIH)

Canada 27 mg/day (237) 600 μg /day of dietary 

folate equivalents (DFEs) 

(237)

≤ 18 years

19–50 years

1,300 mg/day

1,000 mg/day (237)

220 μg/day (237) Health Canada

Australia 27 mg/day (238) 600 μg/day (239) 14–18 years

19–50 years

1,300 mg/day

1,000 mg/day (240)

220 μg/day (241) National Health and Medical 

Research Council

New Zealand 27 mg/day (238) 600 μg/day (239) 14–18 years

19–50 years

1,300 mg/day

1,000 mg/day (240)

220 μg/day (241) National Health and Medical 

Research Council

Germany 30 mg/day (242) 600 μg/day (242) <19 years

≥19 years

1,200 mg/day

1,000 mg/day (243)

230 μg/day (244) German Nutrition Society 

(DGE)

European guidelines

Denmark 26 mg /day (245) 600 μg/day (245) 950 mg /day (245) 200 μg/day (245) Nordic Nutrition 

Recommendations

India 27 mg/day (246) 570 μg/day (246) 1,000 mg/day (246) 220 μg/day (246) Indian Council of Medical 

Research (ICMR)

France 30 mg/d (247) _ <19 years

≥19 years

1,200 mg/day

1,000 mg/day (248)

200 μg/day (249) European Food Safety 

Authority (EFSA)
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FIGURE 2

Factors affecting the absorption of different nutrients.

FIGURE 1

Pathway of absorption of different nutrients during pregnancy.
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preparation, adding vitamin C to the diet appears to be a good way to 
increase iron consumption (65). However, some studies indicate that 
the addition of ascorbic acid to the whole diet has no significant 
impact on increasing iron absorption because of meal composition 
and the whole food matrix in the diet as shown in Figure 2 (66–69). 
Furthermore, in order to maximize absorption of oral iron 
supplements, women should take it on an empty stomach, 1 h before 
meals, with a source of Vitamin C (ascorbic acid) such as orange. 
Mothers should also avoid taking other medications such as antacids 
at the same time because they may impair absorption (70).

2.3 Iron deficiency

Iron insufficiency is a prevalent global issue, impacting over 
2 billion individuals. This includes approximately 30 % of pregnant 
women in developed nations, while this prevalence is even higher in 
underdeveloped nations (8). Women of reproductive age, especially 
vegans or vegetarians, obese women, those suffering from 
inflammatory bowel disease (IBD), and endurance athletes are at a 
higher risk of iron deficiency. Iron insufficiency is the predominant 
cause of anemia during pregnancy, which affects around 45 million 
pregnant women globally. Iron deficiency anemia (IDA) is a condition 
characterized by low levels of hemoglobin. As defined by the WHO, 
hemoglobin concentrations below 110 g per liter during the 1st and 
3rd trimesters or below 105 g per liter during the 2nd trimester are 
indicative of IDA (11–13, 71–76).

During pregnancy, iron deficiency anemia has adverse effects on 
both the mother’s and fetus’ well-being. In the fetus, ID and/or IDA 
have been associated with the risk of premature infants, low birth 
weight (LBW), or small for gestational age (SGA) infants, and even 
increased morbidity and fetal death (9, 15, 77). Mothers with iron 
deficiency might experience difficulties with breathing, fainting, 
fatigue, palpitations, and sleep disturbances (47–49).

In 2012, the Global Nutrition Target 2025 aimed for a 50% 
reduction in the prevalence of anemia among women of the 

reproductive age group (78) Unfortunately, according to the 2021 
Global Nutrition Report, there has been limited global progress 
toward meeting the target. On the contrary, a projected estimate 
based on the current trends details an expected prevalence in 2025 
of more than double the set target level (31.2% rather than 
14.3%) (79).

2.4 Biomarker

There are several biomarkers available by which we can detect iron 
deficiency. Hemoglobin levels have been utilized as a means of assessing 
iron status for centuries, particularly in low-resource nations, due to its 
simplicity and affordability. Nevertheless, it is deficient in detecting the 
initial stage of iron insufficiency (80). There are several other iron-
specific biomarkers, including serum ferritin, total iron binding capacity 
saturation (%TSAT), and hepcidin, which can specifically differentiate 
iron deficiency anemia (IDA) from other causes of anemia (81). All 
these biomarkers have their pros and cons. as you can see in Table 2.

2.5 Supplementation and dosage

Nutritional surveys in the United Kingdom and Norway showed 
that women’s dietary patterns change little with pregnancy (82, 83). 
Moreover, only 30 percent of dietary iron can be  effectively 
absorbed even in ideal circumstances, relying solely on dietary iron 
is not practical for meeting the increased iron requirements during 
pregnancy. WHO recommends pregnant women to take 30 mg to 
60 mg of elemental iron and 400 μg (0.4 mg) of folic acid 
supplement to prevent maternal anemia, puerperal sepsis, low birth 
weight, and preterm birth. The equivalent of 60 mg of elemental 
iron is 300 mg ferrous sulfate heptahydrate, 180 mg ferrous 
fumarate or 500 mg of ferrous gluconate (84). Preventative iron 
supplementation during pregnancy leads to a significant reduction 
of 70% in maternal anemia. Hence, pregnant women should 

TABLE 2 Advantages and disadvantages of iron-specific biomarkers.

