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Background: The rising intake of ultra-processed foods (UPFs) has been linked 
to adverse health outcomes, yet its impact on aging acceleration remains 
unclear.

Objective: This study aimed to examine the association between the percentage 
of total daily calories (%Kcal) and grams (%Gram) from UPFs and phenotypic age 
acceleration (PhenoAgeAccel).

Methods: Data from 12,079 adults in the NHANES 2005–2010 cycles were 
analyzed. The relationship between UPFs intake and PhenoAgeAccel was 
assessed using multivariable linear regression and restricted cubic splines, with 
adjustments for relevant covariates. The mediating role of body mass index 
(BMI) was also explored.

Results: A significant positive linear association was observed between UPFs 
intake (%Gram) and PhenoAgeAccel, with the highest quartile showing an increase 
of 0.60 (95% CI: 0.15, 1.05; p for trend = 0.039), but no association was found 
between UPFs intake (%Kcal) and PhenoAgeAccel. Mediation analysis indicated 
that BMI mediated 27.5% of the association between UPFs intake (%Gram) and 
PhenoAgeAccel. Sensitivity analyses confirmed the robustness of the results.

Conclusion: Higher intake of UPFs intake (%Gram) is positively associated with 
PhenoAgeAccel, with BMI playing a significant mediating role.

KEYWORDS

ultra-processed foods, phenotypic age acceleration, body mass index, NHANES, 
biological aging, dietary pattern

Introduction

Aging is a complex physiological process driven by multiple biological mechanisms. These 
mechanisms involve various dimensions of cells, tissue, and organs, and are closely linked to 
nutritional, environmental, psychosocial, and demographic factor. The aging process also leads 
to various adverse health outcomes, which are strongly associated with the onset and 
progression of chronic diseases such as cardiovascular disease (CVD), cancer, osteoporosis, 
and neurodegenerative disorders (1). Moreover, the presence of these diseases can, in turn, 
accelerate the aging process. Therefore, aging is not only a manifestation of natural 
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physiological processes but also the result of complex pathological 
interactions (1). In recent years, global trends in population aging 
have become increasingly pronounced. According to the 2023 World 
Population Prospects, the proportion of individuals aged 60 years and 
above currently stands at 12.3%, and this figure is projected to rise to 
22% by 2050 (2). Population aging exacerbates the global burden of 
chronic diseases, imposing significant social and economic pressures. 
As a result, the search for effective interventions to mitigate aging has 
become a critical area of focus in global public health. Today, 
researchers have developed various methods to measure biological 
aging, each with notable differences in focus and techniques. 
Currently, the main approaches to assessing biological aging include 
phenotypic age (3), biological age (4), leukocyte telomere length (5), 
and metabolic age scores (6), etc. Each methods reflects distinct 
aspects of the aging process and holds specific value in aging research.

Dietary factors play a crucial role in influencing the aging process 
(7, 8). Previous studies have indicated that various nutrients, such as 
dietary fiber, high-quality carbohydrates, plant proteins, and omega-3 
polyunsaturated fatty acids (PUFAs) (9), along with certain dietary 
patterns rich in antioxidants, anti-inflammatory agents, and overall 
healthy food choices (10, 11), may slow down the aging process 
through mechanisms that reduce inflammation and oxidative stress. 
However, despite the benefits of healthy dietary patterns, with the 
development of modern society and the economy, the consumption of 
ultra-processed foods (UPFs) has increased rapidly worldwide (12). 
UPFs refer to highly industrialized processed foods that typically 
contain large amounts of sugars, fats, and industrial additives, making 
them significantly different from the components and processing 
methods found in traditional diets (13). High intake of UPFs has been 
shown to be closely associated with adverse health outcomes such as 
obesity, type 2 diabetes, and cardiovascular diseases (14). Given the 
potential negative impacts of UPFs on health and the limited research 
exploring the associations between UPFs intake and aging, this study 
aims to address this research gap by examining the association 
between UPFs intake and phenotypic age acceleration 
(PhenoAgeAccel) in a nationally representative sample of U.S. adults.

