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Adhering to the ketogenic diet can reduce or stop seizures, even when other 
treatments fail, via mechanism(s) distinct from other available therapies. These results 
have led to interest in the diet for treating conditions such as Alzheimer’s disease, 
depression and schizophrenia. Evidence points to the neuromodulator adenosine 
as a key mechanism underlying therapeutic benefits of a ketogenic diet. Adenosine 
represents a unique and direct link among cell energy, neuronal activity, and gene 
expression, and adenosine receptors form functional heteromers with dopamine 
receptors. The importance of the dopaminergic system is established in addiction, 
as are the challenges of modulating the dopamine system directly. A mediator 
that could antagonize dopamine’s effects would be useful, and adenosine is such 
a mediator due to its function and location. Studies report that the ketogenic diet 
improves cognition, sociability, and perseverative behaviors, and might improve 
depression. Many of the translational opportunities based on the ketogenic diet/
adenosine link have come to the fore, including addiction, autism spectrum disorder, 
painful conditions, and a range of hyperdopaminergic disorders.
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Introduction

Metabolic therapy with the ketogenic diet (KD) has been used successfully to treat epilepsy 
in adults and children for over 100 years (1). Adhering to this high-fat, low-carbohydrate protocol 
can reduce or even stop seizures – even when all other treatments fail, and some pediatric patients 
are able to discontinue the KD and remain seizure-free (2–6). This effect is also found with 
laboratory animals (7), indicating a disease-modifying, antiepileptogenic effect found only weakly 
in some but not present at all in most anticonvulsant medications (8, 9). These observations 
indicate that this metabolic therapy works via mechanism(s) distinct from other available 
therapies—and demonstrate clinically that a KD may permanently restore normal brain function.

The proven, long-term efficacy in epilepsy has led to interest in the KD’s mechanisms for 
preventing and treating multiple conditions (such as diabetes), but particularly in other 
neurological conditions such as Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis 
(10), as well as conditions where seizures are often comorbid. Several types of behavioral evidence 
predict benefits of a KD in reducing common comorbidities other than seizures such as depression 
(11, 12) and anxiety (11, 13). Most studies report that the KD improves cognition (13–19), 
improves sociability and repetitive behaviors (20–23), and reduces nociception (24–26): all 
behavioral endpoints with relevance to dopamine-related behaviors (see below), including 
perseverative behaviors and potentially chronic pain – thought to share multiple mechanisms and 
comorbidities with addiction (27). Importantly, KD-related behavioral improvement in children 
with epilepsy is not solely due to seizure reduction (13, 28–32), thus indicating therapeutic benefits 
that are uncorrelated with the primary anticonvulsant/antiepileptogenic effects.
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Diverse lines of evidence point to the neuromodulator adenosine 
as a key mechanism underlying short and long-term therapeutic 
benefits of metabolic therapy with a KD. Adenosine is present 
throughout the extracellular space, and its levels increase with 
increased neural activity (33, 34) and a variety of physiological 
conditions (35). We put forth this hypothesis and its translational 
predictions in 2008 (36). Since then, we developed metabolic models 
and provided in vitro and in vivo evidence that KD feeding elevates 
brain adenosine (7, 36–39). More evidence has since accumulated 
(40–42), and many of the translational opportunities based on the 
KD/adenosine hypothesis have come to the fore, including pain, 
autism spectrum disorder, neuroprotection, and a range of 
hyperdopaminergic disorders (35, 36). Adenosine represents a unique 
and direct link among cell energy, neuronal activity, and gene 
expression and a direct functional relationship with dopamine. Here, 
we review several molecular/physiological actions of the KD by which 
the KD might influence addiction and psychiatric disorders, then 
delve into specific disorders with respect to KD treatment.

Adenosine/dopamine interactions

The behavioral importance of the dopaminergic system is well-
established  – as are the challenges and limitations (side effects, 
limited therapeutic windows) of modulating the dopamine system 
directly. Dopamine release is clearly related to the reinforcing effect 
of drugs of abuse, such as cocaine, which blocks re-uptake of 
dopamine and so increases extracellular levels of this 
neurotransmitter. The discussion below is largely focused on cocaine. 
Chronic use of this drug in people leads to a number of behavioral 
sequelae, including highly-motivated use even in the face of adverse 
consequences. Laboratory rodents chronically self-administering 
cocaine show similar behaviors (43), including no diminution of self-
administration even in the face of a signal of impending footshock 
(43, 44). Remarkably, cocaine cravings increase over 60 days of 
withdrawal in rodents (45), in accordance with reports in human 
addiction. PET studies in cocaine-addicted patients show reduced D2 
dopamine receptor levels in the basal ganglia and reduced metabolism 
in the cingulate gyrus and orbitofrontal cerebral cortex (46). Brain 
effects of cocaine progress with extended self-administration, with 
extension of metabolic changes from the limbic basal ganglia to the 
entire basal ganglia in Rhesus monkeys (47), and progressively 
elevated levels of brain-derived neurotrophic factor in the limbic 
basal ganglia and amygdala; this protein causes long-lasting 
amplification of cocaine seeking (48).

