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Numerous animal and clinical studies have demonstrated that the arcuate nucleus 
of the hypothalamus, a central regulator of appetite, plays a significant role in 
modulating feeding behavior. However, current research primarily focuses on long-
term dietary changes and their effects on the body, with limited investigation into 
neuroendocrine dynamics during individual meals across diverse populations. In 
contrast to long-term dietary adjustments, directives for dietary behavior during a 
specific meal are more actionable, potentially enhancing patient adherence and 
achieving better outcomes in dietary behavior interventions. This review aimed to 
explore the neural pathways and endocrine changes activated by gastrointestinal 
expansion and variations in blood nutrient levels during a single meal, with the 
goal of informing dietary behavior guidance.
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1 Introduction

The driving forces of eating can be attributed to two distinct factors: (1) the sensation of 
hunger caused by gastrointestinal peristalsis and (2) signals from the brain that generate the 
desire to eat. The hypothalamic arcuate nucleus (ARC), located adjacent to the third ventricle, 
is widely recognized as a central regulator of appetite. This region features a specialized and 
more permeable blood–brain barrier compared to other brain regions (1). The increased 
permeability allows circulating nutrients and hormones—such as glucose, leptin, and insulin 
(3)—to directly access agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) 
neurons within the ARC. This direct access makes these neurons highly responsive to nutrient 
fluctuations, facilitating the regulation of energy homeostasis. Various appetite-regulating 
hormones including insulin, leptin, and peptide YY (PYY), as well as small-molecule nutrients 
such as amino acids and glucose, can directly stimulate these neurons and play a crucial role 
in appetite regulation.

Eating habits have been shown to affect energy metabolism and contribute to the 
development of metabolic diseases. Specifically, faster eating (4), higher cooking temperatures 
(5), fewer chews (6), and late eating (7) have been associated with increased food intake and 
increased risk of obesity, diabetes, and hypertension. A high-fat diet (HFD) can remodel brain 
neurons (8), alter the dominant species of intestinal flora (9), increase body fat deposition, and 
contribute to metabolic disorders (10). Conversely, intermittent fasting improves insulin 
sensitivity, reduces blood triglyceride and cholesterol levels, alleviates chronic inflammation 
(11), and helps regulate metabolic disorders (12).
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To date, few studies have focused on the effects of feeding during 
a specific meal or conducted a comprehensive analysis of neurological 
and humoral changes. Compared to existing dietary guidelines, 
behavior guidance for a single meal is more specific and practical, 
aiding patients in self-control and implementation. In this review, 
we explore the factors that influence appetite, focusing on the feeding 
process during a complete eating cycle. We analyze the immediate 
neurological and humoral changes observed in animals. Due to 
limitations in current research, this article predominantly focuses on 
experimental mice, while findings from mouse studies may offer 
insights applicable to human research. We also discuss how these 
changes impact appetite during this process. This review provides 
insights for dietary behavior guidance.

2 Changes in neurohumoral 
regulation during eating

For a relatively balanced meal in terms of both quantity and 
quality, gastric emptying in humans typically takes 4–6 h. Feelings of 
hunger typically emerge around this time, marking the starting point 
of the feeding process addressed in this review. The orexigenic effect 
of AgRP depends on the release of neuropeptide Y (NPY) and gamma-
aminobutyric acid (GABA) (2, 13). Mouse experiments have 
demonstrated that mice deficient in NPY or GABA transporters do 
not rapidly increase food intake when AgRP neurons are activated. 
This finding indicates that NPY and GABA mediate the rapid, short-
term effects of AgRP on feeding behavior (2, 14). In contrast, the 
orexigenic effect induced by AgRP itself is slower and more prolonged 
(2). In addition to stimulating appetite, activating AgRP decreases 
energy expenditure, enhances carbohydrate utilization, and reduces 
fat breakdown (2, 15). Under conditions of extreme hunger, the 
AgRP→parabrachial nucleus (PBN) pathway suppresses pain 

responses, allowing animals to prioritize foraging for food (16). Mouse 
experiments have demonstrated that activating AgRP/NPY neurons 
increases their willingness to take greater risks when seeking food 
(17, 18).