Methods

Design

This cross-sectional study drew upon data publicly available from 
the National Health and Nutrition Examination Survey (NHANES) to 
analyze the relationship between UPFs consumption and 
PhenoAgeAccel. Adults who responded to relevant questions 
concerning demographics, socioeconomic factors, dietary intake, 
chronic diseases, phenotypic age from 2005 to 2010 cycles were included 
in the analysis. After applying additional inclusion and exclusion 

criteria, participants were excluded if they were under 20 years old, 
lacked UPFs dietary data, phenotypic age composition data, or had 
missing covariate data. As a result, 12,079 participants remained 
available for the study. Detailed information is represented in Figure 1.

UPFs

Trained interviewers used the USDA Automated Multiple-Pass 
Method to collect in-person 24-h dietary recalls. The NOVA food 
classification system was applied to the Food and Nutrient Database 
for Dietary Studies (FNDDS) to identify all food items classified as 
UPFs. Food composition was determined using the 8-digit food code, 
with all consumed food and beverages recorded in grams and then 
converted into calories using the FNDDS.

Then we calculated the percentage of total daily calories (%Kcal) 
and grams (%Gram) intake from UPFs based on the two-day average 
as indicators of UPFs intake. These indicators were also divided into 
quartiles to serve as an exposure variable. A more detailed description 
of the NOVA classification system can be  found in our previous 
reports (15). The reliability and validity of classifying UPFs categories 
in 24-h dietary recall data by NOVA have been well-established (13).

PhenoAgeAccel

Biological aging is measured by phenotypic age, which utilize 
different biomarkers and calculation methods.

Phenotypic Age was calculated using the following formula (3).
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FIGURE 1

Participants flow chart.

Abbreviations: UPFs, Ultra-processed Foods; NHANES, National Health and 

Nutrition Examination Survey; BMI, Body Mass Index [weight (kg)/height(m)2]; CI, 

Confidence Intervals; DM, Diabetes Mellitus; CDC, Centers for Disease Control 

and Prevention; MEC, Mobile Examination Center; PIR, Poverty-to-Income Ratio; 

CVD, Cardiovascular Disease; SE, Standard Errors; RCS, Restricted Cubic Spline; 

HEI-2015, Healthy Eating Index-2015; PhenoAgeAccel, Phenotypic Age 

Acceleration.
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To adjust for the effects of chronological age, we  defined 
PhenoAgeAccel by calculating the residuals from a regression of 
phenotypic age on chronological age.

We also classify participants into accelerated and delayed aging 
group with PhenoAgeAccel ≥0 and PhenoAgeAccel <0, 
respectively.

Covariation

Our analysis encompassed a range of covariates previously 
demonstrated or assumed to be  associated with UPFs intake and 
biological aging. These covariates included age, as continuous 
variables or categorized as <40, 40–59, and ≥ 60 years; sex (female, 
male); racial/ethnicity, reclassified as Non-Hispanic Black, 
Non-Hispanic White, Mexican American, and others; poverty-to-
income ratio (PIR), categorized as low (<1.3), middle (1.3–3.5), and 
high (>3.5); BMI according to World Health Organization (WHO) 
classifications: normal, overweight, and obese; education level 
(reclassified as college or higher, middle school or lower, and high 
school); alcohol consumption (categorized as never, former, mild, 
moderate, and heavy) (16, 17); smoking status (current, former, 
never); physical activity level (active, inactive, moderate, others (18)), 
presence of hypertension, diabetes mellitus (DM), cardiovascular 
disease(CVD). Hypertension and DM were determined through index 
measurements, medication usage, and self-reports, while CVD was 
self-reported. Additionally, we  considered a healthy dietary score 
calculated using the Healthy Eating Index-2015 (HEI-2015), as well as 
energy and protein intake, derived from the mean of two days’ daily 
energy and protein intake.