A mediator that could interfere with the effects of dopamine 
(without blocking it completely) would be  extremely useful, and 
adenosine is such a mediator due to its function and its location. 
Manipulating the adenosine system is common  – caffeine, a 
non-selective antagonist for adenosine A1 receptors (A1R) and 
adenosine A2 receptors (A2R), is the most widely used psychoactive 
drug worldwide  – and other adenosine antagonists are under 
consideration for neurodegenerative and psychiatric disorders (49, 
50). Notably, subpopulations of richly dopamine-innervated basal 
ganglia neurons express either a combination of A1R and D1 
dopamine receptors (D1R) or A2AR and D2 dopamine receptors (D2R) 
(51, 52), and these colocalized receptors form functional heteromers 
with antagonistic effects on 2nd messenger systems (53–58).

These oppositional relationships also appear at the behavioral 
level in rodents, in work often involving cocaine. For example, A2aR 
agonists decreased, whereas A2aR antagonists increased, acute cocaine-
induced locomotion, in apparent opposition to the D2R (57). 
Selectively knocking out A2aR expression in striatal neurons enhances 
the locomotor response to cocaine or phencyclidine (58). Chronic 
caffeine in adolescence increases the locomotion to a challenge dose 
of cocaine or a D2R agonist in adulthood (59). Outside the brain, A1R 
and D1R oppositely influence spinal motor circuit output (60). 
Caffeine reduced the locomotor sensitization response to cocaine in a 
binge protocol (61). Given during a sensitization regimen, A2aR 
agonists decreased, whereas A2aR antagonists increased, the sensitized 
response to a later cocaine challenge (57). Alternatively, A1R or A2aR 
agonists given during the cocaine challenge but not during 
sensitization reduced the expression of cocaine sensitization, in a 
paradigm in which the adenosinergic drugs were directly infused into 
the basal ganglia (62).

In the conditioned place preference test, adolescent chronic 
caffeine enhanced the rewarding effect of cocaine in adulthood (59). 
An A2aR agonist reduced the reinforcing and motivational aspects of 
cocaine self-administration (63). A1R agonists inhibited cocaine- or 
D1R agonist-induced reinstatement of extinguished cocaine self-
administration (64). Caffeine potentiated the seizure-inducing 
properties and lethality of cocaine and D-amphetamine (65). Also 
relevant to drug abuse, adenosine and dopamine (mostly the A2aR 
and D2R) differentially control motivation (66). Overall, there is an 
abundance of evidence that adenosine and dopamine receptors are 
in opposition in their influence on several types of behavior 
and cognition.

Some evidence suggests the KD alters dopamine directly. The 
dopamine metabolite homovanillic acid was reduced during KD 
feeding in pediatric epileptic patients in a study that used CSF as a 
proxy for tissue dopaminergic activity, though this effect did not differ 
with presence or absence of anticonvulsant response (67). In rats, 
tissue homovanillic acid (combined with another dopamine 
metabolite, dihydroxyphenylacetic acid) was elevated by the KD in 
cerebral cortex but not basal ganglia or midbrain (68). These 
differences could be explained by a number of factors, such as species 
differences, differences in subject maturity, differences in KD strength/
composition, or the effective whole-brain sampling of CSF collection. 
A KD-based mechanism to moderate adenosine and/or dopamine 
systems would have obvious relevance to neurological conditions, 
including drug abuse (69, 70).

Cerebrocortical hypometabolism versus 
energy replenishment

Hypotheses and clinical and basic research on the link between 
brain energy and mental health has been a rapidly developing field 
with case reports, reviews, protocols, and cutting-edge conferences 
helping to foster a robust and thriving community with real 
collaboration between patients and professionals (71–76). 
Compensating for the energy impairment due to ongoing 
hypometabolism may be  a useful treatment for many diverse 
neurological conditions (77–80). Energy homeostasis – particularly 
changes in ATP and adenosine – is known to be relevant but poorly 
understood in neuroprotection, psychiatric disorders and addiction 
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(81, 82). KDs supply a substrate (ketone bodies) for the citric acid 
cycle that elevates ATP and promotes mitochondrial function, 
including in impaired states (83–97).

