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Accurate dietary intake estimation is crucial for managing weight-related chronic 
diseases, such as diabetes, where precise measurement of food volume and caloric 
content is essential. Traditional calorie counting methods are often error-prone and 
may not meet the specific needs of individuals with diabetes. Recent advancements in 
computer science offer promising solutions through automated systems that estimate 
calorie intake from food images using deep learning techniques. These systems 
provide personalized dietary recommendations, helping individuals with diabetes make 
informed choices. As smartphones and wearable devices become more accessible, 
the utilization of electronic apps for dietary monitoring is increasing, highlighting 
the need for more research into safe, secure, and evidence-based IoT solutions. 
However, challenges such as standardization, validation across diverse populations, 
and data privacy concerns need to be addressed. This review focuses on the role 
of computer science in dietary intake estimation, specifically food segmentation, 
classification, and volume estimation for calorie calculation. By synthesizing existing 
literature, this review provides insights into current methods, key challenges, and 
potential future directions. The review also explores advancements in technology 
that can improve the accuracy of dietary assessments, contributing to personalized 
disease management and the prevention of weight-related chronic conditions.
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1 Introduction

Weight-related diseases, including diabetes, are labeled as a pandemic and represent an 
alarmingly increasing global public health issue. The prevalence of diabetes has tripled these 
last 15 years, rising more rapidly in low-and middle-income countries than in high-income 
countries. In 2021, approximately 537 million adults worldwide were living with diabetes, a 
figure expected to rise to 783 million by 2045 if current trends continue (1). Diabetes is a major 
cause of serious health complications, including blindness, kidney failure, heart attacks, 
strokes, and lower limb amputations. There are different types of diabetes, with Type 2 Diabetes 
(T2D) being the most prevalent and largely preventable. Managing T2D involves adopting 
healthy behaviors such as following a balanced diet (particularly low in carbohydrates and fat), 
engaging in regular physical activity, and, when necessary, taking medication. Consistent 
medical follow-ups are also essential for effective T2D management.
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Managing diabetes effectively requires accurate monitoring of 
dietary intake, particularly caloric consumption (2). Traditional methods, 
such as food diaries and self-reporting, have long been used to estimate 
dietary intake (3). However, these methods are liable to errors due to 
underreporting, overreporting, and recall biases, which can significantly 
impact the accuracy of calorie calculations (4). This is especially 
problematic for individuals with diabetes, where precise management of 
caloric intake is crucial to maintaining stable blood glucose levels.

Recent advancements in computer science, particularly in the 
fields of artificial intelligence (AI) and computer vision, have 
introduced innovative solutions to these challenges. By leveraging 
deep learning algorithms, researchers have developed systems that can 
automatically segment, classify, estimate food volume and caloric 
content from images, eliminating the need for manual entry and 
reducing the potential for human error. These approaches offer the 
potential to revolutionize dietary monitoring by providing accurate, 
real-time assessments of food intake (5).

Previous research in this domain has explored various methods for 
improving dietary intake estimation, including the use of specialized 
hardware, such as 3D scanners and depth sensors, to capture more 
accurate food measurements (6). While these methods have shown 
promise, their reliance on specialized equipment limits their 
accessibility and widespread adoption. In contrast, image analysis can 
now be performed using standard smartphone cameras, thanks to 
everyday developments and improvements in smartphone technology, 
making these solutions more accessible and practical for daily use.

Theories surrounding personalized medicine and precision health 
underscore the importance of tailoring interventions to individual 
needs (7). In the context of diabetes management, this means 
providing dietary recommendations that align with a person’s specific 
metabolic profile, dietary habits, lifestyle, knowledge and capacity. 
AI-driven dietary monitoring tools align well with these theories by 
enabling more personalized and adaptive approaches to diabetes care.

However, despite the promise of these technologies, several 
challenges remain, specifically in achieving accurate automated 
volume estimation without user input or specialized devices. 
Additionally, issues related to the standardization of methods, 
validation across diverse populations, and privacy concerns in 
handling sensitive health data must be  addressed to ensure the 
reliability and ethical use of dietary monitoring tools (8).

Given the critical role of accurate dietary monitoring in diabetes 
management and the rapid advancements in AI and computer vision, 
this paper provides a comprehensive review of 14 popular in the 
market calorie-counting applications. It critically evaluates the 
computer science methodologies employed in their development, 
focusing on food segmentation, classification, volume estimation, and 
calorie calculation. By synthesizing recent advancements introduced 
through reputable platforms such as IEEE, Springer, and ACM, this 
review emphasizes the technological innovations driving more accurate 
and personalized dietary assessments. It serves as a foundation for 
developing next-generation calorie-counting tools, offering insights 
into the strengths and limitations of current approaches and paving the 
way for future research and application development. The aim of the 
current paper is to identify solutions offered in the form of mobile 
applications, whose working principles are publicly available and can 
be studied. The aim of this paper is to critically appraise the existing 
literature on calorie-counting applications. It seeks to extract and 
evaluate the computer science methodologies employed, including 

food segmentation, classification, volume, and calorie estimation. 
Additionally, it compares the effectiveness and accuracy of these 
methodologies across various applications and derives 
recommendations for practical use and future research.

2 Materials and methods

This review synthesizes literature from several well-established 
computer science databases, including IEEE, Springer, ACM, and 
ScienceDirect, to evaluate advancements in calorie-counting 
applications. The focus was on image-based food monitoring systems 
and calorie-counting tools, both manual and automated, that utilize 
computer science methodologies such as food segmentation, 
classification, and volume estimation to enhance dietary intake 
accuracy. These tools are particularly relevant for individuals 
managing weight-related chronic diseases like diabetes.

2.1 Search terms and databases

Key search terms were carefully crafted based on initial scoping 
exercises and included combinations of keywords: “calorie counting 
apps,” “food image segmentation,” “food volume estimation,” “Image 
Processing” “dietary intake estimation,” and “diabetes management.” 
Search was limited to studies and applications published or 
introduced between 2010 and 2024 to focus on advancements 
spanning the past 15 years.

2.2 Article retrieval and screening 
protocols

Articles and application descriptions were retrieved through 
queries across databases. A multi-step screening process was 
implemented, beginning with the review of titles and abstracts to 
identify relevant studies. Full-text analysis was conducted to ensure 
methodological transparency and relevance to calorie-counting tools. 
Duplicates and irrelevant studies were excluded during this process.

2.3 Inclusion and exclusion criteria

Studies and applications were included if they explicitly focused on 
calorie-counting tools, whether manual or automated, and presented 
the computer science methodologies employed in their design, such as 
food segmentation, classification, or volume estimation. Excluded were 
those lacking sufficient methodological detail, not within the specified 
time range, or irrelevant to dietary monitoring.

2.4 Selection of most frequently studied 
applications

The 14 calorie-counting applications analyzed in this review 
represent a mix of manual, semi-automated, and AI-driven tools. To 
select the most studied calorie-counting applications, we used the 
following criteria: 1-frequent citation in the literature (more than 3 
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different articles), 2-availability of public documentation describing 
the methodologies used, and 3-contributions to advancing dietary 
monitoring practices. By including both manual and automated tools, 
the review provides a comprehensive overview of the progression and 
diversity in calorie-counting methodologies. Figure 1 provides a flow 
diagram summarizing the screening and selection process for 
identifying the 14 applications included in this review.

This approach allowed for an in-depth analysis of advancements 
in calorie-counting applications, along with an evaluation of their 
limitations, reliance on user input, sensitivity to image quality 
variations, and scalability challenges. These findings aim to highlight 
areas where future research can further improve the accuracy and 
accessibility of these tools.