Statistical methods

Due to the complexity of NHANES sampling design, dietary day 
one sample weight was used for analysis. For baseline characteristics, 
continuous variables were expressed as weighted means (standard 
errors (SE)), and categorical variables as weighted percentages (SE). 
Differences in continuous variable weighted means were assessed 
using Student’s t-test, while differences in categorical variable weighted 
percentages were assessed using Cochran–Mantel–Haenszel 
Chi-square test. Weighted linear regression analyses were conducted 
to examine the relationships between UPFs as continuous variables or 
categorized into quartiles and PhenoAgeAccel. Model 1 without 
adjustments. Model 2 was additionally adjusted for age group, sex, 

race, Model 3 was additionally adjusted for PIR, education, physical 
activity, smoke status, drinks, hypertension, DM, CVD, HEI-2015, 
energy (kcal), and protein(g). Model 4 was additionally adjusted for 
BMI. Additionally, restricted cubic spline (RCS) analysis was 
conducted to explore the dose–response relationship between UPFs 
(as continuous variables) and PhenoAgeAccel after adjusting for all 
confounding variables. Subgroup and interaction analysis were also 
performed. Furthermore, the potential mediating role of BMI in the 
association between UPFs and PhenoAgeAccel was evaluated using 
the R package ‘mediation’.

Additionally, to address the lack of weighting in the mediation 
analysis and the potential influence of certain subpopulations, 
we  conducted two sensitivity analyses. First, we  performed an 
unweighted regression analysis. Second, we excluded participants 
who were pregnant or breasts feeding, had cancer, were aged over 
80 years, or had abnormal or incomplete energy intake records 
(<500 or > 5,000 kcal/day for females; <500 or > 8,000 kcal/day for 
males). All statistical analyses were performed using R software 
(version 4.3.0).

Results

Baseline characteristics of study 
participants

The study analyzed 12,079 participants from the NHANES 2005–
2010 cycles. Table  1 outlines the demographic and behavioral 
characteristics by aging group. Participants with accelerated aging 
were more likely to be older, have a higher percentage of daily intake 
from UPFs (%Gram), higher BMI, be male, non-Hispanic Black, have 
a lower PIR, lower education (high school or less), be active smokers, 
former drinkers, have a lower HEI-2015, and lower daily energy and 
protein intake. Additionally, they exhibited a higher prevalence of 
chronic diseases such as hypertension, diabetes, and CVD. Detailed 
demographic and behavioral characteristics are presented in Table 1.

Associations between UPFs and 
PhenoAgeAccel

Table  2 presents the associations between UPFs intake and 
PhenoAgeAccel. After adjusting for all covariates, no significant 
association was found between UPF intake (%Kcal) and 
PhenoAgeAccel. However, a positive association was observed 
between UPFs intake (%Gram) and PhenoAgeAccel (β = 0.98, 95% 
CI: 0.17, 1.78; p = 0.02), with participants in the highest quartile of 
UPFs intake (%Gram) showing an increase of 0.6 years (95% CI: 0.15, 
1.05; p for trend = 0.039) compared to those in the lowest quartile.

Dose–response relationship between UPFs 
and PhenoAgeAccel

Figure 2 illustrates the dose–response relationships between UPFs 
intake and PhenoAgeAccel using restricted cubic splines (RCS). No 
significant association was found between UPFs intake (%Kcal) and 
PhenoAgeAccel (Figure 2A). However, a linear positive correlation 
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TABLE 1 The baseline characteristics classified by aging groups in US adults, NHANES 2005–2010 (n = 12,079).