Upon food discovery, visual (19) and olfactory (20) signals 
transmitted into the brain activate different brain areas; AgRP 
secretion rapidly decreases, while POMC neurons, which antagonize 
AgRP, are rapidly activated. Simultaneously, saliva, digestive enzymes, 
insulin, and other substances are secreted to prepare food intake (21). 
Vagal receptors in the oropharyngeal area detect changes in taste and 
tension, activating the vagus nerve to initiate the vagovagal reflex of 
the stomach and facilitate the smooth entry of food into the stomach. 
Vagal receptors distributed throughout the gastrointestinal tract sense 
changes in tension and nutrient levels within the digestive system. 
These stimuli are transmitted to the brain, inducing satiety and 
activating secretory cells in the intestine to release appetite-
suppressing hormones, such as PYY and serotonin, which stimulate 
the hypothalamus to create a feeling of fullness (22). Through the 
coordinated actions of multiple factors, the eating event concludes as 
food is gradually digested into chyme in the stomach. As nutrients are 
absorbed by intestinal epithelial cells, blood glucose levels rise, 
providing the energy required for growth and activity. Over time, 
these nutrients—primarily glucose—are utilized, leading to decline in 
blood glucose levels, reduction in insulin secretion, and gradual 
increase in AgRP/NPY neuron activity, eventually triggering the next 
sensation of hunger. The trend of changes in the main neurohumoral 
regulation during eating is illustrated in Figure 1.

2.1 Before swallowing

During the period between detection of food signals and 
swallowing, the body undergoes a series of anticipatory responses, 

FIGURE 1

Schematic diagram of neurohumoral changes over time. The vertical axis represents the percentage of normalized changes in neural activity and 
hormone levels (109–114), 100% consider it as complete activation of nerves/peak release of hormones in the body, 0% consider it as complete 
inhibition of nerves/hormone content in the body measured as 0. The horizontal axis indicates meal time. The timeline assumes a state of hunger at 
−60 min, food discovery at 20 min, and the initiation of meals at 0 min. Gastric emptying concludes at 360 min, at which point the system returns to a 
hunger state. It should be noted that this is only a schematic diagram and does not represent, for example, an equal release of GLP-1 and insulin during 
the eating process.
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collectively referred to as cephalic phase responses. These responses 
include the secretion of saliva, digestive enzymes, and insulin (23); 
they ensure rapid digestion, efficient food absorption, and effective 
nutrient metabolism (24). Recently, cephalic phase responses have 
gained increasing attention. Studies on rodents and humans have 
shown that, when transmitted to corresponding areas of the cerebral 
cortex, sensory food stimuli, such as visual (25), taste (26), and 
olfactory cues (27), have corresponding effects on subsequent eating 
behavior through different pathways, some of which are associated 
with the reward system.

The nucleus tractus solitarius (NTS) integrates these signals and 
relays them to the dorsal motor nucleus of the vagus nerve (DMV), 
initiating vagal nerve activity and mediating the early secretion of 
insulin (28, 29). Although this hypothesis remains unconfirmed, it is 
well established that cephalic phase insulin release positively correlates 
with the amount of food ingested during a meal. The cephalic phase 
insulin release also counteracts hepatic glucose production mediated 
by glucagon, helping to maintain relatively stable blood glucose 
levels (23).

POMC neurons also influence the liver’s regulation of early-phase 
blood glucose after a meal. Upon sensing food cues, POMC neurons 
are rapidly activated and regulate the sympathetic nervous system of 
the liver in an mTOR-dependent manner, thereby controlling hepatic 
glycogenolysis (30). Additionally, AgRP neurons are rapidly and 

uniformly inhibited when detecting food cues, with the level of 
inhibition positively correlated with palatability and expected energy 
content of the food (31) (Figure  2). This inhibitory response is 
mediated by GABAergic neurons expressing leptin receptors in the 
dorsomedial hypothalamus (DMH) (24), and its duration is 
proportional to energy expenditure (31).