Brain hypometabolism has been reported with alcohol and online 
gaming addiction (98), with stimulant abuse (99, 100), in Alzheimer’s 
disease and mild cognitive impairment (101, 102), and indeed even 
with normal aging (103). As a dynamic and energy-demanding organ, 
and as a survival mechanism, it makes sense that metabolism is 
reflected in neurological function and behavior and that mitigating 
metabolic dysfunction is a potent therapeutic strategy.

Reduced hyperglycemia and/or 
inflammation

KDs produce a moderately low but very stable blood glucose 
(104–107), explaining why it is an effective treatment for diabetes 
(106, 108, 109). This stabilization of blood glucose may blunt the 
impact of well-known physiological effects of stress and/or 
dopamine-induced hyperglycemia (110), and therefore may help 
stabilize a range of mental states that are influenced by metabolic 
variability, particularly those that are triggered by or associated with 
hyperglycemia. Hyperglycemia causes inflammation (111, 112) and 
is associated with psychiatric re-hospitalization. Inflammation is a 
biomarker for and perhaps a cause of depression (113), and much 
evidence shows that KDs reduce inflammation in patients (114–117) 
and in pre-clinical models (118–121). Importantly, some animal 
studies found reduced inflammatory markers specifically in brain 
(122–125). KD feeding seems to limit neuroinflammation via several 
mechanisms (126).

Disorders

Addiction

Based on the relationships among adenosine, dopamine, and the 
KD, we recently investigated the possible moderating effects of KD 
treatment on the effects of repeated cocaine treatments (127). Five-
week old male and female rats were placed on a KD or remained on 
normal rodent chow for 3 weeks. A well-established cocaine-
sensitizing regimen was then applied: animals received once-daily 
injections of either saline or cocaine for seven consecutive days, 
followed by seven drug-free days, and then finally a challenge 
injection of cocaine. Assessments occurred in an automated system 
for measuring ambulatory (e.g., walking) and stereotyped (e.g., 
rearing) locomotor responses. KD feeding continued through the 
sensitization protocol. All animals receiving the daily cocaine 
injections showed the expected enhancement of the rearing response, 
but animals on the KD had a significantly mitigated enhancement. 
Unexpectedly, ambulatory activity did not sensitize at all in KD-fed 
animals. These effects of KD on locomotor activity were found in 
both sexes, and were only observed following injections of cocaine 
(not saline). A similar pattern was found with the challenge injection: 
KD treatment moderated the stereotypic response to the challenge. 
Interestingly, here sex was a factor, with this effect occurring in males 
only. Thus, KD feeding reduces both the responses to acute cocaine 
(day one of the sensitizing regimen; challenge day for saline-treated 

animals) and repeated cocaine. Considered together, these data were 
the first to show that KD treatment can modify behavioral responses 
to a monoaminergic stimulant, and suggest that KDs are a potential 
novel therapy for the treatment of addiction to these drugs. Based on 
prior studies, we posit that the effects of the KD in this paradigm 
could be mediated by an effect of adenosine on dopaminergic 
systems, likely in the basal ganglia.

More recently, the effects of KD treatment were tested in a 
conditioned place preference protocol, wherein animals learn to prefer 
a section of the experimental apparatus paired with, in this case, 
cocaine injections (128). KD feeding did not appear to modulate the 
acquisition of the cocaine-related place preference. However, when 
cocaine was withheld (i.e. extinction), mice on the KD more quickly 
lost the place preference. In addition, a cocaine priming injection after 
extinction reinstated the place preference only for the standard diet 
mice; mice that were on KD did not experience reinstatement. The 
authors hypothesized that the KD effects were via an adenosine/
dopamine interaction, and suggested that KD treatment might 
be especially useful in preventing relapse.