Variable Total Delayed (n = 9,306) Accelerated 
(n = 2,773)

p value

PhenoAgeAccel −4.27 (0.13) −6.76 (0.08) 6.72 (0.20) < 0.001

Phenotypic age 42.55 (0.42) 39.03 (0.39) 58.16 (0.56) < 0.001

Chronological age 46.83 (0.36) 45.79 (0.37) 51.44 (0.54) < 0.001

Age groups < 0.001

   < 40 36.56 (0.01) 38.74 (0.99) 26.90 (1.18)

  40–59 39.95 (0.02) 40.11 (0.72) 39.25 (1.46)

   ≥ 60 23.49 (0.01) 21.15 (0.82) 33.85 (1.50)

UPFs (%Kcal) 0.51 (0.00) 0.51 (0.00) 0.52 (0.01) 0.1

UPFs (%Gram) 0.35 (0.01) 0.34 (0.01) 0.37 (0.01) < 0.001

BMI 28.69 (0.13) 27.81 (0.12) 32.59 (0.26) < 0.001

BMI groups < 0.001

  Normal 31.52 (0.01) 34.79 (1.00) 17.05 (1.05)

  Overweight 33.45 (0.01) 35.00 (0.65) 26.61 (1.21)

  Obesity 35.03 (0.02) 30.21 (0.83) 56.34 (1.26)

Sex 0.02

  Male 49.09 (0.02) 48.39 (0.50) 52.17 (1.39)

  Female 50.91 (0.02) 51.61 (0.50) 47.83 (1.39)

Race/ethnicity < 0.001

  Non-Hispanic White 72.98 (0.04) 74.31 (1.79) 67.10 (2.48)

  Non-Hispanic Black 10.20 (0.01) 8.68 (0.83) 16.88 (1.59)

  Mexican American 7.78 (0.01) 7.81 (0.90) 7.65 (1.16)

  Others 9.04 (0.01) 9.19 (0.84) 8.37 (0.98)

PIR < 0.001

  Low 19.34 (0.01) 17.42 (0.85) 27.81 (1.29)

  Middle 34.97 (0.02) 34.12 (1.10) 38.73 (1.13)

  High 45.69 (0.02) 48.46 (1.41) 33.46 (1.58)

Education < 0.001

  Middle school or lower 5.47 (0.00) 4.93 (0.39) 7.89 (0.68)

  High school 36.03 (0.02) 33.91 (1.19) 45.55 (1.75)

  College or more 58.44 (0.02) 61.16 (1.30) 46.57 (1.77)

Smoke < 0.001

  Never 52.35 (0.02) 54.69 (0.98) 42.00 (1.40)

  Former 24.90 (0.01) 24.48 (0.77) 26.78 (1.28)

  Now 22.75 (0.01) 20.83 (0.65) 31.21 (1.33)

Drinks < 0.001

  Former 15.95 (0.01) 14.23 (0.62) 23.53 (1.21)

  Mild 34.74 (0.02) 35.47 (0.94) 31.51 (0.97)

  Never 10.41 (0.01) 10.22 (0.69) 11.23 (0.76)

  Moderate 16.68 (0.01) 17.63 (0.67) 12.49 (0.87)

  Heavy 22.22 (0.01) 22.44 (0.77) 21.23 (0.77)

Physical activity < 0.001

  Inactive 25.97 (0.01) 25.87 (0.95) 26.44 (1.41)

  Moderate 13.51 (0.01) 14.09 (0.57) 10.94 (0.86)

(Continued)
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was identified between UPFs intake (%Gram) and PhenoAgeAccel (p 
for non-linearity = 0.8133; p for overall effect <0.0129) (Figure 2B).

Subgroup and interaction analyses

Supplementary Table S1 presents the results of stratified analyses 
and interaction tests between UPFs intake (%Kcal and %Gram) and 
PhenoAgeAccel. The association between UPFs intake (%Kcal) and 
PhenoAgeAccel did not significantly vary across most subgroups, 
except for race/ethnicity. Notably, stronger positive associations were 
found between UPFs intake (%Gram) and PhenoAgeAccel within 
specific race/ethnicity groups and among former drinkers, with 
significant interactions (p for interaction = 0.002 and 0.03, 
respectively).

Mediation analysis

Mediation analysis, illustrated in Figure 3, was conducted to assess 
the mediating effect of BMI on the relationship between UPFs intake 
(%Gram) and PhenoAgeAccel. The analysis revealed that BMI 
significantly mediated 27.5% of the association between UPF intake 
(%Gram) and PhenoAgeAccel.