3 Core stages and working principles 
of calorie counting apps

This section provides a detailed analysis of the 14 prominent 
calorie-counting applications selected for this review, as introduced in 

the previous section. These applications, highlighted for their 
contributions to computer science methodologies and were released 
through prominent publishers. We explore the main stages involved 
in calorie counting applications, focusing on three critical steps: food 
segmentation, food recognition, and food volume estimation. These 
steps are fundamental to the accurate calculation of nutritional 
information and calorie content from food images. Additionally, these 
applications often rely on well-known food datasets, which play a 
crucial role in ensuring the accuracy and comprehensiveness of food 
recognition and calorie estimation.

By analyzing these stages across the 14 applications, we aim to 
identify trends, strengths, and potential areas for improvement in the 
current state of calorie-counting technology. This analysis provides 
insights into how each application approaches the challenges of food 
segmentation, recognition, and volume estimation, all of which are 
crucial for accurate calorie calculation and effective dietary 
monitoring. The block diagram in Figure 2 illustrates the core stages 
involved in the calorie estimation process. The process begins with 
food image segmentation, where food items are isolated from the 
background or other objects in the image. Following segmentation, 

FIGURE 1

PRISMA flow diagram.
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FIGURE 2

An automated image-based nutrition assessment tool.

food classification identifies the specific type of food, such as 
distinguishing between white rice, brown rice, or meat. The classified 
food items then undergo volume estimation, where their portion sizes 
are calculated using appropriate techniques. Finally, the results of 
classification and volume estimation are integrated with nutritional 
datasets to perform calorie counting, determining the caloric value of 
the food items. These tasks are sequentially dependent, with each step 
building upon the previous one to achieve accurate dietary assessment. 
Table  1 presents the selected applications and provides their 
general information.

3.1 Food image datasets

Food image datasets are foundational for the development and 
evaluation of food recognition systems. These datasets vary widely in 
their attributes, including the number of images, food categories, and 
methods of data acquisition. A well-structured food image database 
is critical for training and benchmarking machine learning models, 
impacting their performance and generalizability.

Food image datasets are categorized by several factors. Different 
datasets focus on various food types, ranging from generic 
classifications to specific cuisines. For example, datasets such as 
Food-101 (9) and UEC-Food256 (10) cover a broad spectrum of 
food categories, while others, like Turkish-Foods-15 (11) and 
Japanese Foods (10, 12–16), focus on specific regional cuisines. 
Also, the source and method of image collection play a significant 
role in the quality and applicability of the database. Images may 
be  captured in controlled environments, such as studios with 
standardized lighting, or in natural settings, like restaurants and 
social media platforms. For instance, Food-85 (17) and Diabetes 
(18) use controlled environments, whereas Foodlog (19) and 
Instagram 800k (20) leverage user-contributed images and 
web crawls.

The number of images and their diversity within each class are 
crucial for model robustness. Datasets like FoodX-251 (21) and Fruits 
360 Dataset (22) offer extensive image collections, which are essential 
for training deep learning models. High diversity in images helps the 
model generalize better to new, unseen data. Food image datasets are 
often designed for specific tasks, such as classification or segmentation. 
For example, FOOD201-Segmented (7) contains images specifically 
segmented for classification tasks, while datasets like VIREO Food-172 
(23) may serve both classification and segmentation needs. NutriNet 
(24) is another influential database designed for deep learning 
applications in food and drink image recognition. It plays a pivotal 
role in dietary assessment and nutritional analysis, further enhancing 
AI’s capabilities in health informatics.

Recent food image datasets like CNFOOD-241 (25), AI4FoodDB 
(26), and MyFoodRepo-273 (27) have made significant contributions 
to the field. AI4FoodDB (26), launched in 2023, is particularly notable 
as it forms part of a larger initiative aimed at advancing personalized 
nutrition and e-Health solutions. What sets AI4FoodDB apart is its 
integration of food images with data from wearable devices, validated 
questionnaires, and biological samples. This holistic approach seeks to 
create a digital twin of the human body, providing a valuable 
benchmark for personalized nutrition research and aiding in the fight 
against non-communicable diseases.

As mentioned, many existing food image datasets are 
predominantly focused on specific countries or cultural contexts, 
which can introduce significant biases in the development of food 
recognition models and constrain their generalizability across diverse 
dietary habits globally. The limited cultural diversity in these datasets 
often results in AI systems that underperform when encountering 
food items from underrepresented regions or cuisines. This lack of 
inclusivity poses a critical challenge to the development of robust, 
globally applicable dietary assessment tools. To address this, there is a 
pressing need for the creation of comprehensive datasets that capture 
the breadth of global food practices. Initiatives such as AI4FoodDB, 
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which integrate diverse food categories alongside multimodal data 
sources, exemplify a forward-looking approach to enhancing model 
generalization and reducing biases in food recognition systems.

Table  2 provides a summary of notable food image datasets, 
highlighting their unique attributes.

While Table  2 focuses on publicly documented, food-focused 
image datasets, certain calorie-counting applications also reference 
specialized datasets that do not strictly fit these criteria. For example, 
Im2Calories (7) utilizes NYU Depth V2 (28) for initial depth training; 
however, we do not include it here because it is a general-purpose 
indoor scene dataset rather than a food-specific resource. These cases 
illustrate that some applications leverage additional or proprietary 
datasets for specialized tasks, particularly volume estimation, that fall 
outside the scope of publicly available food-image collections.

3.2 Image segmentation

Image segmentation is a foundational technique in computer 
vision, involving the partitioning of an image into distinct regions or 
segments that correspond to different objects or areas of interest. In 
food recognition, segmentation is particularly important because it 
enables the precise identification and isolation of individual food 
items on a plate. This accuracy is critical for tasks such as portion size 
estimation, calorie counting, and nutrient analysis, all of which are 
essential components of dietary assessment systems.

In food recognition applications, segmentation plays a vital role 
in ensuring that each food item is accurately identified and analyzed, 
regardless of how it is presented on the plate. Given the variability in 
food presentation due to different cuisines, cooking methods, and 
serving styles, segmentation methods must be robust and adaptable. 

These methods range from traditional approaches like edge detection 
and region-based segmentation to advanced deep learning models 
that can learn complex features from large datasets.

Numerous mobile applications and systems have been developed 
that incorporate image segmentation as a key component for dietary 
assessment. These applications often utilize various segmentation 
techniques, each chosen based on the specific requirements and 
constraints of the application, such as processing power, real-time 
capabilities, and the complexity of food items being analyzed. The 
following Table 3 summarizes the segmentation methods utilized in 
14 prominent food recognition applications, detailing 
their approaches:

This table outlines the variety of segmentation methods employed 
across different food recognition applications, each tailored to the 
unique challenges posed by food imagery. For instance, a range of 
segmentation methods, from manual approaches like PlateMate, 
where workers manually draw bounding boxes, to fully automated 
techniques seen in Im2Calories and goFOOD™, which utilize 
advanced models like DeepLab and Mask R-CNN for precise 
segmentation. Meanwhile, advanced segmentation models such as 
Mask R-CNN and DeepLab, while achieving high accuracy in food 
recognition tasks, are computationally intensive, making them less 
suitable for mobile or real-time applications where efficiency is 
paramount. These models involve complex architectures with multiple 
layers and extensive parameter sets, resulting in significant processing 
time and memory requirements. Such computational demands can 
hinder their deployment on resource-constrained devices like 
smartphones or in scenarios requiring immediate responses. 
Addressing these limitations often necessitates the exploration of 
lightweight alternatives, such as MobileNet or YOLO-based 
frameworks, or applying optimization techniques like model pruning 

TABLE 1 The selected 14 calorie counting applications.

Year App Author Country Affiliation Application Focus

2011
PlateMate (39) Jon Noronha et al. USA Harvard Calorie estimation through annotations from nonexpert 

Amazon Mechanical Turk workers

2013 FoodLog (37) Aizawa et al. Japan University of Tokyo Personal dietary management via mobile app

2015 Snap-n-Eat (36) Zhang et al. USA SRI International, Princeton Real-time food recognition

2015 Menu-Match (42) Beijbom et al. USA University of California Matching food images to menu items

2015 Im2Calories (7) Meyers et al. USA Google Automated calorie estimation

2015

FoodCam (10, 43) Kawano et al. Japan UEC The system is designed to operate entirely on a smartphone 

without needing to send data to external servers, leveraging the 

computational power of modern mobile devices for real-time 

recognition.