Regarding the commonly abused drug ethanol, in rat models of 
dependence KD-fed animals made fewer lever presses to receive 
alcohol during acute withdrawal (129) and had reduced withdrawal 
symptoms (130, 131). In mice, both KD and a ketone monoester 
(which is metabolized to ketone bodies) reduced withdrawal 
symptoms even when treatment was started during withdrawal 
(132). Clinically, benzodiazepines are given to reduce withdrawal 
symptoms during detoxification: notably, patients eating a KD 
during treatment required significantly fewer or lower doses of 
benzodiazepines (129). Alcohol-related stimuli induced fewer or 
lower doses of “wanting” and more dorsal anterior cingulate gyrus 
activation in patients on a KD; neuroinflammatory markers were 
also reduced (129). An alcohol-dependent metabolism has switched 
from depending on glucose to depending on acetate; ketone bodies 
might normalize metabolism by replacing acetate (133). It had been 
hypothesized that alcohol addiction might relate to adenosine 
dysfunction in the basal ganglia (134) and a recent study provides 
direct evidence (135).

Adenosine is clearly involved in the effects of opiates. During a 
dependence-inducing regimen of morphine and during withdrawal, 
brainstem adenosine was reduced two-fold (136). During withdrawal, 
symptoms were reduced with an A1R agonist or an A2aR antagonist 
(136) or genetic inactivation of A2aR (137). Consistent with these 
results, KD feeding reduced symptoms of withdrawal from opiates in 
mice (138, 139). In addition, KD feeding reduced opiate self-
administration (139) and hyperalgesia due to chronic opiate 
treatment (140). These results suggest a KD, through adenosine, 
might have some utility in opiate abuse. Conversely, a KD elevated 
locomotor responses and analgesia to oxycodone. This latter effect, 
however, could be partially explained by the antinociception due to 
the KD itself (25, 120).

Food cravings, binge eating being an extreme form, are often 
considered to be  a naturalistic analog of drug abuse. Excessive 
glucose and insulin spikes are thought to modify the brain leading 
to addiction-like binge eating; KD feeding will temper such spikes 
(141). Two pilot studies of KD treatment to patients with food 
addiction/binge eating disorder underwent KD treatment, leading 
to significant reductions (142) or complete alleviation (143) of the 
disorder’s symptoms.
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Psychiatric disorders

A recent study found that KD treatment in 28 patients with severe 
refractory mental illness significantly improved psychotic symptoms 
and depression; virtually every patient improved on multiple scales 
(144). Twelve of the patients achieved clinical remission on the 
Clinical Global Impressions Scale. A majority of patients reduced 
number or dose of psychotropic medications (in a number of cases, 
diabetes-related medications were reduced or discontinued) (144). 
After discharge, 18 patients chose to remain or partially remain on the 
diet to maintain the psychiatric benefits. Subsequent studies have also 
found broad KD effectiveness in mental illness such as bipolar 
disorder and schizophrenia (145–151). Much evidence shows that 
KDs reduce inflammation in patients (114–117, 152) and in 
pre-clinical models (118–121). Reductions in inflammation might 
be particularly germane to depression (113).

An involvement of adenosine (specifically, an alteration in normal 
adenosine/dopamine antagonism) has long been postulated for 
schizophrenia (153–155), and adenosine modulators have been tried 
with some success in patients (156). More recent papers have 
highlighted abnormalities in adenosine receptor expression 
specifically in frontal cerebral cortex but not other adenosine receptor 
expressing regions (157, 158). In parallel, hypometabolism, limited to 
the frontal cerebral cortex, was indicated in schizophrenia by meta-
analysis (159). Therefore, the KD might have beneficial effects via 
multiple mechanisms. One group found positive effects in an animal 
model of schizophrenia-like behavior (160–162). A very early attempt 
to use the KD in schizophrenic patients showed promise but was 
poorly controlled (163). More recently, beneficial results have been 
reported, but these are either case reports (164, 165) or have a low 
number of subjects (five schizophrenic or schizoaffective patients) 
(151). Larger studies are warranted, although in a study with a 
substantial sample size the KD reduced schizotypy traits in the general 
population (166).

Relating to hyperglycemia, diabetes is associated with a higher 
incidence of several mood and psychiatric disorders (167, 168). A 
meta-analysis found a significant association between depression and 
both type I  and type II diabetes (169). In diabetic individuals, 
hyperglycemia is associated with depression (170) and feelings of 
anger and sadness (171), which may be worse in type I diabetes (170). 
Such effects are not limited to diabetic patients: hyperglycemia is 
related to higher readmittance to psychiatric hospitalization (172), 
and high insulin levels in youth raise the odds of psychosis in young 
adulthood (173). On more acute timescales, there is some evidence 
for high glycemic variability relating to low quality of life and negative 
mood in diabetic patients (174–176), although other studies have not 
found support for this association (177, 178). Notably, high dietary 
sugar intake is associated with depression and anxiety in non-diabetic 
individuals (179–181). These associations do not determine causation 
but, intriguingly, there are suggestions that depression in the elderly 
might predispose the development of type II diabetes (182, 183). KDs 
minimize dietary sugar intake, and provided a stable, mild 
hypoglycemia which should counteract these deleterious effects on 
mood. A recent review outlined the heightened risk of dementia in 
type II diabetes, and the use of KDs as a preventative treatment (184).

