
Frontiers in Nutrition 01 frontiersin.org

L-carnitine: new perspectives on 
the management of preterm 
infants
Mo Sisi 1, Lin Yong 1, Qiao Lixing 1, Guo Changsheng 2, Yao Jin 2,3, 
Zhou Hang 2, Cao Xing 2 and Liu Heng 2*
1 Department of Pediatrics, Zhongda Hospital, Southeast University, Nanjing, China, 2 Department of 
Pediatrics, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, 
Nanjing, China, 3 Department of Respiratory, Children’s Hospital of Nanjing Medical University, 
Nanjing, China

L-carnitine, a quaternary ammonium compound derived from amino acids, 
serves an essential role in fatty acid metabolism. The functions of L-carnitine 
include assisting long-chain fatty acyl-CoA across the mitochondrial membrane 
to promote mitochondrial β-oxidation, reducing oxidative stress damage, and 
maintaining cellular energy homeostasis. Therefore, postnatal L-carnitine deficiency 
may lead to impaired fatty acid oxidation, resulting in clinical manifestations of 
hypoglycemia, hypothermia, acidosis and infection. However, there is still no clear 
consensus on the need for prophylactic use of L-carnitine in the treatment of 
preterm infants. This review synthesizes the theoretical foundations and clinical 
evidence for L-carnitine in preterm infant management, revealing that L-carnitine 
exerts demonstrable effects on promoting neurodevelopment and preventing 
neonatal complications. Furthermore, it explores the potential value and current 
controversies surrounding its prophylactic application.
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1 Introduction

As a conditionally essential nutrient, L-carnitine has an important role in human fat 
metabolism. Moreover, L-carnitine can synthesize acetyl-L-carnitine in the body, which has 
neuro-trophic and neuro-protective effects (1). Due to its good tolerance and few side effects, 
L-carnitine has been approved as a dietary supplement in formula milk or as a drug in some 
countries (2).

Premature infants are prone to L-carnitine deficiency (3, 4). This is related to factors such 
as insufficient gestation time, which prevents the placenta from accumulating and storing 
sufficient amounts of L-carnitine, lower oral food intake after birth, and a high metabolic rate 
in newborns (5). L-carnitine supplementation by intravenous infusion can improve the level 
of L-carnitine in premature infants who cannot be fully fed by mouth (6, 7). By adjusting lipid 
energy use efficiency and the metabolite profile, the tolerance of children to unstable factors 
is improved. However, whether L-carnitine supplementation is necessary for premature infants 
remains controversial. This review synthesizes current knowledge with regard to biological 
roles, metabolic profiles of L-carnitine in preterm infants, effects of supplementation on 
complications, and existing controversies.
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2 Biological function of L-carnitine

L-carnitine works together with carnitine palmitoyl transferase 
(CPT) and carnitine-acylcarnitine translocase (CACT) on the 
mitochondrial membrane to form an efficient transport system (8). In 
this transport system, CPT and CACT can regulate the transport 
mode according to the changes of metabolites in mitochondria, 
playing an important role in the transport and metabolism of fat, 
carbohydrates, proteins, and toxic substances produced by abnormal 
metabolism (Figure 1) (9, 10).

2.1 Fatty acid metabolism

L-carnitine promotes fatty acid oxidation for energy. The function 
of fat oxidation occurs mainly in mitochondria to ultimately release 
energy for the body to use. During this process, fat must traverse the 
mitochondrial membrane. However, long-chain fatty acids are 
incapable of permeating this barrier and gaining entry into the 
mitochondria for β-oxidation. Firstly, long-chain fatty acids are 
converted to long-chain acyl-CoA catalyzed by acyl-CoA synthetases 
in the endoplasmic reticulum and outer mitochondrial membrane. 
Subsequently, CPT1 catalyzes the association of long-chain fatty 
acyl-CoA with L-carnitine to generate acylcarnitine. Following this, 
acylcarnitine is transferred to the mitochondrial matrix by CACT, 
which is located in the inner mitochondrial membrane. Finally, in the 
mitochondrial matrix, acylcarnitine is resolved by CPT2 to acyl-CoA 
and L-carnitine. Fatty acyl-CoA undergoes β-oxidation within 
mitochondria to produce energy, and L-carnitine is transported to the 
cytoplasm again by CACT (As show in Figure 1). Fat emulsion, which 
contains medium- and long-chain fatty acids, plays an important role 
in parenteral nutrition in premature infants (11). Studies have shown 
that supplementation of L-carnitine in parenteral nutrition can 
significantly improve fatty acid metabolism in neonates (12, 13).