Sensitivity analysis

Sensitivity analyses confirmed the robustness of the findings. No 
significant association was observed between UPFs intake (%Kcal) 
and PhenoAgeAccel in both unweighted analyses 
(Supplementary Table S2) and after excluding certain subpopulations 
with potentially significant influence (Supplementary Table S3). In 
contrast, UPFs intake (%Gram) consistently showed a positive 
association with PhenoAgeAccel, with effect estimates of β = 1.01 
(95% CI: 0.32, 1.70; p = 0.02) and β = 0.86 (95% CI: 0.04, 1.67; 
p = 0.04) in these sensitivity analyses. Additionally, participants in 
the highest quartile of UPFs intake (%Gram) exhibited an increase 
in PhenoAgeAccel by 0.54 years (95% CI: 0.15, 0.94; p for 
trend = 0.013) and 0.63 years (95% CI: 0.21, 1.05; p for trend = 0.016) 
compared to those in the lowest quartile, consistent with the 
primary findings.

Discussion

Our study presents novel insights into the differential associations 
of UPFs intake measured by grams (%Gram) and calories (%Kcal) 
with PhenoAgeAccel. The findings indicate that while UPFs intake 
(%Gram) is positively associated with PhenoAgeAccel, no significant 
association was observed for UPFs intake (%Kcal). This finding 
suggests that the quantity of UPFs consumed, rather than their caloric 
contribution, plays a more critical role in influencing phenotypic aging.

The aging process is influenced by both genetic and epigenetic 
factors. Twelve key features of biological aging have been identified, 
including genomic instability, telomere attrition, epigenetic alterations, 
loss of proteostasis, disabled macroautophagy, deregulated nutrient-
sensing, mitochondrial dysfunction, cellular senescence, stem cell 
exhaustion, altered intercellular communication, chronic 
inflammation, and dysbiosis (19). These characteristics offer a 
comprehensive framework for understanding the multifactorial 
nature of biological aging, which is critical when examining the 
impacts of diet on aging processes. We can assess biological aging 
through various methods, among which phenotypic age derived from 
serum biomarkers and clinical features are widely used in clinical 
practice. Phenotypic age is based on external physiological 
characteristics and uses key health indicators and physiological 
parameters to assess an individual’s overall health status, reflecting the 
degree of aging in appearance and function, which provides a high 
correlation with actual age and demonstrates strong predictive power 
for mortality, age-related diseases, comorbidity, and physical 
decline (20).

Currently, UPFs are increasingly infiltrating traditional diets, 
especially in high- and middle-income countries (21) and also in 
low-income countries (22). Numerous observational studies have 
linked high UPFs consumption with a range of health risk factors in 
adults, which are linked to higher mortality (23). These health risks 
are often closely associated with the aging process, making diet a 
crucial modifiable factor influencing aging. Previous research has 
shown that various dietary components and patterns can affect aging 
by influencing inflammation and oxidation across multiple organs and 
tissues (24–26).UPFs may exacerbate oxidative stress and chronic 
inflammation, which are well-established drivers of chronic diseases 
and accelerate the aging process (27, 28). Moreover, UPFs might also 
influence aging by disrupting the balance of the gut microbiome, 
further exacerbating inflammatory responses (29, 30). The positive 

TABLE 1 (Continued)

Variable Total Delayed (n = 9,306) Accelerated 
(n = 2,773)

p value

  Active 41.01 (0.02) 42.68 (1.19) 33.63 (1.40)

  Others 19.51 (0.01) 17.36 (0.65) 28.99 (1.14)