Cerebral hypometabolism/hypoperfusion is known to factor into 
cognitive problems in Alzheimer’s disease, dementia, and mild 
cognitive impairment; ketogenic strategies can overcome this 
problem by delivering high energy fuels (ketone bodies) directly to 

neural tissue (82). A recent report showed that KD or ketone body 
treatment restores long-term potentiation in a mouse model of 
Alzheimer’s disease (185). A number of clinical studies have applied 
the KD (or the modified Atkins diet, also very low carbohydrate) to 
these disorders (186). Although cognitive tests differ between study 
groups, the KD is generally found to benefit general cognition, 
learning and memory, quality of life, general functioning, and mood 
(187–191). In one study, serum ketones were found to positively 
correlate with benefits in long term memory (17). Other studies have 
more directly induced ketosis in these patients with supplements, 
typically medium-chain triglycerides or ketone esters (which are 
easily metabolized into ketone bodies), rather than changing diet 
wholesale. Again, these treatments improved various aspects of 
cognition (77, 192). A number of studies correlated improved 
cognition with elevated circulating ketone bodies (193–195) or 
elevated ketone body uptake in brain (assessed with PET) (196, 197).

There is strong evidence of a metabolic underpinning of ASD, in 
addition to the genetic and environmental components. For example, 
this disorder has been found to involve hypoperfusion of specific brain 
regions (198–200) and to be  associated with hyperglycemia, 
mitochondrial dysfunction, and adenosine dysfunction (201–204). 
Thus, the KD has multiple mechanisms by which it might be beneficial. 
KD feeding improved sociability and repetitive behaviors in various 
animal models of this disorder (26–28, 91, 205, 206). In addition, 
promising results have been found in autism spectrum disorder 
patients with KD therapy (207–213).

Addiction and the psychiatric disorders just discussed all have 
significant co-morbidities; interestingly, KD treatment appears to be 
helpful with many of these co-morbidities. Diabetes is a co-morbidity 
in depression, schizophrenia, and Alzheimer’s disease; KD feeding is 
a greatly beneficial treatment for diabetes (214). Obesity is a 
co-morbidity in schizophrenia and Alzheimer’s disease; KD feeding is 
an effective treatment for obesity (215). Attention deficit/hyperactivity 
disorder is a co-morbidity in addiction and autism spectrum disorder; 
KD feeding improves attention during treatment of epileptic patients 
(31, 216–218). Hyperactivity was improved during treatment in 
epilepsy and autism spectrum disorder (210, 219), but has not been 
established as a treatment in a non-epileptic clinical ADHD 
population. Depression is a co-morbidity in addiction and Alzheimer’s 
disease; KD feeding is effectively antidepressant in non-epileptic 
populations (11, 117, 144). For rarer co-morbidities such as 
personality disorder, KD effects remain unknown.

The KD can have some effects on lipids which can be seen as 
possible negative side effects. However, mild hyperlipidemia was 
associated with better anticonvulsant effects (219). Even though 
low-density lipoprotein-C was higher in KD-fed patients, there was 
no increased coronary plaque burden compared to matched 
controls (220), and low-density lipoprotein-C levels are generally 
poorly predictive of cardiovascular disease risk (221, 222).

Taken together, the relationship between metabolic health and a 
broad range of neurological conditions is emerging, including mental 
health. The relationship among adenosine, dopamine, and ketogenic 
metabolic therapy is primary because of the ability to link cell energy, 
neuronal signaling, and gene expression for both short and long-term 
effects in key brain areas. The opportunity for metabolic approaches 
to address multiple comorbidities at once is gaining acceptance. As 
noted herein there is a wide range of mechanisms and impacts, and 
reversing and preventing metabolic dysfunction has enormous 
potential for all ages. However, the opportunity to restore a lifetime of 
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brain health for young people – who may be suffering from mental 
illness, drug addiction, or both – should be an enormous motivation 
for continued attention to this field.
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