2.2 Improving metabolic flexibility

Mitochondria not only represent a site for fat β-oxidation but are 
also a reaction site for metabolic processes such as protein synthesis/
breakdown (14). The relatively high concentration of free CoA in 
mitochondria help to maintain the metabolic diversity of substances. 
CoA participates in the synthesis of a large number of essential 
substances; for example, synthesis of the neuromuscular messenger 
and neurotransmitter acetylcholine (15, 16). L-carnitine is a carrier of 
active acetyl and acyl groups (17). In partnership with CPT and 
CACT, L-carnitine forms an effective transport system for acetyl 
groups or acyl groups. L-carnitine plays a key role in regulating 
acyl-CoA and acetyl-CoA and in maintaining free CoA levels within 
mitochondria, which is essential for maintaining metabolic flexibility 
(Figure 1) (18).

2.3 Detoxification of potentially toxic 
metabolites

A critical function of L-carnitine involves the detoxification of 
potentially toxic metabolites generated during intermediary 
metabolism, particularly those associated with impaired fatty acid 
β-oxidation. L-carnitine accomplishes this by binding to acyl residues 
produced not only from fatty acids but also from amino acid 
metabolism, forming water-soluble acylcarnitines that facilitate their 
excretion from cells and ultimately the body (Figure 1) (19, 20). This 
detoxification mechanism is especially vital in disorders of 
mitochondrial fatty acid oxidation (FAO). The relevance of this 
detoxification pathway extends significantly to the vulnerable preterm 
infant population. Preterm infants frequently encounter metabolic 
stressors such as hypoxia and infection. These stressors can disrupt 
normal metabolic flux, potentially leading to the accumulation of 
toxic intermediates within cells and altering cellular metabolic 
homeostasis (21). Compounding this vulnerability, the immature 
gastrointestinal tract of preterm infants faces specific risks. Animal 
models mimicking preterm physiology have demonstrated that 
exposure of the intestinal mucosa to certain fatty acid derivatives can 
induce mucosal damage, including necrosis (22). Mechanistically, 
because acylcarnitines are direct metabolites derived from fatty acid 
and organic acid catabolism, disruptions in systemic FAO under 
metabolic stress, such as during the introduction of enteral feeding in 
a compromised gut, could theoretically contribute to gut-specific 
toxicity. The accumulation of potentially toxic acyl species or 
imbalances in acylcarnitine profiles within the immature intestine 
might play a role in such injury pathways.

2.4 Stabilization of cell membranes

L-carnitine is also essential in maintaining membrane stability 
and the function of plasma, mitochondria, and other organelles, 
probably through its effects on the acetylation of membrane 
phospholipids. The amphiphilicity of L-carnitine also permits 
interaction with surface charges on the cell membrane and may play 
a role in membrane stabilization. The charged trimethylamine and 
carboxyl groups on L-carnitine facilitate interaction with the 
corresponding poles on membrane phospholipids, glycolipids, and 
proteins (23, 24).

2.5 Control of ketogenesis

L-carnitine plays an indispensable role in this ketogenic pathway. 
Ketogenesis occurs predominantly within the hepatic mitochondria, 
with carnitine palmitoyl transferase I (CPT-1) acting as the critical 
rate-limiting enzyme for mitochondrial fatty acid import (Figure 1). 
Fatty acids that enter the mitochondria via CPT-1 are broken down 
into acetyl-CoA by β-oxidation. Two acetyl-CoA molecules are 
converted to acetoacetic-CoA, then to hydroxy methylglutaryl 
coenzyme A (HMG-CoA), and subsequently to acetoacetate. Once 
acetoacetate reaches extrahepatic tissues, it is converted back to 
acetyl-CoA, which can enter the citric acid cycle to produce ATP. It is 
essential for the initial transport of activated long-chain fatty acids 
across the mitochondrial membrane via the CPT system, thus 
governing the substrate flux available for both β-oxidation and 

Abbreviations: CoA, Coenzyme A; CPT, Carnitine palmitoyl transferase; CACT, 

Carnitine-acylcarnitine translocase; FAO, Fatty acid oxidation; HMG-CoA, Hydroxy 

methylglutaryl coenzyme A; PN, Parenteral nutrition; EUGR, Extrauterine growth 

restriction; HIE, Hypoxic–ischemic encephalopathy; SOD2, Superoxide 

dismutase-2; NEC, Necrotizing enterocolitis; RDS, Respiratory distress syndrome; 

RCT, Randomized controlled trials.

https://doi.org/10.3389/fnut.2025.1508441
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Sisi et al.� 10.3389/fnut.2025.1508441

Frontiers in Nutrition 03 frontiersin.org

subsequent ketogenesis. Consequently, the efficiency of ketone body 
production is critically dependent on adequate L-carnitine availability 
(Figure 2). L-carnitine deficiency severely impairs the mitochondrial 
import of long-chain acyl-CoAs, directly limiting the acetyl-CoA pool 
required for ketogenesis (3). L-carnitine facilitates ketogenesis by 
modulating key enzyme activities and gene expression. Specifically, it 
up-regulates CPT1 mRNA expression, thereby promoting 
mitochondrial fatty acid transport and enhancing β-oxidation activity 
(25, 26). Concurrently, the expression of HMG-CoA synthase—a 
pivotal ketogenic enzyme—may undergo analogous modulation, 
while HMG-CoA reductase activity (its downstream counterpart) is 
suppressed, thereby reducing fatty acid conversion to cholesterol. 
Furthermore, this process inhibits the expression of lipogenesis-
related genes, ultimately enhancing ketogenesis (27, 28).