Although both types of neurons respond rapidly to food cues, 
they do not directly mediate the initiation or termination of eating 
behaviors. The dorsal vagal complex, located in the brainstem, receives 
input signals from the hypothalamus and integrates them with signals 
from the gastrointestinal tract via the vagus nerve, playing a key role 
in mediating eating behavior (32).

2.2 Commencement of eating

Food enters the stomach after chewing and swallowing, mixes 
with gastric juice, breaks down into chyme and then passes into the 
intestine for absorption. This process involves complex neurohumoral 
changes, primarily mediated by the sensory branches of the vagus 
nerve distributed throughout the stomach and intestinal walls. These 
changes stimulate vagal receptors in the oropharyngeal region, which 
transmit feeding signals to the stomach via the vagovagal reflex, 
initiating gastric accommodation. Gastric accommodation maintains 

FIGURE 2

Neurohumoral pathways mediating feeding cessation during eating. Upon sensing food signals, the body can immediately suppress AgRP neurons and 
activate POMC neurons, preparing for food intake. Ghrelin, secreted by gastric wall cells during hunger, is currently the only known gastrointestinal 
hormone with appetite-stimulating effects. It can directly stimulate specific brain nuclei through the bloodstream or exert indirect effects via vagal 
sensory receptors (orange arrows).After eating, gastrointestinal hormones such as PYY and CCK inhibit appetite by directly stimulating relevant brain 
nuclei through the humoral circulation (orange arrows).Gastrointestinal hormones released after eating, along with mechanical stimuli from 
gastrointestinal distension, are sensed by different vagal sensory receptors. These stimuli are transmitted to the corresponding brain nuclei, generating 
a sense of satiety (satiety) and controlling gastrointestinal motility to create a feeling of fullness (satiation) (black arrows). The parabrachial nucleus 
(PBN), upon receiving these stimuli, activates the central amygdala (CeA) in the cerebral cortex, mediating the sensation of satiety. Activated POMC, 
NTS, PVN, and AP neurons can stimulate the sympathetic nervous system, leading to systemic responses such as increased heart rate, elevated blood 
pressure, enhanced hepatic gluconeogenesis, accelerated fat metabolism, and increased insulin secretion.
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the relative stability of intragastric pressure (IGP), a factor significantly 
correlated with satiety. A brief decrease in IGP is observed at the onset 
of eating (33). As food accumulates in the stomach, the muscles of the 
gastric cardia, fundus, and body gradually become tense, increasing 
IGP. The tension receptors widely distributed in the gastric walls are 
stimulated, transmitting signals via the nodose ganglion (NG) to the 
NTS, which mediates the sensation of fullness (34). The rate of gastric 
emptying during eating is higher than usual, allowing some 
incompletely digested chyme to enter the intestine, where it stimulates 
tension and chemoreceptors in the duodenal wall (32). Additionally, 
tension receptors in the gastrointestinal wall may be  involved in 
regulating insulin secretion during eating (35).

Several gastrointestinal hormones, including ghrelin, glucagon-
like peptide-1 (GLP-1), PYY, serotonin, and cholecystokinin (CCK), 
are involved in appetite regulation. Ghrelin, secreted by P/D1 cells in 
the gastric fundus, increases during fasting and rapidly decreases after 
eating (31), promoting feeding by stimulating AgRP neurons. 
Enteroendocrine cells in the duodenum detect changes in intestinal 
tension and nutrient levels, releasing hormones such as serotonin and 
CCK. These hormones activate vagal afferents or enter the 
bloodstream, mediating the sensation of satiety (32).

2.3 Factors influencing eating cessation

As the amount of food entering the stomach increases, the tension 
in the gastrointestinal wall also rises, causing a gradual increase in IGP 
and the onset of satiation. Vagal afferent nerves (VANs) detect this 
increased tension and transmit the signals to the NTS. Beyond its role 
in regulating gastrointestinal motility via the dorsal motor nucleus of 
the vagus (36), NTS Calcr neurons mediate the cessation of feeding by 
suppressing AgRP activity and activating non-calcitonin gene-related 
peptide (CGRP) neurons in the PBN (37). Additionally, satiety 
hormones stimulate neurons such as POMC to create a sense of 
fullness (38). Aversive signals, discomfort (39), and other negative 
feedback mechanisms also contribute to the cessation of feeding. 
These mechanisms are primarily mediated by the area postrema (AP) 
and PBN (see Section 3.2 for details). The detailed process of cessation 
of eating behavior is shown in Figure 2.