Biomarkers Advantage Disadvantage

Hemoglobin concentration Its ranges are well-defined and accessible for diagnosis.

It is affordability and widespread use make it more useful, 

particularly in the resource area (80).

It is unable to identify iron deficiency in its early 

phases even when physiological effects start 

appearing at the tissue level (80).

Serum ferritin It helps in the diagnosis of iron deficiency and provides 

information about the body’s iron reserves (250).

Serum ferritin concentration rises as a result of 

Infections, inflammation, cardiac failure, renal 

failure, malignancies, and other conditions that can 

elevate serum ferritin (251).

It does not provide information about how much 

iron is available for red blood cell production (252).

% Total iron binding capacity saturation 

(%TSAT)

It helps in the diagnosis of pre-anemic women with iron deficiency 

(80).

Ferritin is an acute-phase protein, inflammation 

might increase its levels, while TSAT may be less 

impacted by inflammation (253).

Serum hepcidin Depending on inflammation and iron status in the body, it 

provides insights about who should receive iron supplements 

(254).

It outperforms hemoglobin, serum iron, serum ferritin, TS, and 

TIBC in the detection of IDA in pregnancy (255).

It is unable to differentiate iron deficiency anemia 

(IDA) and anemia of chronic disease (ACD) (256).
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consider the utilization of iron supplements, the appropriate dosage 
of which should be determined based on the prevalence of maternal 
anemia within their specific geographic area (14–16). When iron 
insufficiency is more than 40% of the population WHO recommends 
60 mg of daily oral elemental iron and when it is less than 40% 
WHO recommends a lesser dose of 30 mg daily (85). There are 17 
trials (N = 24,023) on maternal iron supplementation conducted by 
the US Preventive Services Task Force. Iron supplementation 
reduced the risk of maternal iron deficiency anemia at term (4 
trials, n = 2,230, 8.6% vs. 19.8%) and maternal iron deficiency at 
term (6 trials, n = 2,361, 46% vs. 70%) as compared to placebo or 
no iron supplement. But were no statistically significant differences 
in maternal quality of life and maternal health compared with 
placebo or no supplementation (86). Furthermore, one meta-
analysis indicates that intermittent oral iron supplementation with 
a dose of 120 mg/day is more effective than daily oral iron 
supplementation with a dose of 60 mg/day in increasing hemoglobin 
levels among pregnant women, with lesser side effects. Crucially, 
this approach is linked with a significant reduction in adverse 
effects related to iron supplementation. That is why intermittent 
oral iron supplementation is recommended for those individuals 
who are not able to adhere to the daily regime due to adverse 
events (87).

However, women with severe anemia (hemoglobin 8.5 g/dL or 
ferritin 30 ug/L) should use intravenous iron, which appears to be an 
effective and more secure alternative because oral iron therapy could 
trigger adverse reactions in them. A meta-analysis has also confirmed 
that women receiving iron through IV reach their targeted Hb levels 
more often and quickly with fewer side effects The well-tolerated 
nature of intravenous iron (IV) is attributed to the existence of type II 
iron complexes (88).

Due to the higher prevalence of iron deficiency policymakers are 
discussing whether universal iron supplementation should be adopted 
as a policy for pregnant women. In this regard, the Office of Dietary 
Supplements (ODS) of the National Institutes of Health (NIH) 
recently organized a seminar to evaluate the requirement for iron 
supplementation treatment among expecting women who already 
have enough iron (89–91). Hence, further research is needed, before 
the implementation of this policy (14–16, 92).

There are other interventions to address iron deficiency including 
iron fortification of staple foods, including wheat, maize, and rice 
according to the dietary habits of the affected population group is 
regarded as the most cost-effective long-term approach to reduce the 
prevalence of anemia especially in low-income countries (93, 94). The 
final possible strategy for anemia management is nutritional 
counseling. According to the systematic review, a study in which only 
counseling was used turned out to be effective in anemia prevention 
and management (95). The World Health Organization advises 
pregnant women to get counseling about healthy eating and keeping 
physically active during pregnancy (85).

2.6 Overconsumption

Moreover, iron supplementation can cause some undesirable 
effects, like oral supplementation, which may induce some 
common gastrointestinal symptoms, including vomiting, bloating, 
abdominal pain, diarrhea, the presence of blackish or tarry stools, 

and constipation (17), while the administration of intravenous 
(IV) iron can lead to adverse effects such as injection site 
irritation, skin discoloration, general discomfort, and a metallic 
taste (73).

One study indicated that there is an increase in the risk of 
gestational diabetes as a result of iron supplementation in non-anemic 
women. Zhang et al. concluded in a prospective study that more than 
30 mg of elemental oral iron daily for more than 3 months 
periconceptionally increased the risk of gestational diabetes (96); 
however, meta-analyses have shown that this is not the case (97). 
Overall, Women should consume individualized iron supplementation 
doses based on their geographic region anemia prevalence throughout 
the pregnancy to enhance iron levels and outcomes may serve as a 
financially effective intervention. This approach would help limit the 
risks associated with iron excess and its potential adverse effects 
(42–44, 74).

3 Folate

Folate, also referred to as vitamin B9, represents both its 
natural and synthetic form., Folate plays a vital role in various 
physiological processes. These processes comprise the production 
of nucleotides, the repair and methylation of DNA, and protein 
metabolism (e.g., the breakdown of homocysteine). Pregnant 
women require 5 to 10 times more folate compared to nonpregnant 
women due to increased fetal development, placental growth, 
uterine expansion, and higher blood volume (18–21). The 
recommended intake value for folate is 500–600 μg/d for pregnant 
women in different countries (98).