The preterm brain exhibits extraordinarily high energy demands 
to fuel rapid growth and development, demands which can surpass 
the capacity of glucose supply alone. Under these circumstances, 
ketone bodies—especially β-hydroxybutyrate derived from FAO—
serve as vital alternative energy substrates (29, 30). Beyond mere fuel 
provision, ketone bodies actively support critical neurodevelopmental 
processes, including neural stem cell proliferation, differentiation, and 
functional maintenance. This dependency on keton is particularly 

crucial for the developing brain of preterm infants. Notably, neonatal 
ketogenesis possesses unique characteristics: it can be readily activated 
even in the non-fasting state, providing essential protective effects 
during the metabolically vulnerable perinatal period. These protective 
effects are thought to stem from maintaining cerebral energy 
homeostasis and mitigating metabolic stress (31). Given the pivotal 
role of L-carnitine in enabling ketogenesis and the heightened reliance 
of the preterm brain on ketone bodies, strategic L-carnitine 
supplementation represents a potential therapeutic approach. The goal 
would be to safely elevate and sustain ketone body levels in preterm 
infants, thereby optimizing cerebral energy metabolism while carefully 
managing potential metabolic risks (32).

3 Metabolic characteristics of 
L-carnitine in preterm infants

3.1 L-carnitine sources

There are three main sources of L-carnitine in newborns: 
endogenous synthesis, pre-natal storage, and post-natal exogenous 
supplementation. Carnitine synthesis requires gamma-butyl betaine 

FIGURE 1

Functional mechanisms of L-carnitine: ① Fatty acids are activated to fatty acyl-CoA, which is shuttled into the mitochondria facilitated by L-carnitine, 
CPT1, CPT2, and the CACT. Subsequently, fatty acyl-CoA undergoes β-oxidation to generate acetyl-CoA. This acetyl-CoA then enters the TCA cycle, 
yielding ATP for energy production; ② Within the mitochondria, L-carnitine facilitates the action of CACT and CAT to convert acetyl-CoA to 
acetylcarnitine. This process regulates the acetyl-CoA/CoA ratio, thereby modulating the metabolism of various substrates. The generated acetyl-L-
carnitine is transported to the cytoplasm to participate in other metabolic pathways; ③ Acyl-CoAs derived from the abnormal metabolism of ketone 
bodies, amino acids, and pyruvate, as well as from toxic organic acids, are conjugated to L-carnitine. Facilitated by CACT and CAT, these acyl groups 
are converted to acyl-carnitines, which are transported across the mitochondrial membrane and ultimately excreted renally. OMM: outer 
mitochondrial membrane; IMM: inner mitochondrial membrane; CPT1: carnitine palmitoyl transferase 1; CPT2: carnitine palmitoyl transferase 2; CACT: 
carnitine acylcarnitine translocase; CAT: carnitine transferase; TCA cycle: tricarboxylic acid cycle.
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hydroxylase, and premature infants have a limited capacity to 
synthesize L-carnitine themselves, having only 12–15% of the 
synthesis ability of adults (33–35). Therefore, newborns are more 
dependent on the latter two sources of L-carnitine (34).

3.2 L-carnitine levels in preterm infants

Due to the large transfer of maternal L-carnitine to the fetus in the 
third trimester and the immature mechanism of carnitine transport 
in premature infants, the blood level of l-carnitine in premature 
infants after 3 to 7 days is slightly higher than that in full-term infants 
(5). When monitoring the blood carnitine level in premature and term 
infants, it was found that the carnitine level gradually increased after 
birth, and the L-carnitine level could increase by one-third at 1 month 
after birth compared with that after birth. However, in premature 
infants, especially very premature infants requiring long-term 
parenteral nutrition, L-carnitine levels continued to decrease within 
1 month after birth (36, 37). The fetus accumulates substantial 
amounts of L-carnitine, primarily during the third trimester, through 
transplacental transfer from the mother, storing it predominantly in 
muscle tissue. While preterm infants are born before completing this 
critical accretion phase, resulting in lower total body L-carnitine stores 

compared to term infants, their immediate postnatal peripheral blood 
concentrations may paradoxically be elevated. This transient elevation 
is attributable to the immaturity of carnitine transport and utilization 
mechanisms in preterm infants (38, 39).