2016 GoCarb (44, 45) Rhyner et al. Switzerland U of Bern Carb counting for diabetic patients

2017 NU-InNet (46) Termritthikun et al. Thailand Naresuan University Thai-food recognition application in a smartphone

2018 DietLens (38) Ming et al. Singapore University of Singapore Comprehensive dietary assessment

2019 Food Tracker (47) Jianing Sun et al. Canada McGill University Mobile food tracking

2020 MyDietCam (48) Tahir and Loo Malaysia University of Malaya Real-time dietary monitoring

2020 goFOOD™ (29) Lu et al. Switzerland University of Bern Food portion estimation

2020 DeepFood (49) Jiang et al. Canada MacGill University Food recognition and dietary assessment system

2021
Mobile food record 

(mFR)

Shao et al. (50) USA Purdue University Dietary assessment in research settings
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TABLE 2 Food image datasets.

Authors Year Dataset Food Category Images/Class Image Source

Godwin et al. (51) 2006 Wedge Shape foods dataset American Foods 3 categories Controlled environment

Chen et al. (52) 2009 PFID American Fast Foods 1,038 (16)
Fast food data captured in multiple 

restaurants

Mariappan et al. (53) 2009 TADA Artificial And Generic Food 256 (11) Controlled environment

Yanai et al. (17) 2010 Food-50 Japanese Foods 5,000 (50) Crawled from web

Hoashi et al. (17) 2010 Food-85 Japanese Foods 8,500 (85) Existing food datasets

Miyazaki et al. (19) 2011 Foodlog Japanese Foods 6,512 (2,000) Captured by users

Marc Bosch et al. (54) 2011 FNDDS American Foods 7,000 Images of food accquired by users

Chen et al. (55) 2012 ChineseFoodNet ChineseFood 192,000 (208) Gathered from web

Matsuda et al. (16) 2012 UECFOOD-100 Japanese Foods 14,361 (100) Captured by mobile camera

Chen et al. (55) 2012 Chen Chinese Foods 5,000/50 Crawled from the Internet

Anthimopoulos et al. (18) 2014 Diabetes European 5,420 (11)
Controlled environment and 

downloaded from the web

Bossard et al. (9) 2014 Food-101 American Foods 101,000 (101) Crawled from web

Bossard et al. (9) 2014 ETHZ Food-101 American Foods 100,000 (101) Crawled from web

Kawano et al. (10) 2014 UECFOOD-256 Japanese Foods 25,088 (256) Captured by mobile camera

Stutz et al. (56) 2014 Rice dataset Generic (Rice) 1 food type Acquired from user

Farinella et al. (57) 2014 UNCIT-FD889 Italian Foods 3,583 (899) Acquired with a smartphone

Myers et al. (7) 2015 FOOD201-Segmented American Foods 12,625 Manually annotated dataset

Myers et al. (7) 2015 Restaurant - 2,517 web images for 23 restaurants

Myers et al. (7) 2015 Gfood3D
(everyday) foods for 3D 

volume estimation
-

50 Google meals, captured by Google 

using a dedicated setup for 3D food 

modeling

Myers et al. (7) 2015 Nfood3D - - 11 meals made with Nasco food replicas

Xin Wang et al. (58) 2015 UPMC Food-101 Generic 100,000 (101) Crawled from web

Cioccoa et al. (59) 2015 UNIMB 2015 Generic 2,000 (15) Using a Samsung Galaxy S3 smartphone

Fang et al. (60) 2015 TADA American Foods 19 categories Controlled environment

Herranz et al. (61) 2015 Dishes Chinese Restaurant Foods 117,504 (3,832) Download from dianping

Beijbom et al. (42) 2015 Menu-Match Generic Restaurant Food 646 (41) Captured from social media

Zhou et al. (62) 2016 Food-975 Chinese Foods 37,785 (975) Collected from restaurants

Chen et al. (23) 2016 Vireo-Food 172 Chinese Foods 110,241 (172) Downloaded from web

Cioccoa et al. (5) 2016 UNIMB 2016 Italian Foods 1,027 (73) Captured from dining tables

Bolaños et al. (63) 2016 EgocentricFood Generic 5,038 (9)
Taken by a wearable egocentric vision 

camera

Wu et al. (64) 2016 Food500 Generic 148,408 (508) Crawled from web

Singla et al. (65) 2016 Food-11 Generic 16,643 (11) Other food datasets

Farinella et al. (66) 2016 UNCIT-FD1200 Generic 4,754 (1,200) Acquired using smartphone

Jaclyn Rich et al. (20) 2016 Instagram 800 k Generic 808,964 (43) Social media

Liang et al. (67) 2017 ECUSTFD Generic 2,978 (19) Acquired using smartphone

Mezgec et al. (24) 2017 NutriNet Generic 225,953 (520) Downloaded from web

Güngör et al. (11) 2017 Turkish-Foods-15 Turkish Dishes 7,500 (15) Collected from other datasets

Pandey et al. (68) 2017 Indian Food Database Indian Foods 5,000 (50) Downloaded from web

Termritthikun et al. (69) 2017 THFood-50 Thai Foods 700/50 Downloaded from web

Ciocca et al. (70) 2017 FOOD524DB Generic 247,636 (524) Existing food database

Hou et al. (71) 2017 VegFru Fruit and VEG 160,731 (292) Collected from search engine

Waltner et al. (72) 2017 FruitVeg-81 Fruit and VEG 15,630 (81) Collected using mobile phone

(Continued)
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and quantization to improve the feasibility of using these advanced 
models in practical, real-time settings.

Applications like FoodLog and Snap-n-Eat adopt simpler, yet 
effective, block-wise analysis and saliency-based sampling for 
segmenting food items. Some, such as GoCarb and FoodLog, are 
optimized for the specific characteristics of food images, enhancing 
accuracy, while others like YOLOv2 in Food Tracker and the RPN in 
DeepFood use more general object detection frameworks. Interactive 
methods in goFOOD™ offer a balance between automation and user 
input, whereas fully automated approaches like NU-InNet and mobile 
food record (mFR) prioritize efficiency, especially in mobile contexts. 
Fine-grained segmentation in Im2Calories and DeepFood focuses on 
individual food items, while coarser methods like those in Snap-n-Eat 
are faster and suitable for broader region identification. Its 
mentionable Building on the foundation of the GoCARB system, the 
team introduced goFOOD™ (29). For semi-automatic segmentation, 
they continued utilizing region growing and merging algorithms. In 
addition, they developed a fully automated food segmentation method 
using Mask R-CNN (30). The recognition module was upgraded with 
an enhanced Inception V3 model, enabling more effective hierarchical 
food recognition. While GoCARB was designed primarily for 
carbohydrate calculation, goFOOD™ expands its functionality to 
estimate the calories and nutritional content of entire meals.

Recent advancements in image segmentation have introduced 
powerful methods like the Segment Anything Model (SAM) (31), 
which has gained significant attention for its versatility and accuracy. 
SAM, developed by Meta AI, is designed to handle a wide range of 
segmentation tasks with minimal fine-tuning, making it particularly 

useful for applications requiring high adaptability to diverse data types. 
Unlike traditional segmentation models that often require extensive 
training on specific datasets, SAM leverages prompt engineering to 
perform zero-shot segmentation across various domains, including 
medical imaging, object detection, and food image analysis. Its ability 
to generalize well across different tasks has set a new benchmark in 
segmentation accuracy and efficiency, outperforming earlier models in 
terms of both speed and precision.