3.1 Sources

Hence, it is crucial to ensure that the recommended daily intake 
of folate for pregnant women must be fulfilled either through dietary 
sources or through supplementation throughout pregnancy (99). 
Natural sources of folate include a variety of food items, like green 
leafy vegetables (e.g., asparagus and broccoli), citrus fruit, legumes, 
yeast, lima beans, and organ meats (e.g., beef liver) (100, 101).

3.2 Absorption and factors affecting 
absorption

To be absorbed, folates must be converted enzymatically into 
folate monoglutamates by folate reductase in the jejunal mucosa. 
In the liver, folate monoglutamate is converted to dihydrofolate 
(by an enzyme called dihydrofolate synthase) and to 
tetrahydrofolate (by an enzyme called dihydrofolate reductase). 
Tetrahydrofolate is converted into 5,10-methylenetetrahydrofolate 
by serine hydroxymethyltransferase 5 indicated in Figure 1 (102). 
The absorption of folate from dietary sources is not efficient as 50 
to 75 percent of the folate content is lost during the production 
and processing of food. Folate insufficiency can also arise due to 
diminished absorption or metabolism, as well as greater 
requirements or utilization of folate. In this regard, it has been 
observed that folic acid exhibits a twofold higher ability for 
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absorption in comparison to folate. It has been found that folic 
acid supplements show 85% bioavailability when consumed with 
a meal and 100% bioavailability on an empty stomach (101, 103). 
Moreover, the effect of the food matrix and the type and amount 
of folic acid consumed also influence folic acid bioavailability as 
shown in Figure  2 (104). To account for the bioavailability 
difference between folate and folic acid, scientists developed a way 
to compare the two, known as daily folate equivalents (DFE). 
DFEs adjust for the nearly 50 percent lower bioavailability of food 
folate compared with that of folic acid: 1 μg of dietary folate 
equivalent = 0.6 μg of folic acid from fortified food or as a 
supplement taken with meals = 1 μg of food folate = 0.5 μg of a 
supplement taken on an empty stomach (105).

3.3 Deficiency

Pregnant women may exhibit a greater vulnerability to folate 
insufficiency because of their elevated physiological demand for 
folate, as epigenetic processes are observed to take place in both the 
placenta and the fetus, and certain hormones (estrogen and 
progesterone) exhibit increased concentrations, which in turn 
reduce the absorption of folate during pregnancy (73, 106, 107). 
Women of fertile age, especially in underdeveloped countries, are 
susceptible to folic acid insufficiency (108), particularly where 
malaria and sickle-cell anemia are common (109), as well as those 
with inflammatory bowel disease who use alcohol or tobacco or who 
use antifolates, anti-epileptics, and anti-inflammatory drugs (IBD) 
(101, 103).

Insufficient folic acid during pregnancy has the potential to 
adversely affect both maternal and fetal health. In the developing fetus, 
inadequate folic acid can cause many irreversible adverse effects, such 
as congenital disorders, fetal growth restriction, and premature 
infants. Congenital anomalies, sometimes also referred to as birth 
defects, have the potential to impact many organ systems within the 
human body. Congenital heart abnormalities (CHDs) and neural tube 
defects (NTDs) are the predominant classifications of congenital 
anomalies. Neural tube defects (NTDs) include two unique congenital 
malformations, specifically spina bifida and anencephaly. Spina bifida 
is a congenital condition characterized by improper growth of the 
spinal cord, whereas anencephaly is a congenital anomaly 
characterized by the lack of brain and cranial structures in a neonate. 
Both illnesses have a high mortality rate. In mothers, insufficient levels 
of folic acid can lead to serious difficulties, such as the occurrence of 
pre-eclampsia, spontaneous miscarriage, and various placental 
malformations, including abruption (110–113).

3.4 Biomarkers

There are two indications utilized in the assessment of folate 
deficiency: serum folate concentrations and red blood cell (RBC) 
folate concentrations. Serum folate concentrations are indicative of 
recent food intake, while red blood cell (RBC) folate concentrations 
reflect the body’s stores of folate. Serum or plasma folate levels below 
4 nanograms per milliliter or 10 nanomoles per Liter and red blood 
cell folate levels below 151 nanograms per milliliter (ng/mL; or 340 
nanomoles per liter, nmol/L) are indicative (114).