Consequently, despite the potential for higher initial blood levels, 
the inherent physiological immaturity and reduced somatic mass 
associated with preterm birth mean that these infants have significantly 
diminished endogenous L-carnitine reserves. Furthermore, under 
normal physiological conditions following birth, term newborns 
readily acquire sufficient L-carnitine through enteral feeds. However, 
achieving adequate enteral intake can be delayed or compromised in 
preterm infants, particularly those who are very immature or critically 
ill, heightening their vulnerability to carnitine insufficiency (40).

4 The impact of supplementation of 
L-carnitine on preterm infants

4.1 Effect of L-carnitine supplementation 
on L-carnitine levels in preterm infants

L-carnitine supplementation with parenteral nutrition can 
significantly increase the L-carnitine concentration in preterm infants 

FIGURE 2

L-Carnitine facilitates ketogenesis. L-carnitine supplementation enhances mitochondrial fatty acid transport and modulates key enzyme activities and 
gene expression to facilitate ketogenesis, thereby ensuring central nervous system function and fundamental physiological demands during glucose 
insufficiency.
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(41). In one study, 29 preterm infants with gestational age < 32 weeks, 
weight < 1,500 g, and age < 4 days after birth were randomly divided 
into two groups and supplemented with L-carnitine 20 mg/(kg per day) 
and placebo to detect the intracellular left-carnitine level in premature 
infants and preterm infants. The authors found that the mean level of 
L-carnitine was higher in preterm infants, and the number of cases 
with normal L-carnitine levels in red blood cells after supplementation 
was significantly higher than that in the placebo group (42). In another 
study, the researchers looked at parenteral nutrition in 982 premature 
infants weighing < 1,500 g at 23 neonatal treatment centers in the 
United  States. The results showed that 390 children who received 
L-carnitine supplementation had higher mean levels of L-carnitine 
than children without L-carnitine supplementation (40). Evidences 

suggests that supplementing L-carnitine in parenteral nutrition (PN) 
regimens can significantly enhance fatty acid metabolism in neonates 
(12, 13). Within the components of PN, intravenous fat emulsions—
providing vital medium- and long-chain fatty acids—play an 
indispensable role in meeting the high energy demands and supporting 
the development of premature infants (11). Crucially, fatty acids serve 
as a primary energy substrate and are essential for critical processes 
such as brain development and cell membrane synthesis. Notably, 
efficient fatty acid metabolism, particularly beta-oxidation for energy 
production, requires adequate levels of L-carnitine, which acts as an 
essential cofactor for transporting long-chain fatty acids into the 
mitochondria. This biochemical rationale provides a strong theoretical 
basis for L-carnitine supplementation in PN (Figure 3).

FIGURE 3

Overview of functional L-carnitine in different diseases during preterm infants. ① L-Carnitine may confer transient benefits on early weight gain in 
specific preterm infant subpopulations. From a comprehensive assessment, however, it demonstrates no positive impact on overall physical growth 
and development. ② L-Carnitine promotes volumetric growth of cerebral tissue in preterm infants. ③ Neuroprotective effects of L-Carnitine are 
evidenced in both adult patients with hypoxic–ischemic encephalopathy and corresponding animal models. ④ Supplementation reduces levels of 
inflammatory markers and oxidative stress, thereby ameliorating clinical manifestations in septic patients. ⑤ By normalizing aberrant acylcarnitine 
metabolic profiles through supplementation, progression to NEC may be mitigated. ⑥ L-Carnitine supplementation diminishes the requirement for 
exogenous pulmonary surfactant in infants with RDS.
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4.2 Effect on extrauterine growth 
restriction

Supplementation with L-carnitine lacks robust evidence for 
improving extrauterine growth. While early studies demonstrated that 
L-carnitine supplementation could promote physical growth in 
preterm infants, primarily evidenced by enhanced weight gain, 
current evidence supporting its efficacy in ameliorating extrauterine 
growth restriction remains insufficient. Earlier studies reported 
associations between PN carnitine supplementation and improved 
physical development outcomes in preterm infants (43, 44). However, 
Whitfield et al. conducted a randomized trial in 80 preterm infants 
weighing < 1,500 g, supplementing either L-carnitine (15 mg/kg per 
day) or placebo. They meticulously monitored length, weight, head 
circumference, and subcutaneous fat thickness weekly until an 
adjusted gestational age of 36 weeks, yet found no significant 
differences in any of these physical development indicators between 
the groups (45). Similarly, Pande et al. reported no significant effect of 
PN L-carnitine supplementation on physical development indicators 
in their cohort of preterm infants (34). A more nuanced finding comes 
from Crill et al., who observed that preterm infants receiving PN with 
L-carnitine supplementation achieved weight gain 5 days earlier than 
the placebo group; nevertheless, no statistically significant difference 
in weight was observed at the 8-week endpoint between the two 
groups (42). It is important to note that a key methodological 
heterogeneity across these studies is the variation in L-carnitine 
supplementation doses (e.g., 15 mg/kg/day in Whitfield et  al. vs. 
20 mg/kg/day in some earlier positive studies). This lack of dose 
standardization complicates direct comparisons and may contribute 
to the discrepancies in reported outcomes regarding physical 
development. Furthermore, factors such as study population 
characteristics, duration of supplementation, and the specific growth 
parameters measured (short-term weight gain velocity vs. longer-term 
auxological parameters) likely influence the observed effects.