Hypertension 36.19 (0.02) 32.45 (0.84) 52.74 (1.56) < 0.001

DM 12.18 (0.01) 6.96 (0.34) 35.23 (1.43) < 0.001

CVD 6.04 (0.00) 4.36 (0.29) 13.49 (0.67) < 0.001

HEI-2015 50.70 (0.32) 51.24 (0.34) 48.32 (0.38) < 0.001

Energy (kcal) 2177.66 (15.69) 2194.51 (14.60) 2103.13 (38.79) 0.02

Protein (g) 84.47 (0.69) 85.12 (0.68) 81.59 (1.66) 0.04

Weighted mean +/− Se and Student’s t-test for continuous variables. Weighted %, mean (95% CI), and Cochran–Mantel–Haenszel Chi-square test for categorical variables.
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association between UPFs intake (%Gram) and PhenoAgeAccel can 
be attributed to the higher physical volume of UPFs consumed, which 
likely has more direct impacts on metabolic health and inflammatory 
processes. The gram measurement reflects the physical volume of food 
consumed, which can displace healthier, nutrient-dense options, 
potentially leading to nutrient deficiencies and increased exposure to 
harmful substances in UPFs. This displacement can degrade dietary 
quality and increase exposure to harmful additives and preservatives 
in UPFs, thereby accelerating aging.

While UPFs (%Gram) intake was positively associated with 
PhenoAgeAccel, no such association was observed for UPFs (%Kcal), 
suggesting that caloric content alone may not fully capture the 
detrimental effects of UPFs. This discrepancy may arise because 
measuring UPFs by grams reflects the physical quantity consumed, 

which more accurately represents the intake of additives and 
preservatives that may accelerate aging by affecting cellular function 
(31) and metabolic pathways (32). In contrast, measuring UPFs by 
calories might dilute these effects due to variations in energy density 
among different UPFs. Larger portions of UPFs, measured by weight, 
could also contribute to overeating and an increased metabolic 
burden, as their intense flavors can override natural satiety 
mechanisms (33, 34). Furthermore, our subgroup analysis revealed 
that the negative impact of % daily grams intake from UPFs on 
biological age varied across different racial and drinks groups, 
potentially due to psychosocial factors, dietary preferences, or lifestyle 
choices specific to these populations (35).

Our mediation analysis further supports the role of BMI as a 
significant mediator in the relationship between UPFs (%Gram) and 

TABLE 2 Association between UPFs (%Kcal and %Gram) and PhenoAgeAccel in US adults in NHANES 2005–2010 (n = 12,079).

UPFs (%Kcal) UPFs (%Gram)