3.5 Supplementation and dosage

Meta-analysis and systematic review have indicated a significant 
association between maternal folic acid intake and the risk of 
congenital anomalies. In particular, children whose mothers took 
periconceptional folic acid supplementation were 77% less likely to 
have congenital defects (115). WHO recommends 400 μg (0.4 mg) of 
folic acid as early as possible during pregnancy (ideally before 
conception) to prevent neural tube defects (84). Both dosage and 
timing are crucial factors to consider in folic acid supplementation. 
This is due to the neural tube closing on day 28 following conception, 
a period during which pregnancy may not yet be diagnosed as 41% of 
pregnancies worldwide are unintended. Hence, the initiation of folic 
acid treatment beyond the first month of pregnancy fails to offer 
sufficient efficacy in the prevention of neural tube defects (114, 116–
118). To address this issue some governments adopted mandatory 
folic acid fortification of cereal products, mainly flour. Folic acid 
fortification would prevent approximately 40–50% of NTD cases by 
raising average plasma folate levels from baseline levels of 
approximately 5 ng/mL to, say, 20 ng/mL. If the level was at 40 ng/mL, 
which is achieved by 4 mg of folic acid per day, it would be almost 80% 
(119). In 2,000 Chile introduced 0.22 milligrams of folic acid per 100 
grams of wheat. By doing so the average daily folic acid consumption 
increased by 0.43 mg a day, resulting in a 43% reduction in NTD risk 
(120). But after 9 years Chile reduced the fortification level to 0.18 
milligrams per 100 gram wheat flour due to theoretical safety concerns 
and this resulted in a 10% increase in the NTD (121). Moreover, after 
mandatory folic acid fortification in the United States and Canada, the 
occurrence of some NTD declined by 28% (122) and 46% (123). 
However, two studies by Dorise and Beringer found that only 20% 
(124) and 55% (125) of pregnant women in Australia met the folate 
recommendations from diet alone (including natural food folate and 
fortified foods), respectively. The United Nations International 
Multiple Micronutrient Antenatal Preparation (UNIMMAP) is a well-
known multiple micronutrient formula containing 15 vitamins and 
minerals, containing iron and folic acid in recommended dosages. An 
analysis conducted by World Health Organization (WHO) finds that 
UNIMMAP-MMS lowers the risk of small for gestational age (SGA) 
and low birth weight (LBW) (126). An additional individual patient 
data (IPD) meta-analysis also finds MMS(multiple micronutrient 
supplements) lower the risk of stillbirth and preterm birth (127). 
Overall, food alone (even fortified food) is usually not enough for 
women to meet their daily folate needs, so supplements are 
often recommended.

3.6 Overconsumption

Folate is regarded as non-toxic due to its water-soluble nature, 
which enables it to be eliminated from the body by the urinary system 
(128). Nevertheless, the consumption of folic acid over 1,000 mg/day 
has been associated with several negative consequences, such as an 
elevated risk of specific types of cancer, including breast, prostate, and 
colon cancer (42–44, 101, 129–131). Increased folic acid may also 
conceal b12 insufficiency, which contributes to megaloblastic anemia 
and neuropathy Additionally, it has the potential to induce zinc 
malabsorption, leading to subsequent deficits in immunological, 
neurological, and gastrointestinal functionality (42–44, 129, 131–133).
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Several studies have identified a correlation between 
periconceptional folic acid (FA) supplementation and increased rates 
of twin pregnancies and miscarriages. Multiple births are linked to an 
increased risk of a few prenatal problems as well as infant morbidity 
and mortality (134). Moreover, folic acid supplementation does not 
affect the birth weight (135). WHO also recommends multivitamin 
supplements instead of iron-folic acid supplements alone to improve 
birth weight (74). Nevertheless, on the balance of benefits and risks, 
adequate folate intake through supplements and diet is advised for all 
women during preconception and pregnancy (109) (Table 3).

4 Calcium

Calcium makes up 1 to 2% of total body mass and is the most 
abundant mineral in the body. It is vital for various physiological 
mechanisms as well as reactions such as bone formation, muscle 
contracting, hormone, and enzyme activity, and is a crucial 
intracellular component that maintains cell membranes and serves an 
imperative part in the functioning of nerve cells (136–138). Calcium 
demands increase during gestation as women lose stored calcium as a 
result of fetal skeleton development. Especially during the third 
trimester, when maximal calcium accretion occurs for rapid 
mineralizing of the fetal skeleton. Increased intestinal calcium 
absorption, renal calcium conservation, and mobilization of calcium 
from the maternal skeleton are the three potential calcium sources to 
assist fetal bone accretion (74, 133, 139, 140).

4.1 Sources

Calcium that is lost during gestation can only be substituted by 
dietary calcium consumption, foods fortified with either organic or 
inorganic calcium, and dietary supplements. Calcium citrate and 
calcium carbonate make up the largest proportion of calcium dietary 
supplements (133, 141). Milk, dairy goods, green leafy vegetables, fish 
with soft bones (e.g., sardines), and legumes are the richest dietary 
sources of calcium. For vegans, nuts, dried fruits, fortified soy milk, 
and soy products like tofu are excellent substitute dietary options for 
calcium (142).

4.2 Absorption and factors affecting 
absorption

There are two general mechanisms by which ingested calcium is 
absorbed by mammalian small intestines: transcellular active 
transport in the duodenum and upper jejunum, and paracellular 
passive transport throughout the intestine (143, 144). Cow’s milk and 
its derivatives are the highest-quality and most bioavailable sources of 
calcium. The calcium bioavailability of other animals’ milk, soy milk, 
and certain vegetables is comparable with that of cow’s milk. Some 
foods might have higher concentrations of calcium, yet their 
bioavailability fluctuates, as phytates and oxalates are absorbed less 
efficiently than carbohydrates. Vitamin D, carbohydrates, particularly 
lactose from milk and dairy products, L-lysine, L-arginine and 
ascorbic acid (vitamin C) have a synergistic impact on the uptake of 
calcium, whereas fiber-rich foods, fats, phosphates, protein (not 

completely understood), caffeine, and alcohol have an opposing effect 
as shown in Figure 2 (143, 145).