Based on the available data, intravenous L-carnitine 
supplementation may offer a transient benefit for early weight gain in 
certain preterm infant populations. From a comprehensive 
perspective, L-carnitine does not exhibit a positive impact on the 
promotion of physical growth and development.

4.3 Effect on neuro-developmental

Throughout the developmental process, the brain exhibits 
heightened energy demands for synthesizing fundamental cellular 
structures, neurotransmitters, nucleic acids, proteins, carbohydrates, 
and lipids that are indispensable for neuronal growth and myelination 
(46, 47). Critically, adequate energy substrate utilization is essential 
for achieving optimal brain growth and maturation. Consequently, 
cerebral tissue volume and white matter microstructure, both energy-
dependent processes, are key determinants of neurological 
developmental outcomes (47–49). L-carnitine plays a pivotal role in 
meeting the brain’s substantial energy requirements. It acts as an 
essential mitochondrial membrane transporter for long-chain fatty 
acids, facilitating their β-oxidation—a major energy-yielding pathway. 
Significantly, L-carnitine can traverse the blood–brain barrier, 
positioning it to directly support cerebral energy metabolism and 
function (50). Supporting this mechanistic role, observational studies 

indicate that initial carnitine uptake and serum L-carnitine levels in 
preterm infants during the early postnatal weeks are independently 
associated with brain size. These findings suggest that free and short-
chain acyl-carnitines may exert distinct effects on brain growth 
trajectories (51, 52). The importance of L-carnitine availability for 
brain development is further underscored by nutritional studies. 
Breastfeeding, which provides a rich source of L-carnitine among 
other bioactive factors, has been associated with promoting regional 
brain volume and cerebellar development in preterm infants (3, 51, 
53). More directly, such supplementation has also been shown to 
augment cerebral parenchymal volume at term-equivalent age in 
extremely preterm infants (3).

In summary, converging evidence from mechanistic, 
observational, and interventional research suggests that L-carnitine 
availability likely contributes to brain tissue growth in preterm infants. 
While the data point to beneficial effects on structural brain 
development, further investigation is crucial to determine the long-
term impact of L-carnitine status and supplementation on functional 
neuro-developmental outcomes, such as cognitive and motor abilities, 
in this vulnerable population.

4.4 Neonatal hypoxic–ischemic 
encephalopathy

The pathophysiology of HIE involves hypoxic–ischemic injury, 
characterized by perturbations in mitochondrial dynamics and the 
inhibition of critical energy-producing pathways, including oxidative 
phosphorylation and fatty acid β-oxidation (54). L-carnitine has 
demonstrated efficacy as a neuroprotective agent in adult animal 
models of cerebral ischemia (55). Currently, the cornerstone therapy 
for moderate to severe neonatal HIE is therapeutic hypothermia. 
While hypothermia provides significant neuroprotection, its proposed 
mechanisms are multifactorial and may include modulation of 
neurotransmitter systems and potentially influencing metabolic 
pathways involving compounds like carnitine (56). Nevertheless, 
therapeutic hypothermia is only partially effective (57–60), and many 
infants with HIE remain at substantial risk of death or severe long-
term neurodevelopmental impairments (55). This significant unmet 
clinical need underscores the urgency for developing adjunctive or 
alternative neuroprotective strategies. Given L-carnitine established 
role in facilitating mitochondrial β-oxidation and its prior 
neuroprotective effects in adult ischemia models, it represents a 
biologically plausible candidate for investigation in neonatal 
brain injury.