By employing these segmentation techniques, food recognition 
applications can enhance their ability to provide accurate dietary 
assessments, offering users more reliable insights into their food intake. 
As the field continues to evolve, it is expected that further advancements 
in segmentation algorithms, particularly those powered by deep 
learning, will continue to improve the precision and usability of dietary 
assessment tools.

3.3 Image classification

Food image classification is a critical step in many food assessment 
applications, where the goal is to accurately identify and categorize food 
items from images. This process typically involves two main 
components: feature extraction and classification. Feature extraction 
involves identifying and quantifying the relevant attributes of an image, 
such as color, texture, and shape, which can then be used to distinguish 
different types of food. Classification refers to the process of assigning 
a label to the image based on these extracted features, determining the 
specific food item or category.

Authors Year Dataset Food Category Images/Class Image Source

Muresan et al. (22) 2018 Fruits 360 Dataset Fruit Dataset 71,125 (103) Camera

Qing Yu et al. (15) 2018 FLD-469 Japanese Foods 209,700 (469) Smart Phone camera

Ming et al. (38) 2018 Singapore Hawker Dataset Chinese, Western, Indian, 

Malay food, snacks, fruits, 

desserts and beverage etc.

249 Apart from ImageNet Dataset and 

Google image search.

Donadello et al. (73) 2019 FfoCat Mediterranean 58,962 (156) Downloaded from web

Kaur et al. (21) 2019 FoodX-251 Generic 158,000 (251) Collected from web

Gao et al. (14) 2019 SUEC Food Japanese Foods 31,395 (256) Acquired from other datasets

Aguilar et al. (48) 2019 MAFood-121 Spanish Foods 21,175 Google search engine

Ege et al. (13) 2019 UECFoodPix Japanese Foods 10,000 (100) Acquired from other datasets

Wang et al. (74) 2019 Mixed dishes Chinese 12,105 (216) Captured by authors

Ghalib et al. (48) 2020 Pakistani Food Dataset Pakistani Foods 4,928 (100) Crawled from web

Aslan et al. (75) 2020 Food50Seg Japanese 5,000 (50) Acquired from other datasets

Konstantakopoulos et al. 

(76)

2021 MedGRFood Mediterranean 51,840 (160) 5,000 

(190)

Controlled environment and 

downloaded from web

Wu et al. (77) 2021 FoodSeg103 FoodSeg154 Generic 7,118 (730) 9,490 

(730)

Acquired from other datasets

Okamoto et al. (12) 2021 UECFoodPix Complete Japanese Foods 10,000 (102) Acquired from other datasets

Mohanty et al. (27) 2022 MyFoodRepo-273 Swiss Foods 24,119 (273) Crawled from web

Romero-Tapiador et al. 

(26)

2023 AI4FoodDB Diverse Not specified Self-collected data, smartphone images, 

and wearable device data

Chen et al. (25) 2024 CNFOOD-241 Chinese Food 191,811 (241) Gathered from web

TABLE 2 (Continued)
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TABLE 3 Segmentation strategies employed in food image processing applications.

App Segmentation Method Approach

PlateMate (39) Drawing Boxes: Workers (referred to 

as Turkers) draw bounding boxes 

around each distinct food item in a 

photograph.

This segmentation process is done manually. They used similarity comparison and voting mechanisms to 

ensure accuracy

FoodLog (37)  - Block-Wise Image Analysis—Block 

Classification

 - The image is divided into blocks of 16x16 pixels. These blocks are then analyzed using color and frequency 

features. SVM is used to classify food/ nonfood.

 - Each block is classified into one of six labels: five food categories (grains, vegetables, meat/fish/beans, fruit, 

dairy products) or “nonfood.” This classification is performed using an AdaBoost classifier

Snap-n-Eat (36)  - Saliency-Based Sampling

 - Region-Based Sampling

 - The system uses a saliency detection algorithm to identify the most visually prominent regions in the 

image, which are likely to contain food items. This saliency map helps in focusing on the food rather than 

the background.

 - Hierarchical segmentation is then performed to divide the image into multiple regions. This process 

involves grouping smaller regions into larger, meaningful segments based on features like color, texture, 

and size similarity. This hierarchical grouping allows for better discrimination and segmentation of 

individual food items.

Menu-Match (42) The paper does not explicitly detail a 

separate segmentation process. 

Instead, it focuses on a holistic 

assessment approach where food 

items are recognized based on a 

predefined restaurant-specific 

database.

This method minimizes the need for traditional segmentation by relying on the consistency of the food 

items across servings.

Im2Calories (7) The segmentation method used in the 

paper involves a CNN-based semantic 

image segmentation

The system leverages the “DeepLab” model, which uses a CNN to provide the unary potentials of a 

Conditional Random Field (CRF) and employs a fully connected graph to perform edge-sensitive label 

smoothing, like bilateral filtering. The model is first pre-trained on ImageNet and then fine-tuned on a 

custom food dataset (Food201-segmented). The method also includes a global image context, which is 

provided by a multi-label classifier to improve segmentation performance by reducing false positives.

FoodCam (43) GrubCut Segmentation: The system 

first segments the food items using 

GrubCut to refine the regions within 

the bounding boxes drawn by the 

user.

When a user draws bounding boxes around food items on the screen, GrabCut is applied to adjust these 

boxes, ensuring they accurately fit the food regions. The bounding box adjustment is performed only once 

after the initial bounding box is drawn to optimize the computational cost, as GrabCut is relatively high in 

computational demand.

GoCarb (44, 45)  1. Image Cropping:

 2. Color Space Conversion:

 3. Filtering:

 4. Region Growing:

 5. Background and Plate 

Segmentation:

Accuracy: The segmentation method 

achieved an accuracy of 88.5% when 

tested on manually annotated food 

images.

 1. The images are cropped around the detected elliptical plate.

 2. The cropped images are converted to the CIELAB color space, which is perceptually uniform.

 3. Pyramidal mean-shift filtering is applied to smooth fine-grain textures while preserving dominant color 

edges. This makes pixels of the same food item have similar colors, distinguishable from others.

 4. A region growing algorithm is used to merge pixels of similar colors into segments, producing initial 

segmentation. Small regions are then merged with their closest neighbors based on color similarity.

 5. Segments that belong to the background or plate are identified and discarded based on their location 

relative to the detected ellipse.

NU-InNet (46) Segmentation with Convolutional 

Neural Networks (CNNs)

Although segmentation is not a primary focus, the paper mentions using CNNs to improve food 

identification by separating the food from the background. This is briefly referenced in relation to 

enhancing the effectiveness of food recognition, but the paper does not provide a detailed segmentation 

methodology. Instead, the focus is on image recognition without extensive preprocessing or segmentation 

to maintain efficiency on mobile devices.

DietLens (38) Nor specified DietLens uses a novel photo-based portion selection method where users select from pre-compiled 

reference images showing different portion sizes of the same food type. These reference photos are linked 

with nutritional information, such as calorie content. This method, which does not require prior knowledge 

of portion sizes, acts as a form of segmentation, helping users to visually compare and select the portion 

size that matches their actual meal.

(Continued)
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Traditional machine learning approaches to food image 
classification rely on manually engineered features and classical 
classifiers. In these methods, the feature extraction process involves 
using techniques such as edge detection, color histograms, and texture 
analysis to represent the image in a feature space. Once the features 
are extracted, classifiers like Support Vector Machines (SVM), 
k-Nearest Neighbors (k-NN), and Random Forests are employed to 
categorize the food items. These approaches require careful selection 
and design of features, which can be a time-consuming process, and 
often struggle with the variability and complexity of food images. The 
performance of traditional methods is also heavily dependent on the 
quality and relevance of the extracted features.