Character 95% CI P value 95% CI P value

Continuous

Model 1 0.82 (−0.17,1.81) 0.1 2.68 (1.88,3.47) <0.001

Model 2 1.4 (0.42, 2.38) 0.01 2.85 (2.06, 3.65) <0.001

Model 3 0.72 (−0.33, 1.76) 0.17 1.41 (0.57, 2.24) 0.002

Model 4 0.38 (−0.61, 1.37) 0.44 0.98 (0.17, 1.78) 0.02

Quantiles

Model 1

  Q1 Ref Ref Ref Ref

  Q2 −0.6 (−1.06, −0.15) 0.01 0.49 (0.12, 0.86) 0.01

  Q3 −0.02 (−0.53, 0.49) 0.94 0.42 (−0.05,0.90) 0.08

  Q4 0.22 (−0.31, 0.75) 0.41 1.49 (1.02, 1.96) <0.001

P for trends 0.116 0.001

Model 2

  Q1 Ref Ref Ref Ref

  Q2 −0.4 (−0.85, 0.05) 0.08 0.41 (0.02, 0.80) 0.04

  Q3 0.16 (−0.39, 0.71) 0.56 0.4 (−0.08, 0.88) 0.1

  Q4 0.56 (0.06, 1.06) 0.03 1.52 (1.04, 2.00) <0.001

P for trends 0.005 0.001

Model 3

  Q1 Ref Ref Ref Ref

  Q2 −0.23 (−0.63, 0.16) 0.23 0.43 (0.09, 0.77) 0.02

  Q3 0.15 (−0.40, 0.70) 0.58 0.14 (−0.27, 0.55) 0.49

  Q4 0.22 (−0.30, 0.73) 0.4 0.83 (0.36, 1.29) 0.001

P for trends 0.221 0.004

Model 4

  Q1 Ref Ref Ref Ref

  Q2 −0.24 (−0.63, 0.14) 0.2 0.38 (0.06, 0.69) 0.02

  Q3 0.11 (−0.44, 0.66) 0.68 0.06 (−0.32, 0.43) 0.75

  Q4 0.06 (−0.44, 0.57) 0.79 0.6 (0.15, 1.05) 0.01

P for trends 0.51 0.039

Model 1 without adjustments. Model 2 was additionally adjusted for age group, sex, race, Model 3 was additionally adjusted for PIR, education, physical activity, smoke status, drinks, 
hypertension, DM, CVD, HEI-2015, energy (kcal), and protein(g). Model 4 was additionally adjusted for BMI.
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PhenoAgeAccel. The analysis revealed that BMI accounted for a 
substantial portion of the association, indicating that the impact of UPFs 
on phenotypic aging may be  largely driven by their contribution to 
obesity. This finding is consistent with previous research on dietary 
patterns, such as the Dietary Inflammatory Index, Healthy Eating Index-
2020, Alternative Healthy Eating Index-2010, and Composite Dietary 
Antioxidant Index, and their associations with aging acceleration (24). 
Obesity, characterized by chronic low-grade inflammation and increased 
oxidative stress, is well-documented to accelerate aging processes (36). 
The fact that BMI partially mediated the relationship underscores the 
importance of body weight management in mitigating the adverse effects 
of UPFs consumption on aging.

The strength of this study lies in its novel identification of the 
complex association between UPFs consumption and aging 
acceleration, particularly highlighting the significant mediating role 
of BMI. Additionally, the study’s large sample size enhances statistical 
power, and the cross-sectional design provides a comprehensive 
snapshot of the associations between UPFs intake and aging 

acceleration. However, this study also has several limitations. As a 
cross-sectional study, it cannot establish causal relationships. 
Moreover, the reliance on self-reported dietary intake data introduces 
the possibility of recall bias, which could affect the true association 
between UPFs and aging acceleration. Furthermore, although the 
NOVA classification system was used to categorize UPFs, its 
application to NHANES data may have led to some misclassification, 
which could impact the accuracy of UPFs categorization.

Conclusion

In summary, our findings suggest that the total volume of UPFs 
consumed, as indicated by %Gram, is more relevant to PhenoAgeAccel 
than their caloric contribution. Additionally, BMI plays a significant 
mediating role in this relationship, highlighting the importance of 
controlling obesity as a potential strategy to mitigate the aging effects 
of unhealthy diets. These findings highlight the importance of 
considering not just the caloric intake but the physical volume of UPFs 
in dietary recommendations aimed at mitigating aging-related health 
risks. Future longitudinal studies are needed to establish causal 
relationships and to explore the underlying mechanisms in more detail.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.

Ethics statement

The studies involving humans were approved by the Centers for 
Disease Control and Prevention (CDC) in the United  States. The 
studies were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

FIGURE 2

Distributions of frequency of UPFs intake (%Kcal and %Gram) and dose–response relationship between UPFs intake (A: %Kcal and B: %Gram) and 
PhenoAgeAccel in US adults (n = 12,079), NHANES 2005 to 2010. Values represent difference in predicted response in reference to a UPFs intake 
(%Kcal and %Gram) of mean. Red solid lines and Red dotted line represent restricted cubic spline models and 95%CI, respectively. Multivariable linear 
regression models were used to estimate the fully adjusted beta coefficient in PhenoAgeAccel and corresponding 95% CI. Models were adjusted by 
age group, sex, race/ethnicity, BMI, PIR, education, physical activity, smoke status, drinks, hypertension, DM, CVD, HEI-2015, energy (kcal), and 
protein(g).

FIGURE 3

Mediation effects of BMI on the association between UPFs intake 
(%Gram) and PhenoAgeAccel. Models were Adjusted for age group, 
sex, race/ethnicity, BMI, PIR, education, physical activity, smoke 
status, drinks, hypertension, DM, CVD, HEI-2015, energy (kcal), and 
protein(g).
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