4.5 Septicemia

Bacterial inflammation triggers significant oxidative stress, 
during which the metabolism of oxidized phospholipids is regulated, 
at least in part, by mitochondrial β-oxidation pathways (61). This 
oxidative milieu can damage cellular components, including enzymes 
critical for energy metabolism. Therefore, therapeutic agents capable 
of mitigating oxidative damage are of significant interest. L-carnitine 
has emerged as one such candidate, with evidence suggesting it acts 
protectively by scavenging free radicals and enhancing the activity of 
endogenous antioxidant enzymes, thereby shielding vital enzymes 
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from oxidative inactivation (62). Supporting this mechanism, studies 
in animal models demonstrate that L-carnitine administration 
increases the expression of mitochondrial superoxide dismutase-2 
(SOD2), reduces markers of inflammation, and alleviates overall 
oxidative burden (63). Translating these preclinical findings to the 
clinical setting, a randomized, double-blind, controlled trial 
investigated the impact of L-carnitine supplementation in critically 
ill adults with sepsis. This study reported that L-carnitine 
supplementation effectively reduced levels of inflammatory markers 
and oxidative stress, and importantly, was associated with improved 
clinical outcomes (64). While this evidence in adults is promising, 
further research is warranted to specifically evaluate the potential 
role and efficacy of L-carnitine in modulating inflammation and 
oxidative stress related to bacterial infections in pediatric 
populations, particularly where mitochondrial dysfunction may play 
a key role.

4.6 Effect on neonatal necrotizing 
enterocolitis

The protective effects of levocarnitine supplementation against 
hypoxia/re-oxygenic necrotizing enterocolitis (NEC) have been 
demonstrated in young mice (65). Premature neonates are susceptible 
to NEC due to impaired fatty acid metabolism. Because acyl-carnitine 
is derived from the metabolism of fatty acids and organic acids, it is 
reasonable that abnormal systemic fatty acid oxidation readily leads 
to gut-specific toxicity after the introduction of a metabolic challenge 
with enteral feeding. Animal models of preterm infants have reported 
that exposure of the intestinal mucosa to fatty acid derivatives causes 
mucosal necrosis (66, 67). In another study, researchers found that 
abnormal acylcarnitine metabolic profiles existed before the 
occurrence of NEC. With L-carnitine supplementation, we  can 
improve the blood L-carnitine level and improve the acylcarnitine 
profile, thereby avoiding the development of NEC (68).

4.7 Effect on neonatal respiratory distress 
syndrome

Premature infants diagnosed with neonatal respiratory distress 
syndrome (RDS) exhibit significantly diminished plasma levels of 
L-carnitine compared to their non-RDS counterparts (69). Critically, 
this disparity persists under comparable nutritional support regimens, 
with plasma free carnitine concentrations remaining significantly 
lower in RDS infants from day 3 to day 7 postpartum (69). This 
sustained deficiency likely reflects a substantial increase in L-carnitine 
utilization during the critical first postnatal week in preterm infants 
with RDS (70). The potential clinical significance of L-carnitine status 
in RDS extends beyond energy metabolism. L-carnitine serves as a 
precursor for palmitoyl-carnitine, a significant constituent of 
pulmonary surfactant—the essential lipoprotein complex crucial for 
maintaining alveolar stability and preventing atelectasis (71, 72). 
Given pulmonary surfactant’s pivotal role in RDS pathophysiology 
and the dependency of palmitoyl-carnitine synthesis on adequate 
L-carnitine availability, strategies to augment L-carnitine levels 
represent a biologically plausible approach to support surfactant 
production and potentially ameliorate RDS severity.

Emerging clinical evidence lends support to this concept across 
different intervention timepoints: ① Prenatal/Perinatal Strategy: A 
randomized study involving 100 pregnant women at high risk for 
preterm delivery compared prophylactic administration of L-carnitine 
plus dexamethasone versus dexamethasone alone. The findings 
demonstrated that infants born to mothers receiving the combination 
therapy had a significantly reduced incidence of RDS and lower 
mortality rates compared to the dexamethasone-only group (70). ② 
Postnatal Strategy: A randomized controlled trial enrolled preterm 
infants (28–36 weeks gestation) diagnosed with RDS within 6 h of 
birth. Infants received either L-carnitine supplementation (30 mg/kg/
day) or placebo via parenteral nutrition during the first postnatal 
week. Consistent with the proposed mechanism, infants supplemented 
with L-carnitine exhibited significantly elevated plasma carnitine 
levels by day 7. Furthermore, they demonstrated clinically relevant 
benefits, including a reduced requirement for exogenous pulmonary 
surfactant (both in the number of infants needing treatment and the 
total dose administered) and a shortened duration of mechanical 
ventilation compared to the placebo group (73).

While these preliminary studies—demonstrating benefits from 
both prenatal/perinatal and postnatal L-carnitine supplementation—
are promising and mechanistically coherent, it is imperative to 
acknowledge the current limitations. Specifically, robust evidence 
from large-scale, multicenter randomized controlled trials is still 
needed to conclusively establish efficacy, determine optimal dosing 
and timing strategies, and fully evaluate safety before widespread 
clinical adoption in RDS management can be  recommended. 
Nevertheless, the existing mechanistic rationale coupled with these 
encouraging early clinical observations positions L-carnitine as a 
compelling candidate for further investigation as a potential adjunctive 
therapy for neonatal RDS.