In contrast, deep learning approaches have revolutionized food 
image classification by automating the feature extraction process 
using convolutional neural networks (CNNs). CNNs can learn 
hierarchical features directly from the raw pixel data, capturing 
intricate patterns and relationships within the image that are often 
difficult to detect with traditional methods. This ability to learn from 
data has led to significant improvements in classification accuracy, 
particularly for complex and diverse food items. Deep learning 
models, such as those based on CNN architectures like AlexNet, 
ResNet, and Inception, are capable of handling large-scale datasets 
and can generalize well to new, unseen food items. These models have 
become the standard in food image classification, outperforming 
traditional approaches in both accuracy and scalability.

Table  4 highlights how food assessment applications employ 
diverse classification methods, from traditional machine learning to 
advanced deep learning, each tailored to specific tasks. PlateMate 
utilizes a manual, user-driven approach where food items are 
described and matched to a database, relying on crowdsourced voting 
to refine classification accuracy. This method, while interactive, is 
heavily dependent on user input, which may limit scalability 
and consistency.

In contrast, FoodLog and Snap-n-Eat employ more automated 
methods, using global image features and support vector machines 
(SVM) for classification. FoodLog combines block-wise analysis with 
global features like color histograms and Bag of Features (BoF), 
whereas Snap-n-Eat focuses on texture and shape information using 
HOG and SIFT descriptors, further enhanced by Fisher Vector 
encoding. These methods are more efficient but may struggle with 
complex food images where handcrafted features are insufficient to 
capture the necessary detail.

Deep learning approaches have significantly advanced the field of 
food image classification. For example, Im2Calories uses a CNN-based 
multi-label classifier, fine-tuned on large food datasets, to handle 
multiple food items in a single image. This method exemplifies the 
power of deep learning in capturing intricate patterns within food 
images, allowing for more accurate and scalable classification.

NU-InNet and Food Tracker further illustrate the effectiveness of 
deep learning, with architectures specifically optimized for mobile 
devices. NU-InNet, modifies the inception modules from GoogLeNet 
to balance processing time with accuracy, while Food Tracker uses a 
deep convolutional neural network (DCNN) based on MobileNet and 
YOLOv2, achieving impressive performance with minimal 
computational cost.

DietLens and MyDietCam leverage transfer learning, using 
pre-trained models like ResNet-50 and DenseNet201 to extract 
features, which are then classified using either traditional SVMs or 
innovative methods like ARCIKELM for adaptive learning. These 
approaches demonstrate how deep learning models, pre-trained on 
extensive datasets like ImageNet, can be  adapted to specific food 
classification tasks with high accuracy.

Finally, applications like goFOOD™ and DeepFood highlight the 
utility of hierarchical classification and CNNs in handling fine-grained 
food categories. goFOOD™, employs a hierarchical classification 
scheme using an Inception V3 model to recognize food items at 

App Segmentation Method Approach

Food Tracker (47) YOLOv2 Strategy: The paper uses the 

YOLOv2 framework for food 

detection, which involves dividing the 

input image into a grid and predicting 

bounding boxes for each grid cell.

K-means clustering box. The bounding boxes contain the predicted class label and coordinates, which 

localize the food items within the image. Although not explicitly termed as “segmentation,” this process 

effectively segments the food items from the background by generating bounding boxes around them.

MyDietCam (48) Not specified As it appears on the Figure 1 (48) Bonding Box

goFOOD™ (29)  - Automatic Segmentation, Mask 

R-CNN framework used for 

automatic food segmentation.

 - Semi-Automatic Segmentation

 - Instance segmentation, which identifies the location and boundaries of food items within an image. Mask 

R-CNN is used for segmentation due to the cost and impracticality of creating a large, instance-segmented 

training dataset for many food categories.

 - If the automatic segmentation is unsatisfactory, users can manually indicate each food item on the image. 

The system then generates a new segmentation map using traditional region growing and merging 

algorithms, with user input serving as the seed points.

DeepFood (49) Region Proposal Network (RPN) The segmentation is performed by generating multiple regions of interest (RoIs) using the Region Proposal 

Network (RPN) derived from the Faster R-CNN model. These RoIs help to separate the food items from the 

background, improving the detection model’s efficiency by isolating the relevant food objects.

mobile food record 

(mFR) (50)

 - Class-Agnostic Method

 - Super Pixel-Based Segmentation

 - This method uses a pair of eating scene images to identify salient missing objects without prior 

information about the food class.

 - Efficient super pixel-based segmentation methods are developed, with some approaches utilizing weak 

supervision for improved food image segmentation.

TABLE 3 (Continued)
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TABLE 4 Classification strategies employed in food image processing applications.

App Classification Method Aproach

PlateMate (39) Identify:

 1. Describing Items

 2. Matching Foods

Users describe each segmented food item in their own words, which are then matched to a database of foods. 

Then, they match the described items to entries in a commercial nutrition database. The classification is refined 

by additional voting and agreement detection among multiple users.

FoodLog (37)  - Global Image Features

 - AdaBoost for Food Category 

Classification

 - In addition to block-wise analysis, the entire image is analyzed using global features such as color, Bag of 

Features (BoF) from local features (like SIFT), and circle features (to detect round objects like plates).

 - The image’s global feature vector is fed into an AdaBoost classifier that determines the class (or “Serving 

Value”—SV) of each food category present in the image.

Snap-n-Eat (36)  - Feature Extraction

 - Fisher Vector Encoding

 - Support Vector Machine (SVM) 

Classifier

 - Low-level features such as (HOG) and (SIFT) are extracted from the segmented regions. These features 

capture the texture and shape information of the food items.

 - The extracted features are encoded using the Fisher Vector method, which augments the traditional Bag of 

Visual Words (BoVW) by encoding higher-order statistics. This improves representation and 

classification accuracy.

 - A linear SVM is then used to classify the segmented regions into different food categories. The system is 

trained on a dataset specifically collected for this purpose, consisting of 2,000 images across 15 food categories.

Menu-Match (42)  - Bag of Visual Words Approach 

(Color, Histogram of Oriented 

Gradients (HOG), (SIFT), Local 

Binary Patterns (LBP), MR8 

Filter Bank)

 - Support Vector Machine (SVM)

These features are encoded using Locality-Constrained Linear Encoding (LLC) and pooled using a rotation-

invariant pooling scheme across multiple scales to achieve robust feature representation. The pooled features 

are then used for classification through (SVM), which assigns scores to different food items based on the 

trained model.

Im2Calories (7) Multi-label classifier based on a 

CNN (GoogLeNet). The model is 

pre-trained on the ImageNet dataset 

and then fine-tuned on various food 

datasets such as Food101 and a 

custom Restaurant dataset.

The classification framework is tailored to handle multiple food items on a plate, allowing for the prediction of 

the presence of several food items in an image. This multi-label classification system is crucial for identifying 

different components of a meal, which are then used for further processing, such as segmentation and volume 

estimation.

FoodCam (43)  - Bag-of-Features (BoF) and Color 

Histograms with χ2 Kernel 

Feature Maps using Linear SVM.

 - HOG Patch Descriptor and Color 

Patch Descriptor with Fisher 

Vector Representation.

 - This method combines the standard bag-of-features (using dense-sampled SURF descriptors) and a 64-bin 

RGB color histogram divided into 3 × 3 blocks. The features are then classified using a linear Support Vector 

Machine (SVM) with a fast χ2 kernel based on kernel feature maps.

 - The second method uses Histogram of Oriented Gradients (HOG) patches and color patches, which are then 

encoded using Fisher Vectors. This method provides higher recognition accuracy with lower computational 

complexity, making it more suitable for mobile devices.

GoCarb (44, 45)  - Feature Extraction:

 - Classification using SVM:

Performance: The classification 

method achieved an accuracy of 

87–90% across different datasets 

and food classes.

 - Color Features: Histogram of the 1,024 most dominant colors, generated using hierarchical 

k-means clustering.

 - Texture Features: Histogram of the 256 values of the local binary pattern (LBP).

 - The combined color and texture feature vector (1,280 dimensions) is fed into a nonlinear support vector 

machine (SVM) with a radial basis function (RBF) kernel to assign the segment to one of nine predefined 

food classes.