3 Changes in the vagus nerve

The vagus nerve, also known as the tenth cranial nerve, originates 
in the medulla oblongata of the brainstem. It consists of four types of 
fibers—somatic sensory, somatic motor, visceral sensory, and visceral 
motor— and extensively innervates the gastrointestinal tract. The 
vagus nerve detects changes in gastrointestinal tension and hormone 
levels and transmits these signals to the NTS. Subsequently, impulses 
are generated to modulate the feeding process.

3.1 Visceral sensory afferent fibers

Different subtypes of VANs are distributed across various organs 
and are specialized to perceive distinct stimuli. Five subtypes are 
predominant in the gastrointestinal tract: calcitonin gene-related 
peptide 1 (Calca), GLP-1 receptor (GLP-1R), G protein-coupled 

receptor 65 (Gpr65), vasoactive intestinal peptide (Vip), and oxytocin 
receptor (Oxtr) (24).

The termination of feeding behavior in mice is triggered primarily 
by gastric distension rather than an increase in internal nutrients (40), 
indicating that mechanosensory fibers play a dominant role in this 
process. VANGLP-1R+ fibers are distributed in the gastric wall, and 
VANOxtr+ fibers are found in the intestinal wall. Both serve as 
mechanosensory fibers and possess intraganglionic laminar endings 
(22, 41–43). Acute chemical and optogenetic stimulation of these two 
fiber types in mice induces the cessation of feeding behavior (24, 41, 
42) and suppresses the activity of AgRP neurons. Notably, stimulation 
of VANGLP-1R+ fibers results in strong but transient inhibition, while 
stimulation of VANOxtr+ fibers causes prolonged suppression of AgRP 
neurons and reduces their responsiveness to food cues (42). 
Additionally, the activation of VANGLP-1R+ fibers enhances glucose 
uptake by skeletal muscles and improves glucose tolerance (41).

Intraperitoneal administration of CCK and GLP-1, which are 
released by intestinal endocrine cells (44) into the mouse intestine, 
reduces food intake. Forced inhibition of VANGLP-1R+ fibers alleviates 
the feeding reduction mediated by CCK but does not affect appetite 
suppression induced by GLP-1R agonists, such as liraglutide. 
Furthermore, CCK receptors have been detected on VANGLP-1R+ fibers 
(41), suggesting that CCK, rather than GLP-1, is the hormone that 
directly activates these fibers.

In the gastric mucosa, VANCalca+, and at the tips of intestinal villi, 
VANGpr65+ and VANVip+ fibers primarily sense changes in 
gastrointestinal hormones and nutrients, thereby regulating glucose 
metabolism (22, 41). Activation of VANGpr65+ fibers increases the 
expression of phosphoenolpyruvate carboxykinase, a key enzyme in 
gluconeogenesis, enhancing hepatic gluconeogenesis and elevating 
blood glucose levels (41, 45). However, its effects on appetite regulation 
have not yet been determined (24).

3.2 Afferent ganglia and NTS

The cell bodies of the sensory neurons of the vagus nerve are 
located in two nodose ganglia near the base of the skull, close to the 
carotid artery (43). These ganglia serve as crucial sites for mediating 
satiety signals. Their central axons project to the dorsal hindbrain, 
activating neurons in the NTS. The NTS processes mechanical signals 
from the gastrointestinal tract and chemical signals, such as CCK, 
GLP-1, PYY, and serotonin, which are secreted by enteroendocrine 
cells (43, 46, 47). Using Ca2+ flux measurements, Williams et al. (22) 
demonstrated that different subtypes of neurons in the NG can sense 
gastrointestinal tension and hormonal signals independently. NGGLP-