4.8 Other applications of L-carnitine in 
pediatrics

Beyond its roles in energy metabolism and neuroprotection, 
L-carnitine supplementation demonstrates potential benefits in other 
pathological contexts relevant to pediatrics. Animal studies and 
clinical trials suggest that L-carnitine can improve nitrogen balance 
under pathological stress by enhancing protein synthesis, reducing 
protein breakdown, inhibiting apoptosis, and mitigating inflammatory 
responses (74). Furthermore, L-carnitine positively influences key 
pathways implicated in pathological skeletal muscle wasting. This 
modulation may underlie at least some of the observed anti-catabolic 
effects and improvements in fatigue-related outcomes reported in 
chronic disease patients receiving L-carnitine (75). Consequently, 
severe L-carnitine deficiency itself can precipitate syndromes 
characterized by energy metabolism dysfunction.

Shifting focus to a critical neonatal complication, hyperoxia-
induced lung injury is a significant concern in preterm infants. 
Hyperoxia exposure impairs mitochondrial respiratory capacity in 
premature lung endothelial cells, ultimately triggering apoptosis. This 
cellular damage contributes to clinical sequelae such as prolonged 
mechanical ventilation dependence and surfactant deficiency (76). 
Mechanistically, studies indicate that the transition from hyperoxia 
back to normoxia paradoxically suppresses FAO while promoting 
ceramide synthesis, both pathways converging to promote apoptosis. 
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Crucially, experimental interventions targeting FAO modulate this 
injury: Enhancing FAO with L-carnitine reduced hyperoxia-induced 
impairments in alveolarization and vascularization, whereas inhibiting 
FAO exacerbated these injuries. Thus, in neonatal models, hyperoxia 
exerts long-term detrimental effects on lung development partly 
through dysregulated FAO, and therapeutic strategies like L-carnitine 
supplementation that augment FAO show promise in mitigating 
hyperoxia-induced lung damage (77).

Apnea of prematurity represents another frequent challenge in 
this vulnerable population. Evidence regarding the impact of 
parenteral L-carnitine supplementation on apnea incidence is 
currently mixed. One study found it reduced apnea in very preterm 
infants (42). However, a randomized controlled trial by Donnell et al. 
involving preterm infants < 32 weeks gestation, weighing < 1,500 g, 
and enrolled < 4 days of age, reported no significant difference in 
apnea frequency between L-carnitine supplemented infants and 
controls (78). This latter study also concluded that supplementation 
did not alter apnea occurrence in infants < 1,500 g. It is noteworthy 
that methodological limitations, such as the absence of nasal 
thermistor monitoring in the Donnell et  al. study, may have 
compromised apnea detection, particularly for obstructive and mixed 
events, potentially leading to underreporting (79). The discrepancies 
observed across studies likely stem from variations in patient selection 
criteria, L-carnitine dosing regimens, and importantly, the sensitivity 
and methodology of apnea monitoring. Therefore, while preliminary 
findings exist, robust evidence confirming a beneficial effect of 
parenteral L-carnitine supplementation on apnea of prematurity 
remains limited. Further well-designed, multicenter randomized 
controlled trials employing standardized and sensitive apnea detection 
methods are essential to definitively evaluate this potential application 
(45, 78).

5 Discussion

The survival rates of preterm infants in developed and developing 
countries continue to improve, which may reflect improvements in 
nutrition and health care. However, preterm infants still have a high 
risk of developing complications and poor outcomes, and this risk is 
even higher for infants born below their gestational age. Therefore, 
numerous studies have focused on improving the nutritional status of 
preterm infants, reducing the incidence of complications, and 
improving long-term outcomes.

Preterm infants are not efficient in their energy use, a poor 
exogenous nutrient supply during the first few days of life may not 
only lead to extrauterine growth retardation in newborns, but it 
may also increase their susceptibility to infectious diseases and 
organ function damage (80). L-carnitine plays an important role in 
maintaining metabolic flexibility in the human body. The most 
important function of L-carnitine is to obtain cellular energy from 
fatty acids in the mitochondrial matrix. L-carnitine also maintains 
the stability of mitochondrial CoA in the process of fatty acid 
oxidation, thereby maintaining metabolic flexibility (81). Another 
function of carnitine in human metabolism is its involvement in 
the detoxification process of toxic compounds (such as some 
foreign substances, including ampicillin, valproic acid, and salicylic 
acid, as well as toxic substances generated endogenously via 
metabolism), which are jointly excreted by the kidneys with 
carnitine (82). Additionally, L-carnitine exhibits antioxidant and 

membrane stabilizing effects by improving biological electrical 
activity and inhibiting the production of free radicals. Finally, 
based on changes in energy supply sources, L-carnitine regulates 
the utilization of glucose synthesis and fatty acid oxidation, 
providing the organism with a certain buffering capacity to cope 
with complex changes.