4.3 Dosage and supplementation

Calcium requirements range between 1,000 and 1,200 mg/day 
(146, 147). There is a rise in calcium needs during gestation which can 
be met via dietary intake however, taking calcium supplements at 
doses between 300 mg and 2,000 mg per day has been suggested (136). 
From the start of the 20th week of gestation until the end of pregnancy, 
pregnant women are recommended to get 1.5–2.0 g of mineral 
calcium per day if they are at elevated risk or in conditions where there 
is insufficient dietary intake of calcium. The total everyday amount 
should be split into three doses, ideally during meals (137, 148).

A complete prenatal calcium supplementation program that was 
piloted in the Dailekh area of Nepal was assessed in one study. In order 
to distribute and advise pregnant women on the use of calcium 
through government antenatal care (ANC) programs, the initiative 
trained medical professionals and community health volunteers. 
94.6% of pregnant women in the district were covered by the calcium 
distribution through ANC, according to a survey of 1,240 recent 
postpartum women. To receive the entire 150-day course of calcium 
supplements, the majority of women (more than 80%) attended ANC 
early. Pregnant women reported high levels of acceptability, 
compliance (79.5% consumed the entire allowance), and coverage; 
almost all said they would be ready to recommend the calcium and 
use it in future pregnancies. The program also maintained consistent 
calcium availability, suggesting this universal free supplementation 
model can be successfully scaled up in other parts of Nepal (149).

It should be noted that adequate vitamin D status [circulating level 
of 25(OH)D being >80 nmol] in the body is critical for the regulation 
of intestinal calcium absorption and bone homeostasis. Also, vitamin 
K is necessary for the activation of Gla proteins which are also 
responsible for the regulation of calcium in the body (150–152).

4.4 Biomarkers

Serum calcium, parathyroid hormone (PTH), and 1,25(OH)2D 
levels are essential biomarkers for determining calcium levels in the 
human system. 2.15–2.50 mmoL/L is considered to be the standard 
range for serum calcium. A rise in the concentrations of PTH and 
1,25(OH)2D suggests that the body needs greater calcium absorption 
(153–156).

4.5 Deficiency

In 2011, about 51% of the global population, or approximately 
3.5 billion individuals, were vulnerable to calcium deficiency, with 
90% of this population residing in Africa and Asia. Even in High-
Income nations, several demographics fail to comply with the 
recommendations (157, 158). Calcium deficiency during gestation can 
impact both the mother and fetus. Maternal calcium shortages during 
gestation have the potential to cause long-lasting impacts, such as 
insulin resistance in offspring. It is possible through the modification 
of many metabolic characteristics and the epigenetic control of gene 
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TABLE 3 The table represents a summary of key details on iron, folic acid, calcium, and iodine for pregnant women.

Nutrient Importance RDA for 
pregnant 
women

Deficiency 
risks and 
impact

At-risk 
women 
population

Tolerable 
upper limit 

(Ul)

Overconsumption 
risks

Relevant 
biomarker

Iron

Synthesis of 

hemoglobin and 

myoglobulin for 

transportation of 

oxygen (8–10, 39)

27 mg/day 

(187)

Iron Deficiency 

Anaemia (IDA) 

premature 

delivery, low birth 

weight, or small 

for gestational age 

(SGA) infants (9, 

77, 109)

Vegan/vegetarian 

women, women 

suffering from IBD. 

Women of 

reproductive age 

(11, 13, 71, 73–75, 

198)

45 mg/day (187)

Increased rate of 

gestational diabetes, 

metabolic syndrome in 

mid-pregnancy, elevated 

blood pressure (257–259)

<110 g/L

(1st and 3rd tri)

<105 g/L

(2nd tri) (76)

Folic Acid

Synthesis of RNA 

AND DNA and 

DNA methylation 

(18–21)

600 (μg/day) 

(101)

Birth defects 

(CHDS, NTDS) 

IUGR, pre-term 

delivery (110–113)

Women living in 

malaria and sickle 

cell disease 

prevalent areas. 

Women using 

antifolates, anti-

epileptics, anti-

inflammatory drugs 

(101, 103, 108, 109)

1,000 (μg/day) 

(101)

Can mask deficiency of 

b12

Can malabsorption of Zn

Can increase the risk of 

certain cancers (42–44, 

129–131)

Serum/Plasma Folate 

level

<4 ng/mL

(<10 nmol/L) (114)

Calcium

Bone formation, 

muscle 

contraction, 

hormone and 

enzyme activity, 

nerve cell 

functioning, and 

maintenance of 

cell membranes 

(136, 138)

1,000-

1200 mg/day 

(137, 146, 

147)

Pregnancy-

induced 

hypertension, 

pre-eclampsia, 

significant loss of 

fetal bone 

minerals during 

the development, 

and the potential 

to induce lasting 

effects such as 

insulin resistance 

in offspring (159–

163)

Women consuming 

little to no milk or 

dairy products, take 

a diet packed with 

fiber, vegan, Asian 

women with low 

vitamin D status. 