1R+ cells can sense tension signals from the stomach and parts of the 
intestine, transmit these signals to the NTS and AP, and subsequently 
inhibit the activation of AgRP neurons (42). Neurons sensing 
hormonal signals express Gpr65, which, similar to NGGLP-1R+, activates 
the NTS and AP and modulates IGP (42). A study by Han et al. (48) 
demonstrated that the activation of the right vagus nerve (NG) in 
mice induces sustained self-stimulation behavior, similar to the 
behaviors observed when cortical reward centers are activated, and 
promotes dopamine release in the substantia nigra. In contrast, the 
activation of the left NG did not elicit similar responses. This suggests 
that the activation of the gastrointestinal vagus nerve may indirectly 
regulate feeding behavior by stimulating cortical reward centers (48).
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Signals from the intestine are transmitted via the NG to the dorsal 
vagal complex in the brainstem, which includes the NTS, AP, and 
DMV. In the dorsal vagal complex, these signals are integrated and 
transmitted to the hypothalamus, PBN, and other regions to regulate 
appetite while controlling gastrointestinal motility through the DMV 
(49, 50). The AP, located outside the blood–brain barrier, primarily 
mediates aversive signals and receives a small portion of stimuli from 
VANs (34). Hormones involved in satiety, such as CCK and PYY, can 
activate the AP (41, 51–53) and subsequently the NTS. The NTS plays 
a critical regulatory role in food intake and energy metabolism by 
processing mechanical and chemical signals from the gastrointestinal 
tract. Cheng et  al. (37) reported that the activation of the NTS 
suppresses the expression of AgRP/NPY neurons in the ARC, thereby 
inhibiting feeding. Additionally, the NTS mediates the cessation of 
feeding by activating downstream regions, including the PBN, 
paraventricular nucleus of the hypothalamus, and DMH (37). The 
PBN, a small cluster of nuclei located at the midbrain-pons junction, 
acts as a relay center for visceral and gustatory signals as well as 
somatosensory information, including pain, temperature, and itch. 
The PBN receives inhibitory inputs from AgRP neurons (54) and 
excitatory signals from the NTS (55), allowing it to regulate discomfort 
and energy metabolism. By activating the central nucleus of the 
amygdala, the PBN suppresses appetite (56). Activation of Calcr-
expressing neurons in the NTS (NTSCalcr neurons) transmits signals 
to the PBN, specifically activating PBN non-CGRP neurons, leading 
to feeding suppression.

Furthermore, Cheng et  al. (37) demonstrated that silencing 
NTSCalcr neurons in mice resulted in chronic increases in food intake 
and subsequent weight gain (37). Additionally, the activation of NTS 
CCK neurons triggers CGRP neurons in the PBN. When NTS CCK 
neurons detect toxic substances in the blood (e.g., LiCl), the 
discomfort signals they mediate can outweigh hunger signals driven 
by AgRP neurons. In such cases, PBN CGRP neurons relay these 
aversive signals to the central amygdala, resulting in appetite 
suppression (53).

3.3 Damage to the vagus nerve caused by 
HFD

Short-term acute HFD intake activates the reward system on the 
edge of the middle brain, and the dopamine energy neurons 
participating in the reward system can be projected into the regulation 
of dietary behavior (57). However, impairment of satiety signals 
induced by long-term HFD is widely recognized as a primary 
contributor to obesity. HFD not only reduces the sensitivity of 
VANGLP-1R/CCK neurons (58) but also affects the expression of GLP-1R 
and CCK in neurons (59). This reduction subsequently decreases the 
expression of POMC and cocaine- and amphetamine-regulated 
transcript (60), thereby weakening satiety signals. CCK receptors on 
VANCCK neurons are coexpressed with leptin receptors (61). Damage 
to VANCCK can lead to reduced leptin receptor expression, resulting in 
leptin resistance and increased appetite (62). The gut microbiota 
mediates CCK gene expression by producing short-chain fatty acids 
(63), which can directly activate VANs (64). Disruption of the gut 
microbiota by HFD reduces the abundance of short-chain fatty acid-
producing bacteria, such as lactobacilli, and decreases the diversity of 
short-chain fatty acids. This disruption may lead to increased 

microglial activity in the NTS, generating neuroinflammation, 
promoting synaptic remodeling, and impairing satiety signal 
transmission (58). Rodents with obesity induced by HFD exhibit 
reduced activation of postprandial brainstem neurons (65), specifically 
a decrease in NTS neuron activation (66).