NU-InNet (46) NU-InNet Architecture: The paper 

introduces two versions of a CNN-

based architecture called NU-InNet 

(Naresuan University Inception 

Network), designed for Thai food 

image recognition on smartphones.

NU-InNet 1.0: This architecture modifies the inception module from GoogLeNet by changing the 3×3 max-

pooling layer and 1×1 convolutional layer to 1×1 and 7×7 convolutional layers, respectively. It includes 16 

layers in total and is optimized for reducing processing time and model size while maintaining high accuracy.

NU-InNet 1.1: This version further modifies NU-InNet 1.0 by replacing 5×5 convolutional layers with two 3×3 

convolutional layers and 7×7 convolutional layers with three 3×3 convolutional layers. It includes 21 layers and 

aims to reduce processing time even further, while still offering high recognition accuracy.

DietLens (38) ResNet-50 Model The system employs the ResNet-50 deep learning model for food recognition. ResNet-50 consists of 50 

convolutional layers and is fine-tuned on a dataset specifically constructed for Singapore hawker food. The 

system classifies food items into one of 249 categories, covering a diverse range of foods including Chinese, 

Western, Indian, and Malay dishes.

Food Tracker (47) Deep Convolutional Neural 

Network (DCNN): The paper 

utilizes a DCNN model built upon 

MobileNet and adapted with the 

YOLOv2 detection framework.

The DCNN architecture is composed of 30 layers and 3.5 million parameters. It uses depth-wise separable 

convolution blocks to reduce computation costs and parameters, making it suitable for mobile applications. The 

model is trained to classify multiple food items simultaneously, achieving a mean average precision (mAP) of 

76.36% on the UECFood100 dataset and 75.05% on the UECFood256 dataset.

(Continued)
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different levels of granularity, from broad categories to specific dishes. 
DeepFood utilizes the VGG-16 model, which combines region-based 
feature extraction with bounding box regression, ensuring precise 
classification even in complex food images.

One of the most recent classification approaches for food 
recognition involves the use of Vision Transformers (ViTs) (32) and 
Self-Supervised Learning (SSL) techniques (33). Vision 
Transformers, originally developed for natural language processing 
tasks (32), have been adapted for image classification and are gaining 
popularity due to their ability to capture long-range dependencies 
and global image context more effectively than traditional 
convolutional neural networks (CNNs). Self-Supervised Learning, 
on the other hand, leverages large amounts of unlabeled data to 
pre-train models, which are then fine-tuned on specific food datasets. 
This approach reduces the reliance on labeled data, which is often 
scarce in food recognition tasks, and improves the generalization 
capabilities of the model across different food categories.

Overall, the trend in food image classification is moving towards 
deep learning-based methods, which offer superior accuracy, 
scalability, and the ability to handle complex and diverse food images 
with minimal manual intervention. These methods have set a new 
benchmark in the field, outperforming traditional machine learning 
approaches, especially in terms of efficiency and adaptability to 
new data.

3.4 Volume estimation

Image volume estimation is a critical aspect of food recognition 
systems, particularly in dietary assessment applications. Accurate 
volume estimation allows these systems to determine the portion 
sizes of food items, which is essential for calculating nutritional 
intake, including calories, macronutrients, and micronutrients. The 

challenge in estimating food volume from images lies in the inherent 
variability in food presentation, such as different shapes, sizes, and 
textures, as well as varying camera angles and lighting conditions.

Several methods have been developed to estimate food volume 
from images, ranging from traditional geometric approaches to 
advanced machine learning techniques. Geometric methods typically 
involve using reference objects (like a standard-sized plate or utensil) 
to scale the food item in the image, enabling volume calculations 
based on known shapes (e.g., spheres, cylinders). On the other hand, 
machine learning approaches often leverage deep learning models 
trained on large datasets of food images to estimate volume directly 
from pixel data.

Table  5 highlights the diversity of methods used for volume 
estimation in food recognition applications.

The volume estimation methods across these food assessment 
applications vary significantly in complexity and accuracy. PlateMate 
and FoodLog utilize crowd-sourced input and Bayesian 
personalization, respectively, which can improve accuracy but are 
dependent on user input and initial classification quality. Snap-n-Eat 
and DietLens use simpler techniques like pixel counting and reference 
images, respectively, making them user-friendly but potentially less 
precise. Menu-Match avoids direct volume estimation by relying on 
predefined data, which simplifies the process but limits its applicability 
to custom meals. Im2Calories and GoCarb employ advanced 3D 
reconstruction and pose estimation methods, providing high accuracy 
but requiring complex setups and multiple images. FoodCam relies on 
user input for volume estimation, which can be inconsistent. NU-InNet 
does not address volume estimation, focusing instead on food 
recognition accuracy. MyDietCam lacks specific details on its volume 
estimation method. goFOOD™ combines 3D reconstruction with 
gravity data for improved accuracy, though it requires additional 
hardware (sensor assisted volume estimation). DeepFood estimates 
nutritional content without specific volume estimation, assuming 

App Classification Method Aproach

MyDietCam (48)  - Transfer Learning: ResNet-50, 

DenseNet201 and Inception 

ResNet-V2

 - Adaptive Reduced Class 

Incremental Kernel Extreme 

Learning Machine (ARCIKELM)

 - Deep learning models pre-trained on ImageNet are used for feature extraction. The 3 methods used to 

determine the best architecture for food feature extraction.

 - This novel classifier is designed to handle class incremental and data incremental learning. It dynamically 

adjusts its architecture to reduce catastrophic forgetting and adapts to domain changes by adding new 

neurons as needed. It uses a kernel matrix for enhanced stability and generalization, unlike traditional ELM 

methods.

goFOOD™ (29) Hierarchical Classification, (CNNs), 

specifically an Inception V3 model, 

to recognize food items at different 

levels of granularity, from broad 

categories to specific dishes

goFOOD™ supports 319 pre-installed fine-grained food categories organized into a three-level hierarchical 

architecture. The model predicts food categories at three levels, and the final classification is based on a 

weighted inference of these predictions.

DeepFood (49) Deep Convolutional Neural 

Network (CNN): The classification 

of food items is conducted using a 

CNN, specifically the VGG-16 

model.

The extracted feature maps from the RoIs are classified into different food categories. The classification process 

also involves a bounding box regression module to enhance the accuracy of the detected food regions in the 

image. The VGG-16 model uses a 4,096-dimensional feature vector to classify food items into categories, and 

the softmax layer contains 100 units for 100 food categories.

mobile food record 

(mFR) (50)

 - Hierarchical Food Classification

 - Continual Learning

 - A two-step approach involving Convolutional Neural Networks (CNNs) is used to localize food items and 

then classify them hierarchically to reduce prediction errors, especially for visually similar foods.

 - This approach is designed to handle online learning scenarios with limited data and real-time constraints, 

ensuring the system adapts over time.

TABLE 4 (Continued)
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TABLE 5 Volume estimation strategies employed in 14 food image processing applications.

App Volume Estimation Method Approach

PlateMate (39) Aggregating Measurements Turkers estimate the portion size of each identified food item. They choose appropriate units (e.g., slices, 

cups) and provide a numerical estimate. The system uses these estimates to calculate nutritional content, 

with multiple Turkers providing input to reduce errors through averaging and outlier removal.

FoodLog (37)  - Food Balance Estimation

 - Bayesian Framework for 

Personalization

 - The system estimates the food balance by evaluating the proportion of each food category in the image. 

This is done by summing the SVs from the classified blocks and comparing them against a reference 

food pyramid model.

 - The system allows for user feedback to incrementally update and personalize the classification model 

using a Bayesian framework, which refines the estimation by incorporating user-specific dietary 

tendencies.

Snap-n-Eat (36)  - Pixel Counting:

 - Caloric and Nutritional Estimation:

 - The system estimates the portion size of each food item by counting the number of pixels in its 

corresponding segment. This simple approach provides a reasonably accurate estimate of the 

portion size.