Women with lactose 

intolerance or with 

cow’s milk allergy, 

amenorrhea, 

hypochlorhydric 

stomach, celiac 

disease, high-

performance 

athletes (142, 158, 

165–167)

2,500 mg(pregnant 

women aged 19 to 

50) (173)

Hypercalcemia (can lead 

to vascular and soft tissue 

calcification), 

nephrolithiasis, 

hypercalciuria, and other 

major maternal, fetal, and 

neonatal complications 

(174)

The normal range for 

serum calcium is 

2.15–2.50 mmoL/L 

(153)

Iodine

Vital for the 

biosynthesis of 

thyroid 

hormones that 

play a critical role 

in regulating 

growth, 

development, 

metabolism, fetal 

growth, and 

differentiation 

(176, 177)

250 μg/day 

(192)

Maternal and fetal 

hypothyroidism, 

isolated 

hypothyroxinemia, 

spontaneous 

abortion, stillbirth, 

birth cretinism, 

congenital 

disabilities, 

maldevelopment 

of the fetal brain, 

and an increased 

risk of perinatal 

death (215–218)

Women of Africa 

and South/South-

East Asia, Europe, 

the USA, Australia, 

the Republic of 

Ireland, and the UK

Vegans and 

vegetarians, 

smokers, and 

women consuming 

diets like salt-

restricted, low in 

dairy, Paleolithic or 

low salicylate diet, 

overconsumption of 

processed foods, or 

any poorly balanced 

diet (214, 227, 228)

1,100 μg/day (85, 

229)

Hyperthyroidism, 

hypothyroidism, elevated 

risk of subclinical 

hypothyroidism and 

isolated hypothyroxinemia, 

fetal hypothyroidism, 

goiter, and a distinct risk 

factor of macrosomia 

(36–38, 230–232)

Insufficient 

(mUIC < 150 μg/L)

Adequate

(mUIC 150–249 μg/L)

Above requirements 

(mUIC 250–499 μg/L)

Excessive 

(mUIC ≥ 500 μg/L)

Free T4 serum 

concentration 6.75–

18.75 μg/dL (206–209)
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expression (159). Additionally, it can result in pre-eclampsia, 
pregnancy-induced hypertension in mothers, and a considerable loss 
of bone minerals in the developing fetus (160–163).

There are several strategies that can be used to assist increase 
calcium intake. These include encouraging the intake of foods that 
are naturally high in calcium, fortifying staple foods, producing 
more calcium-containing crops through biofortification, and 
employing food processing methods that can increase calcium 
content or bioavailability. Policymakers who want to increase 
calcium intake can use these interventions. It is highly recommended 
that the coverage and health effects of such treatments be tracked 
and evaluated (164).

4.6 Women at risk

Women who ingest minimal to no milk or dairy products, vegans, 
high-performance athletes, Asian women having inadequate vitamin 
D status, those who take a high fiber diet, have allergies to cow’s milk 
or are lactose intolerant, have conditions like hypochlorhydric 
stomach, or have celiac disease are at risk of being calcium deficient 
(142, 158, 165–167). Additionally, a meta-analysis has demonstrated 
that in Low and middle-income countries, the dietary calcium intake 
during pregnancy is very low, unlike the High-income countries (25, 
168). Low calcium intakes across Asian, African, and Latin American 
countries have been reported in a review (169, 170). The average 
intake of calcium in low- and middle -income countries was found to 
be 648 mg/day, whereas that from high-income countries was 948 mg/
day (171, 172).

4.7 Overconsumption

Like deficiency, overconsumption of calcium can also seriously 
affect both maternal and fetal health. For pregnant women between 
the ages of 19 and 50, the tolerable upper intake level (UL) of calcium 
is 2,500 mg. Calcium overconsumption can cause hypercalcemia 
(rare), which can lead to vascular and soft tissue calcification, 
nephrolithiasis, hypercalciuria (which also happens naturally during 
gestation), and other major maternal, fetal, and neonatal problems 
(24, 173, 174).

5 Iodine

Iodine is a trace mineral that accounts for 0.00004% of the total 
human weight and is most concentrated in the thyroid gland, muscle, 
and numerous endocrine tissues (175). In thyroid glands, iodine 
serves as vital for the biogenesis of thyroid hormones that are 
necessary for the optimum functioning of almost all tissues and 
perform a crucial role in the regulation of growth, development, 
differentiation, and metabolic processes, significantly influencing the 
body’s metabolic activity and utilization of oxygen. Within the 
uterus, they are essential for fetal growth and differentiation (176, 
177). Since there is an upsurge in hormone demands commencing in 
the initial 13 weeks of pregnancy, pregnant women experience 
dramatic changes in thyroid function and a hike in iodine needs 
(31, 178).

5.1 Sources

The primary source of iodine for humans is diet, although certain 
populations obtain it from water. Seaweed, marine-sourced fish and 
shellfish, eggs (particularly fortified), dairy products, livestock, and 
iodized salt are iodine-rich food sources. However certain categories 
of fish and seafood pose an elevated risk of contamination with 
parasitic organisms, pathogens, and toxic substances. Safe processing 
and proper handling can reduce this risk (179–185).

5.2 Absorption and factors affecting 
absorption

There are few studies regarding the bioavailability of iodine from 
diet, and these imply that the actual bioavailable quantity tends to 
be less than what is consumed. Upon being converted to iodide, the 
gastrointestinal tract swiftly absorbs iodine from food (186). Upon 
entering the circulation, iodide is absorbed in appropriate amounts by 
the thyroid gland and excreted in most amounts in the urine (187). 
However, the absorption efficacy by the gastrointestinal tract of 
consumed iodine is regarded as high (greater than 90%) as shown in 
Figure 1 (188). Seaweed contains abundant iodine concentrations. In 
vitro studies evaluating iodine absorption in different seaweeds have 
found that 49–82% of the iodine can be absorbed during digestion in 
the gut (189). Pasteurization has been shown to reduce the iodine level 
in milk, while sterilization has no impact on the iodine concentrations 
in milk (179–183). It has been shown that goitrogens in cruciferous 
vegetables and soy products, can interfere with the synthesis of thyroid 
hormones in a variety of ways, primarily by inhibiting the utilization 
of iodine as indicated in Figure 2 (190).