In summary, HFD detrimentally affects multiple processes 
involved in satiety signal generation and transmission mediated by the 
vagus nerve. These effects are primarily driven by changes in CCK, 
leptin, and gut microbiota. Further research is needed to determine if 
acute HFD intake affects dietary behavior through other mechanisms.

4 Changes in the sympathetic nervous 
system

Although the sympathetic nervous system is generally believed to 
be  inhibited during feeding behavior, recent studies suggest that 
sympathetic excitation also plays a role in both the initiation and 
cessation of feeding behavior. Evidence indicates that sympathetic 
excitation occurs before the cessation of feeding (67). Neuropeptides 
within the melanocortin system involved in the regulation of satiety, 
such as adrenocorticotropic hormone, α-melanocyte-stimulating 
hormone (MSH), β-MSH, and γ-MSH, exhibit varying excitatory 
effects on the sympathetic nervous system. Conversely, neurons 
expressing AgRP/NPY, which project to the paraventricular nucleus 
(PVN) and DMH, suppress sympathetic activity by releasing NPY 
(68). Hormones involved in dietary metabolism, such as leptin and 
insulin, regulate sympathetic nerve activity either directly or indirectly.

4.1 Melanocortin system regulates 
sympathetic nerve activity

As previously mentioned, the gradual increase in gastrointestinal 
hormones such as insulin, PYY, and CCK, as well as increasing 
gastrointestinal tension during a meal, is transmitted to the 
NTS. This activation stimulates POMC neurons in the ARC, 
generating a sensation of satiety and mediating the cessation of 
feeding. POMC neurons release various neuropeptides, including 
adrenocorticotropic hormone, α-MSH, β-MSH, γ-MSH, and 
β-endorphin, which bind to different melanocortin receptor 
subtypes (MC1R-MC5R) to produce distinct effects. Among these, 
the α-MSH neuropeptide binds to MC4R and plays a central role in 
regulating appetite, energy balance, and sympathetic nervous system 
activity (69). The activation of MC4R-expressing sympathetic 
preganglionic neurons in the DMV, NTS, and intermediolateral cell 
column has been shown to restore sympathetic activity in mice and 
enhance the thermogenic response mediated by MC4R (70). Mice 
with MC4R deficiency exhibit significantly reduced sympathetic 
activity compared to wild-type mice when consuming an 
HFD. Rahmouni et al. revealed that the MC4R pathway is essential 
for the modulation of insulin and leptin effects on renal sympathetic 
nerve activity (71). Hypertension typically associated with obesity 
through sympathetic activation is not observed in diet-induced 
obese rats with MC4R deficiency (72). Additionally, studies have 
shown that MC4R-deficient mice lose the ability to convert white 
adipose tissue into brown adipose tissue in response to cold 
exposure, resulting in significantly reduced thermogenic capacity 
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(73). These findings indicate that MC4R enhances sympathetic 
nervous system activity to increase energy expenditure, thereby 
maintaining metabolic stability.

In addition, the role of MC4R in regulating blood pressure is 
significant and should not be  overlooked. Intracerebroventricular 
injection of α-MSH in awake rats increased central venous pressure 
and heart rate within 1 h, and they returned to baseline levels after 2 h, 
which may be associated with sympathetic activation (74). However, 
the effect of α-MSH on blood pressure was completely abolished in 
animals with MC4R knockout (75). Direct injection of the MC4R 
agonist melanotan II into the PVN increases renal sympathetic 
excitability and central venous pressure. However, this effect is not 
observed in PVN pretreated with MC4R antagonists, such as 
AgRP (76).