 - Once the portion size is determined, the system calculates the caloric and nutritional content based on 

predefined caloric and nutrition densities for each food category.

Menu-Match (42) The paper proposes a method that 

circumvents the traditional need for 

direct volume estimation by leveraging 

the consistent serving sizes of restaurant 

meals.

The restaurant-specific database includes nutritional information for predefined items, volume 

estimation is inherently addressed by identifying the food item and referring to its known nutritional 

content in the database. This reduces the problem to identifying the correct food item and applying 

pre-recorded values, avoiding the complexities of estimating volume from an image.

Im2Calories (7) Predicting the depth of each pixel using 

a CNN architecture similar to the one 

described by Eigen and Fergus in 2014 

(78).

CNN is trained on the NYU v2 RGBD dataset (28) of indoor scenes and fine-tuned on a new 3D food 

dataset called GFood3D. Once the depth map is predicted, it is converted into a voxel representation by 

projecting each pixel into 3D space, considering the table surface detected using RANSAC. The final step 

involves calculating the volume of each food item by estimating the average height of points in each cell 

of the voxel grid.

FoodCam (43) Relies on user input After recognizing food items within the bounding boxes, the system allows users to estimate the rough 

volume of the food item using a slider on the screen. This interaction is part of the user-assisted 

approach to volume estimation, which complements the food recognition process.

GoCarb (44, 45)  1. Pose Estimation:

 2. Scale Extraction:

 3. D Reconstruction:

 4. Volume Calculation:

Accuracy: The volume estimation 

method achieved a mean absolute 

percentage error of 9.4%.

As input A pair of images from different viewing angles, both including a reference card.

 1. Speeded up robust features (SURF) are detected and matched between the two images. RANSAC 

model fitting is used to extract a candidate pose, optimized through iterative minimization.

 2. The reference card’s known dimensions are used to extract the scale of the scene.

 3. Polar rectification transforms the image pairs so that corresponding points lie on the same row, 

facilitating efficient point matching. The unprojection of correspondence yields a scaled 3D point 

cloud that defines the food surface.

 4. The food item’s volume is calculated by partitioning the surface according to its projection on the 

segmentation map and integrating the space between each subsurface and the plate surface.

NU-InNet (46) The paper does not explicitly discuss 

methods for volume estimation. The 

focus is primarily on the accuracy and 

efficiency of food recognition using 

CNNs on mobile devices.

Volume estimation would require additional steps not covered in this paper

DietLens (38) Photo-Based Volume Estimation The volume or portion size estimation in DietLens is handled through a reference-based approach, 

where users select the closest matching portion size from a set of reference images. This method is 

integrated with nutritional databases to provide the corresponding nutritional information based on the 

selected portion size. This photo-based estimation method eliminates the need for traditional volume 

estimation techniques and instead relies on visual comparison with pre-determined portion sizes.

Food Tracker (47) Not specified The application assumes that each detected food item represents one serving and retrieves nutrition 

information for that serving from the Nutritionix database. The paper indicates that future work will 

focus on mask generation for more accurate volume estimation, which suggests that this aspect is still 

under development.

MyDietCam (48) Not specified
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standard portion sizes. Finally, mobile food record (mFR) uses a 
combination of geometric models and deep learning for portion size 
estimation, offering a sophisticated approach but demanding 
significant computational resources. Overall, methods like Im2Calories 
and GoCarb are superior in terms of accuracy due to their advanced 
techniques, while applications like NU-InNet and MyDietCam fall 
short by not presenting specific volume estimation methods.

One of the recent advancements in volume estimation processes 
is FOODCAM 2022 (34), an imaging-based method specifically 
designed for food portion size estimation (FPSE). It employs a novel 
capturing device that delivers greater accuracy compared to traditional 
methods. The system integrates a stereo camera, PIR sensor, and 
infrared projector, enabling precise meal portion size estimation. 
FOODCAM was primarily designed for monitoring food intake and 
cooking activities in kitchen and dining environments.

Since the focus of FOODCAM 2022 is exclusively on portion size 
estimation, it was excluded from our discussion on food recognition 
applications. It’s important to note that FOODCAM 2022 is distinct 
from the FoodCam calorie-counting application developed in 2015, 
which was included in the tables. While both share the name 
“FoodCam,” the FOODCAM 2022 device is dedicated to volume 
estimation, whereas the FoodCam application developed in 2015 
focuses on calorie tracking.

Accurate volume estimation in most of these apps relies on user 
input for near-perfect estimation, which can be  prone to human 
measurement inaccuracies. A parallel challenge arises in automated 
food volume estimation, where overfitting becomes a critical issue, 
especially when models are trained on narrow or non-representative 
datasets that fail to capture the full diversity of real-world conditions. 
For instance, many existing volume estimation methods inadvertently 
memorize dataset-specific artifacts (e.g., background noise, lighting 
conditions, or food presentation styles) rather than learning 
generalizable features. This over-reliance on training data 

idiosyncrasies results in poor performance when deployed in variable, 
uncontrolled environments, compromising their accuracy in 
practical applications.

4 Ethical and privacy concerns

The ethical implications of AI-driven dietary monitoring tools are 
significant, particularly in the areas of data privacy, potential biases, and 
transparency. Sensitive dietary and health data collected by these 
applications must comply with stringent data protection frameworks, 
such as the General Data Protection Regulation (GDPR), which 
emphasize anonymization, secure storage, and encryption to mitigate 
the risks of misuse. Furthermore, biases stemming from imbalanced 
datasets, which may inadequately represent diverse cultural and 
demographic contexts, pose challenges to model accuracy and fairness. 
To address this, the diversification of datasets and the implementation 
of regular fairness audits are essential for achieving equitable outcomes. 
Transparency and accountability also play a vital role; explainable AI 
(XAI) techniques can elucidate model decision-making processes, 
fostering user trust and confidence in technology. As highlighted in 
recent literature (35), adopting comprehensive ethical guidelines and 
promoting collaboration among stakeholders are critical steps in 
addressing risks. These efforts, combined with robust audit mechanisms 
and user education programs, ensure the responsible development and 
deployment of AI-driven dietary monitoring tools.

5 App store availability, user ratings, 
and performance metrics

To gauge real-world user adoption and satisfaction, we conducted 
a search for these applications in major consumer app stores (Google 

App Volume Estimation Method Approach

goFOOD™ (29) 3D reconstruction-based approach, 

Sensor-Assisted

When using different-view images from a single-camera smartphone, a reference object of known size is 

required. The method builds on previous work from the GoCARB system but improves accuracy by 

integrating gravity data from the smartphone’s Inertial Measurement Unit (IMU). This data helps 

determine the orientation of the table and simplifies camera pose estimation, leading to more stable and 

accurate volume reconstruction.

DeepFood (49) The paper focuses on calculating the 

nutritional contents, including calories, 

fats, carbohydrates, and proteins, from 

each meal image. However, specific 

volume estimation methods for 

determining the physical volume of food 

items are not discussed in detail. The 

system estimates nutrition based on 

standard portion sizes, assuming a 

default weight (e.g., 400 grams) for each 

detected food item.

Nutritional analysis is then performed by mapping the detected food to a reference table of nutrition 

facts using data from the USDA National Nutrient Database (NNDB). So, volume estimation is not 

explicitly addressed.

mobile food record 

(mFR) (50)

 - Geometric Models

 - Deep Learning

 - Single-view image analysis is employed to recover 3D parameters of food objects in the scene, aiding in 

portion size estimation.

 - Deep learning techniques are used to map food images directly to food energy estimates, enhancing 

the accuracy of portion size estimation.