5.3 Dosage and supplementation

As a result of maternal thyroid stimulation, iodine requirements 
increase by around 50 percent during pregnancy, leaving both the 
mother and the developing fetus susceptible (181, 191). The 2007 
recommendations of the World Health Organization (WHO), the 
United Nations Children’s Fund (UNICEF), and the International 
Council for the Control of Iodine Deficiency (ICCIDD) recommend 
a daily iodine consumption of 250 mcg during gestation (192). In 
iodine-deficient regions, controlled studies have shown that iodine 
supplemental intake before or throughout early gestation eradicates 
emerging instances of cretinism, increases birth weight, and mitigates 
the incidence of perinatal and infant fatalities. Also, it enhances 
developmental outcomes in youngsters by 10 to 20% (193).

A randomized, double-blind trial in Sweden found that providing 
a daily 150 μg iodine supplement to mildly iodine-deficient pregnant 
women improved their iodine status. The intervention group reached 
iodine sufficiency, with median urinary iodine concentrations (UICs) 
of 139 μg/L and 136 μg/L in the second and third trimesters, 
respectively. The intervention group also exhibited higher median 
UICs and lower median thyroglobulin levels compared to controls, 
without affecting other thyroid markers or neonatal outcomes (194).

There are two primary methods for administering supplemental 
iodine: daily administration of potassium iodide or yearly 
administration of a gradually released iodine formulation like iodized 
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oil (195). Because the thyroid is capable of storing iodine, it appears 
that iodine before pregnancy is as essential as, if not more essential 
than, iodine during gestation (196). A cohort study found that lower 
iodine status during pregnancy and postpartum was associated with 
lower TSH and higher fT3 and fT4 concentrations. Initiating iodine-
containing supplements before and during pregnancy was associated 
with more optimal thyroid function compared to no supplement use. 
These results support the importance of optimizing iodine intake 
before pregnancy (197). Iodine supplemental intake in the form of 
multivitamins potassium iodide containing 150 μg of iodine is 
prescribed as early as the onset of pregnancy and even sooner in 
planned pregnancies (198–201).

In 2009, Australia introduced mandatory iodized salt fortification 
in bread to address mild iodine deficiency. A study analyzed the 
program’s impact on iodine intake using 2011–2012 national dietary 
data, finding that the fortification effectively achieved adequate iodine 
levels across socioeconomic and geographic groups, with significant 
benefits for women of childbearing age and children (202).

5.4 Biomarkers

Serum iodine concentration (SIC) and thyroglobulin (Tg) are 
important iodine metabolism biomarkers. Urinary iodine is also an 
accurate marker for recent iodine consumption as urinary iodine 
excretion indicates over 90 percent of dietary iodine intake in a 
constant state (203–205). For Median urinary iodine concentration 
(mUIC), in 2007, WHO, UNICEF, and ICCIDD updated the 
epidemiological guidelines of iodine levels for women during 
pregnancy and suggested the general public median UIC value as the 
assessing marker having an adequate level range of 150–249 g/L (206, 
207). Serum levels of thyroid hormones are measured to evaluate the 
thyroid’s functioning and iodine status. Total T4 (TT4) determination 
is preferable over free T4 (FT4) determination, particularly during the 
final stages of gestation. The adjustment of the TT4 in the gestational 
period by a factor of 1.5 relative to nonpregnant benchmarks gives a 
practical FT4 measurement. For actual practice, the nonpregnant 
baseline range of 4.5–12.5 g/dL will change to 6.75–18.75 g/dL 
(208, 209).

5.5 Deficiency

Nearly 2 billion individuals worldwide are suffering from iodine 
deficiency (ID), with roughly 50 million exhibiting medical symptoms 
(210). Overall, 53% of the pregnant population has insufficient iodine 
intake (211). The insufficiency of iodine is widespread in the majority 
of countries. Among these countries, Africa and Southeast Asia are 
the most affected (212). Iodine deficiency also places some developed 
countries at risk, including continental Europe, the United States, 
Australia, the Republic of Ireland, and the United Kingdom (213). For 
women of reproductive age, appropriate iodine levels are crucial. It 
must be taken into account that not only severe prenatal deficient 
levels of iodine but also minimal to significant shortfalls are all linked 
to negative effects arising in the progeny (214).

As soon as the daily intake of iodine declines below 100 μg, iodine 
deficiency during gestation gets usually serious (195). Iodine 
deficiency during pregnancy may cause low thyroid hormone levels 

in both mother and fetus, leading to birth complications and impaired 
brain development in the baby, increasing the risk of perinatal death 
(215–218). Additionally, there is mounting evidence that iodine 
deficiency in pregnancy has an adverse and irreversible effect on the 
neurocognitive development of the embryo, particularly when the 
shortage occurs during the first trimester (219–222). A cohort study 
investigated the impact of maternal iodine status on offspring 
cognitive outcomes. Mother–child pairs from the Avon Longitudinal 
Study of Parents and Children (ALSPAC) cohort were examined by 
assessing urinary iodine content and creatinine to adjust for urine 
volume in preserved samples from 1,040 first-trimester pregnant 
women. Women were chosen based on having a singleton pregnancy 
and the availability of both a urine sample from the first trimester 
(defined as ≤13 weeks’ gestation; median 10 weeks [IQR 9–12]) and 
an intelligence quotient (IQ) assessment of the offspring at 8 years of 
age. The iodine-to-creatinine ratios in women were classified as 
<150 μg/g (deficient) or ≥ 150 μg/g (adequate) according to WHO 
pregnancy standards.