4.2 Effect of NPY on sympathetic nerve 
activity

NPY can inhibit KCl-activated POMC neurons in a dose-
dependent manner, thereby reducing sympathetic nervous system 
activity (77). Furthermore, the inhibitory effects of NPY on the 
sympathetic nervous system are primarily observed in the PVN. The 
suppression of brown adipose tissue thermogenesis (78) and the 
promotion of white adipose tissue and liver lipogenesis (79, 80) by 
NPY may be linked to its suppression of sympathetic nervous system 
activity. Additionally, the reduction in vascular smooth muscle 
sympathetic nerve activity induced by NPY facilitates increased blood 
flow to the gastrointestinal tract and liver, thereby enhancing digestion 
and absorption (81). NPY receptors are also present in the DMH, 
where NPY can inhibit sympathetic nerve activity, leading to a 
reduction in mean arterial pressure and heart rate (37, 82–84). 
Notably, blocking NPY1 receptors (NPY1Rs) in both the DMH and 
PVN resulted in differential effects: blocking NPY1Rs in the DMH 
completely reversed the inhibitory effect of AgRP/NPY neurons on 
sympathetic nerve activity, whereas blocking NPY1Rs in the PVN did 
not. Activation of the PVN and DMH elicited comparable effects on 
the sympathetic nerve activity, mean arterial pressure, and heart rate. 
The DMH is known to innervate and stimulate the PVN, which likely 
accounts for the observed similarity in responses (83).

Preliminary experiments have demonstrated the anticipatory 
nature of AgRP/NPY neurons, whose activity rapidly declines prior to 
feeding. The extent of this decline correlates with the anticipated 
energy density of the food to be consumed (37). The rapid reduction 
in NPY levels increases inhibition of the sympathetic nervous system, 
potentially contributing to the increase in heart rate and blood 
pressure during feeding. Additionally, the increase in gastrointestinal 
blood flow activates baroreceptors, leading to vasodilation to maintain 
stable blood flow and facilitate the post-feeding absorption process.

4.3 Hormones regulate sympathetic nerve 
activity

Leptin- and insulin-induced activation of the sympathetic nervous 
system is closely associated with maintaining homeostasis. Leptin 
receptors, which are widely distributed throughout the hypothalamus, 
respond to leptin stimulation and converge signals in the PVN. These 

signals subsequently activate the rostral ventrolateral medulla, which 
excites sympathetic preganglionic neurons in the spinal cord (85, 86).

Studies have shown that the effect of leptin on the sympathetic 
nervous system is sex-dependent. In female rats, the sympathetic 
nervous system’s response to leptin varies cyclically with fluctuations 
in estrogen levels (87). Unlike in male rats, leptin-induced excitation 
of the sympathetic nervous system in female rats does not increase 
blood pressure (87, 88). Additionally, female rats with higher estrogen 
levels are reportedly more sensitive to the anorectic effects of leptin 
and less sensitive to those of insulin (89). The differential effects of 
leptin between sexes are not attributed to differences in sites or 
pathways of action but rather to a positive interaction between leptin 
and estrogen at the cellular level (90, 91).

Unlike leptin, the effect of insulin on sympathetic activation is not 
sex-dependent. In rats, insulin primarily increases the sympathetic 
excitability of peripheral vessels, with the most pronounced effect on 
spinal sympathetic neurons. Additionally, insulin enhances the 
excitability of human muscle sympathetic nerves and increases the 
muscle vascular baroreceptor reflex (92). A meta-analysis by Grassi 
et al. (93), involving 314 individuals with diabetes and healthy controls 
across 11 studies, confirmed that patients with type 2 diabetes exhibit 
higher sympathetic excitability than healthy individuals and those 
with type 1 diabetes. Patients with type 2 diabetes showed significantly 
elevated muscle sympathetic nerve activity, which was associated with 
plasma insulin levels, corroborating the excitatory effect of insulin on 
the sympathetic nervous system.