TABLE 5 (Continued)
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Play and Apple’s App Store). However, we found that most of the listed 
calorie-counting solutions are academic prototypes or research-
oriented tools rather than commercial products. Consequently, they 
are not publicly available in mainstream app stores, and official user 
ratings are unavailable. Some studies [e.g., Snap-n-Eat (36), FoodLog 
(37)] do discuss small-scale pilot tests or user acceptance evaluations 
within controlled research settings, but these do not constitute 
widespread consumer feedback akin to star ratings or download 
counts. Where a limited pilot or spin-off was mentioned (e.g., 
DietLens (38)), we could not locate any corresponding listing under 
the same app name. These findings highlight the research-focused 
nature of most solutions, emphasizing the need for future work on 
broader deployment, real-world user engagement, and the potential 
transition to public app store availability.

Our primary emphasis, however, is on the computer science 
methodologies underpinning these applications. By examining their 
underlying algorithms, we can better determine how effectively each 
solution tackles existing challenges, such as accurate portion 
estimation and real-time processing. Focusing on these 
methodological aspects allows us to identify limitations and highlight 
advantages relevant to the future design and deployment of calorie-
counting applications.

Table 6 summarizes the reported performance metrics for each 
calorie-counting or food recognition application, as documented in 
their respective publications. Whenever possible, we  include 
classification accuracy, mean error rates, or other relevant statistics. 
Despite differences in datasets and validation protocols, the reported 
accuracy and error rates provide insight into how well each application 
addresses calorie estimation or food recognition. For instance, 

PlateMate overestimates caloric content by +7.4%, which is close to the 
+5.5% error reported for a trained dietitian in the same study (39). 
Classification-based approaches generally report accuracy metrics in 
the 70–90% range, but they are measured on diverse datasets (e.g., 
Food-101, UEC-Food256), making direct comparisons challenging. 
Some solutions, such as Menu-Match and DeepFood, achieve relatively 
high Top5 accuracies of over 90% on specific datasets. Others, like 
FoodCam, show a lower Top1 accuracy (around 50%), yet still improve 
markedly with Top5 predictions (74.4%). Meanwhile, MyDietCam 
notes strong results of over 80% across multiple datasets, but 100% 
accuracy in certain controlled conditions (PFID dataset). Overall, 
although performance varies by dataset and study design, these figures 
highlight the progress in automated food recognition and the ongoing 
need to refine algorithms for real-world calorie counting applications.

6 Key findings and remaining 
challenges

This review sheds light on key aspects of image-based food 
monitoring systems, focusing on segmentation, classification, and 
volume estimation techniques used in calorie-counting applications. 
It highlights recent advancements in deep learning and image 
processing that have significantly improved the accuracy of food 
recognition and dietary intake estimation. However, challenges such 
as standardization, validation across diverse food types, and privacy 
concerns remain significant hurdles.

As technology continues to advance, the integration of machine 
learning and computer vision techniques is expected to further 
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TABLE 6 Reported performance metrics in 14 food image processing applications.

App Performance metric

PlateMate (39) Average caloric estimation error: +7.4% (overestimation)

FoodLog (37) Food-image detection accuracy: 89–92%

Snap-n-Eat (36) Classification accuracy: 85%

Menu-Match (42) Classification accuracy: ChineseFoodNet = 77.4%(Top1) and 96.2% (Top5)

Im2Calories (7)
Classification accuracy: Food-101 dataset: 79% (Top1)

Segmentation accuracy: Food-101 dataset 71–76%

FoodCam (10, 43) Classification accuracy: UEC-Food256 dataset: 50.1%(Top1) and 74.4% (Top5)

GoCarb (44, 45)
Classification accuracy: 87–90% (various datasets and food classes).

Volume estimation: (mAP) of 9.4%.

NU-InNet (46) Classification accuracy: 10 THFOOD-50 = 69.8%

DietLens (38) Average recognition accuracy: 75.2% (Top1) and 93.1% (Top5)

Food Tracker (47) Classification accuracy: (mAP) of 76.36% on the UECFood100 dataset and 75.05% on the UECFood256 dataset.

MyDietCam (48)

Classification accuracy:

Food-101 = 87.3%

UECFOOD-100 = 88.7%

UECFOOD-256 = 76.51%

PFID = 100%

Pakistani Food = 74.8%

goFOOD™ (29) Classification accuracy: 65.8%(Top1) and 82.4%(Top3)

DeepFood (49) Classification accuracy: 71.7% (Top1) and 93.1% (Top5) # at 500 iterations

mobile food record (mFR) (50) Mean error rate: 11.22%.
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enhance the accuracy and reliability of food volume estimation in 
dietary assessment applications. These advancements will contribute 
to the development of more sophisticated tools for personalized 
nutrition and health management, providing users with detailed 
insights into their dietary habits and improving overall outcomes. 
Despite this progress, the review identifies that many applications still 
rely on user input and suffer from inconsistencies in image quality, 
highlighting the need for continued innovation.

To address these challenges, this review presents the following 
recommendations aimed at enhancing digital remote healthcare for 
patients with diabetes and weight-related chronic diseases:

 • Develop robust, standardized algorithms capable of handling a 
wide range of food types and presentation styles.

 • Eenhancing volume estimation techniques to minimize reliance 
on user input and reduce the need for specialized hardware will 
further enhance the accessibility and accuracy of next-generation 
calorie-counting systems.

 • Prioritize secure, privacy-preserving methods for managing 
sensitive dietary and health-related data.

 • Collaborate with healthcare professionals to ensure tools provide 
effective support for patient education, health behavior 
monitoring, and personalized dietary recommendations.

 • Collaborate with patients living with T2D to ensure feasibility, 
acceptability, ease of navigation, and appropriateness of tools and 
supportive material, including education and support.

6.1 Future opportunities in emerging 
technologies

As AI-based architecture continues to evolve, new opportunities 
arise to enhance the accuracy, scalability, and usability of calorie-
counting applications while maintaining user-friendliness. For instance, 
3D sensing technologies, such as LiDAR sensors integrated into Apple 
smartphones, can be  leveraged to improve the precision of volume 
estimation modules. These sensors provide high-resolution depth 
information, enabling more reliable food volume assessments. 
Additionally, advanced computational approaches for 3D 
reconstruction, for instance, monocular depth estimation (40), offer 
promising alternatives by generating detailed three-dimensional 
representations from single or multiple images. Incorporating such 
techniques can enhance model robustness across diverse food types and 
real-world conditions, further improving the reliability of dietary 
assessment tools.

To address the generalizability issues affecting most current calorie-
counting applications, federated learning (41) can be explored as a 
promising approach. By enabling image classification and volume 
estimation models to be trained collaboratively across multiple user 
devices while keeping data local, federated learning enhances the 
robustness of the global model. This approach not only improves 
generalization across diverse food types and real-world conditions but 
also allows for personalization without compromising user privacy. 
Additionally, it reduces the risk of data centralization vulnerabilities 
while leveraging distributed computing to adapt models to individual 
dietary habits and variations in food presentation.

The challenges and limitations identified in this research, along 
with the proposed future directions, pave the way for the development 
of a new generation of calorie-counting applications. These 

next-generation applications can leverage cutting-edge techniques to 
address key issues such as real-time performance, accuracy across 
diverse dietary scenarios, and user-specific personalization. By 
overcoming these limitations, future calorie-counting solutions will 
become more reliable, user-friendly, and seamlessly integrated into 
clinical settings, ultimately supporting dietary management and 
chronic disease prevention.

7 Conclusion

In conclusion, this review underscores the critical role of advanced 
computer science techniques in enhancing the accuracy and 
effectiveness of calorie-counting applications. By evaluating the 
methodologies employed in existing systems, we have identified both 
their strengths and areas in need of improvement. This work 
represents a significant step forward in the field, contributing to the 
ongoing evolution of digital health tools aimed at better managing 
dietary intake. The insights gained from this review will guide the 
development of a new, state-of-the-art calorie-counting app designed 
to address the existing challenges and provide more reliable, 
personalized dietary assessments to support patients living with T2D 
and their clinicians in the international fight against T2D.
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