Mild-to-moderate iodine deficiency was observed in the cohort 
(median urinary iodine: 91.1 μg/L). Maternal iodine-to-creatinine 
ratios <150 μg/g were associated with increased odds of low verbal IQ, 
reading accuracy, and comprehension scores in children. A dose–
response relationship was evident, with cognitive outcomes worsening 
as iodine levels decreased. Results suggested that even mild-to-
moderate iodine deficiency during pregnancy may adversely affect 
children’s cognitive development, highlighting the importance of 
adequate iodine nutrition in pregnancy (223).

However, no effects were found on preterm birth, low birth 
weight, and hypertensive disorders among euthyroid pregnant women 
with different urinary iodine concentrations (UIC). Another 
systematic review confirmed no effects of maternal UIC on 
anthropometric measures of new born. Moreover, no link was found 
between maternal urinary iodine and the brain morphology of the 
infant (224–226).

5.6 Women at risk

Deficiency of iodine can result from restricted salt intake as a 
preventative measure against numerous noncommunicable diseases, 
a Paleolithic or low salicylate diet, an eating pattern with generally 
reduced dairy intake, an excessive intake of industrial foods that may 
not have iodized salt, or any poorly balanced diet (214). Due to the 
limited iodine quantity found in plant-based foods, vegans and 
vegetarians are also vulnerable to iodine deficiency (227). Moreover, 
smoking and iodine exhibited a statistically significant negative 
interaction (228).

5.7 Overconsumption

Likewise, excessive iodine consumption during the gestational 
period may result in adverse outcomes. The upper intake level of 
iodine is 1,100 mcg/day (85, 229). There is a potential for adverse 
consequences associated with excessive consumption of iodine during 
pregnancy, and the suggested UI of iodine consumption is disputed. 
Ingestion of iodine supplementary products, water, diet, or medication 
containing an excessive amount of iodine, as well as exposure to 
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objects having iodine, like radiological contrast material and 
disinfecting agents, might result in more than iodine. 
Hyperthyroidism, hypothyroidism, an increased risk of subclinical 
hypothyroidism, and an elevated risk of isolated hypothyroxinemia 
may result from abundant iodine (36–38). Along with causing fetal 
hypothyroidism and goiter and being a distinct risk factor for 
macrosomia, too much iodine consumption may be associated with 
additional negative pregnancy outcomes (230–232) (Table 2).

6 Conclusion

Pregnancy is the most crucial stage in a woman’s life, and diet 
during this period determines the health of the mother and newborn. 
Ideal micronutrient intake is often neglected during this time, as the 
major focus is often on the increased calorie requirements. 
Micronutrient deficiencies can lead to some serious health issues for 
the mother and fetus and also increase the fetal mortality risk. This 
review covers all aspects related to the consumption of four major 
micronutrients iron, folic acid, iodine, and calcium during pregnancy 
including their dietary sources and factors that affect their 
bioavailability. Ideally, their requirements should be met by dietary 
sources but their increased requirements during pregnancy demand 
other means, like the use of supplements. These supplements must 
be  given according to the individual needs and RDAs set by the 
WHO. Because not only deficiency but also overconsumption has 
serious health implications. This emphasizes the need for a thorough 
nutritional assessment of pregnant women which helps decide 
whether there is a need to take supplements or whether the 
requirements can be fulfilled by dietary sources.

This review helps the readers to understand the importance of 
sufficient micro-nutrient intake for a healthy gestation period. To 
increase awareness, there must be educational programs and training 
for not only pregnant women but all women of reproductive age on 
maintaining the ideal body weight and eating for a healthy future 
generation. More programs should be designed for populations that 
are at risk of deficiency, like introducing supplemented or fortified 
foods. Cost, access, and availability are important factors to 
be considered before implementing an intervention in underdeveloped 
or developing countries.

There is a lack of studies with multiple micronutrient supplements 
that evaluate their combined effects, including synergistic and 
antagonistic interactions between them as well as the underlying 
mechanisms of these interactions. Furthermore, for pregnant women 
taking certain medications like blood-thinning medicines, we need to 
study in detail the effects of medicines on micronutrients’ 
bioavailability and other pregnancy outcomes. It is also crucial to do 
research on pre-conceptional diet and set RDAs for women trying for 
conception. Moreover, samples used in these studies should be alike 
to avoid variations in results due to various factors like the age of the 
mother at the time of conception, weight before and during pregnancy, 
gap between successive pregnancies, multiple pregnancies, presence 

of any infertility syndrome like polycystic ovarian syndrome and 
family history of congenital disorders. It is also required to study twin 
or triplet pregnancies separately to set RDAs for women having 
multiple gestation. Hence, to date, there are a lot of knowledge gaps to 
cover to gain a proper understanding of micronutrient intake 
during pregnancy.
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