Despite the positive role of L-carnitine in regulating metabolism, 
prophylactic supplementation of L-carnitine in preterm infants does 
not seem to achieve the expected results. Studies have found that 
supplementing L-carnitine through parenteral nutrition can improve 
the acylcarnitine profile in the peripheral blood of preterm infants. 
However, evidences suggest that L-carnitine does not have a positive 
effect on the physical development of preterm infants (34, 42, 45). This 
may be related to the rich experience of evidence-based medicine in 
the treatment of preterm infants and optimization of the energy ratios 
in intravenous nutrition show that the role of L-carnitine in promoting 
the physical development of preterm infants seems to be irrelevant 
when the calorie supply is sufficient. However, L-carnitine plays a 
positive role in the neurodevelopment of preterm infants. Currently 
available research suggests that consuming a moderate amount of 
L-carnitine may help increase its serum levels, and serum 
concentrations of L-carnitine are positively correlated with extremely 
preterm infant brain volume growth. Brain capacity is not the only 
determinant of brain function (3). However, the current research is 
limited with regard to exploring the effects of L-carnitine on brain 
function. This necessitates high-quality cohort studies or randomized 
controlled trials (RCTs) to evaluate the efficacy of L-carnitine in 
enhancing neuro-functional outcomes.

Including evidence from observational study, other evidence 
supports the view that L-carnitine may be beneficial for the prevention 
and treatment of complications in preterm infants. For example, 
reducing the use of pulmonary surfactant in children with neonatal 
respiratory distress syndrome (73), reducing mechanical ventilation 
time (70) are all potential therapeutic effects of L-carnitine against 
complications in preterm infants. Further clarification is needed on 
the appropriate supplemental dose and corresponding time points. 
Studies have shown that adult patients with hypoxic–ischemic injury 
can improve their cognitive function after supplementation with 
L-carnitine (83). In animal models of neonatal hypoxic–ischemic 
encephalopathy, the same positive results were obtained (84, 85). 
Critically, however, direct evidence evaluating the efficacy of 
L-carnitine specifically for treating neonatal cerebral ischemic injury 
is currently lacking. Therefore, well-designed in  vivo studies, 
incorporating long-term neuro-developmental follow-up, are essential 
to rigorously evaluate the therapeutic potential of L-carnitine/acetyl-
L-carnitine in protecting the vulnerable developing brain following 
HIE (86).

In addition, the theoretical effect of L-carnitine is not limited to 
the above mentioned clinical applications. Cell and animal 
experiments have also suggested that L-carnitine is beneficial for 
reducing the occurrence of complications of preterm birth, such as 
NEC, septicemia, and improving the short- and long-term prognosis 
in. However, these studies are still at the level of mechanism and 
animal experiments. There is currently no conclusive clinical research 
evidence to support this. Therefore, exploring the potential of 
L-carnitine in improving complications among preterm infants and 
their corresponding short- and long-term outcomes may provide new 
interesting research opportunities toward further optimizing the 
treatment of preterm infants.
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6 Conclusion

The impact of poor outcomes in preterm infants has prompted 
the exploration and optimization of new treatment regimens. In 
our study, we reviewed the theoretical basis and clinical evidence 
for the use of L-carnitine in the treatment of preterm infants. 
There appears to be no clearly positive effect of L-carnitine on 
preterm infant physical development, the published evidence 
shows potential for promoting neurodevelopment, reducing the 
incidence of comorbidities, and improving the prognosis of 
preterm infants. Current evidence indicates a reassuring safety 
profile of L-carnitine in preterm infants, with no adverse effects 
observed across studies despite substantial variations in dosing 
regimens (41), but we  remain recommend further research to 
establish the optimal dosing regimen. Then conduct adequately 
powered cohort studies or RCTs to definitively determine its 
efficacy in improving neurodevelopmental outcomes and 
preventing complications. Future research should include 
appropriately powered cohort studies or randomized controlled 
trials (RCTs) to: ① Investigate the prophylactic efficacy of 
L-carnitine against preterm infant complications [e.g., sepsis, 
necrotizing enterocolitis (NEC)]; ② Establish optimal dosing 
regimens and treatment duration for respiratory distress syndrome 
(RDS) management; ③ Assess neurodevelopmental promotion and 
neurological repair through longitudinal follow-up studies. These 
evidences are crucial for optimizing current therapeutic strategies 
for preterm infants and ultimately enhancing their quality of life.
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