4.4 Other factors influencing sympathetic 
nervous system activity

4.4.1 Impact of dietary components on 
sympathetic nervous system activity

Postprandial activation of the sympathetic nervous system has 
been observed, with different dietary components influencing its 
activation to varying degrees. High carbohydrate intake is associated 
with greater sympathetic activation (94). However, the statistical 
significance of these changes remains unclear (95). Postprandial 
insulin secretion promotes peripheral vasodilation, enhancing 
nutrient absorption. This is followed by a decrease in venous return, 
which stimulates the sympathetic nervous system. In some older 
individuals, postprandial hypotension may occur due to reduced 
sympathetic activity (96). Reducing dietary carbohydrate intake may 
help alleviate postprandial hypotension in these cases.

4.4.2 Interaction between obesity and 
sympathetic nervous system activity

Obesity is believed to increase sympathetic activity. Research 
suggests that obesity decreases NPY content or mRNA levels in the 
ARC and PVN (97–99). This reduction enhances sympathetic 
activation during eating, which may explain why obese individuals 
tend to eat faster than others. HFD has been shown to reduce NPY1R 
expression in the DMH in males but not in females (100, 101). 
Reduced NPY release or receptor levels may contribute to the 
increased sympathetic activity associated with obesity (81). Sakamoto 
et al. demonstrated that overnutrition leads to excessive activation of 
the sympathetic nervous system, resulting in insulin resistance and 
metabolic disorders, ultimately contributing to obesity.
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Reducing catecholamine release from the sympathetic nervous 
system has been shown to protect the body from the adverse effects of 
overnutrition-induced insulin resistance, hyperinsulinemia, 
hyperglucagonemia, adipose tissue dysfunction, and fatty liver 
disease (102).

5 Summary and future directions

Numerous studies have investigated the mechanisms underlying 
appetite generation and satiation, the effects of diet on appetite, and 
the role of dietary modifications in controlling appetite. Due to space 
limitations, certain factors regulating appetite, such as sleep (103–
105), sex (106), alcohol (107), and stress (108), were not thoroughly 
reviewed in this paper. Most of these studies have primarily focused 
on the nutritional components of the diet and the long-term effects of 
dietary control, with relatively few examining specific behaviors 
associated with a single meal. The advent of optogenetics has enabled 
precise stimulation and observation of neurons, resulting in increased 
research on the neural pathways that regulate dietary behavior. This 
review summarizes existing gut-brain neural pathways and provides 
a comprehensive description of neurohumoral changes throughout 
the entire eating process, from the onset of hunger, discovery of food, 
and initiation of eating to the gradual feeling of satiety, cessation of 
eating, and completion of gastric emptying. It also analyzes changes 
in appetite during this process, aiming to inspire future research on 
dietary regulation. It is anticipated that future dietary guidance will 
place greater emphasis on specific meal processes to enhance patient 
compliance. Future studies should prioritize investigating how factors 
such as eating speed and nutritional content influence satiety from a 
meal-specific perspective. Additionally, personalized assessments of 
neural and endocrine alterations during the eating process across 
different individuals are essential to provide more precise dietary 
recommendations and achieve the goals of behavioral 
eating counseling.
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Glossary

AgRP - Agouti-related protein

AP - Area postrema

ARC - Arcuate nucleus

CCK - Cholecystokinin

CGRP - Calcitonin gene-related peptide

DMH - Dorsomedial hypothalamus

DMV - Dorsal motor nucleus of the vagus

GABA - Gamma-aminobutyric acid

GLP-1 - Glucagon-like peptide-1

GLP-1R - Glucagon-like peptide-1 receptor

Gpr65 - G protein-coupled receptor 65

HFD - High-fat diet

IGP - Intragastric pressure

MC1R-MC5R - Melanocortin receptor 1–5

MSH - Melanocyte-stimulating hormone

NG - Nodose ganglion

NPY - Neuropeptide Y

NTS - Nucleus of the solitary tract

Oxtr - Oxytocin receptor

PBN - Parabrachial nucleus

POMC - Pro-opiomelanocortin

PVN - Paraventricular nucleus

PYY - Peptide YY

VANs - Vagal afferent nerves

Vip - Vasoactive intestinal peptide
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