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Diet has been proven to have significant impacts on the pathogenesis and

treatment of osteoporosis. This review attempts to elucidate the current progress

and controversy surrounding the ketogenic diet (KD) and β-hydroxybutyrate

(BHB) in osteoporosis and o�ers a novel perspective on the prevention

and treatment of osteoporosis. The ketogenic diet has been broadly used

in the treatment of epilepsy, diabetes, obesity, and certain neoplasms by

triggering ketone bodies, mainly BHB. However, in most osteoporosis-related

clinical and preclinical studies, the ketogenic diet has demonstrated the

detrimental e�ects of inhibiting bone accumulation and damaging bone

microarchitecture. In contrast, BHB is thought to ameliorate osteoporosis

by promoting osteoblastogenesis and inhibiting osteoclastogenesis. The main

purpose of this review is to summarize the current research progress and

hope that more basic and clinical experiments will focus on the similarities and

di�erences between ketogenic diet (KD) and BHB in osteoporosis.

KEYWORDS

ketogenic diet, β-hydroxybutyrate, osteoporosis, osteoblast, osteoclast

1 Introduction

Low bone mass and damage to the microarchitecture of bone tissue, which increases

bone fragility and fracture risk, are the hallmarks of osteoporosis, a systemic metabolic

bone disease (1). An imbalance between bone resorption, mediated by osteoclasts, and

bone generation, mediated by osteoblasts, is the fundamental process driving osteoporosis.

Loss of gonadal function and aging are also major factors in the development of the disease

(2). Bisphosphonates, as first-line medications for osteoporosis, are not always feasible due

to their side effects (3), Instead, dietary modifications, like eating more calcium, vitamin D,

and protein and following the Mediterranean diet, may have broader applicability (4–7).

The ketogenic diet is a special dietary structure with high fat, low carbohydrates, and

moderate protein contents (8). The metabolic pattern shifts from glucose metabolism to fat

metabolism during the ketogenic diet. Fatty acids are metabolized by the liver to produce

ketone bodies, leading to nutritional ketosis. β-hydroxybutyrate (BHB), as the highest-

content ketone body, not only provides energy but also participates in many metabolism

processes in the body as a signal molecule, such as binding to G protein-coupled receptors
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(GPCRs) or histone deacetylase (HDAC) to induce anti-

inflammatory and antioxidant functions. Meanwhile, the

ketogenic diet has also been reported to be beneficial for various

diseases, such as type 2 diabetes mellitus and neurodegenerative

diseases (9–11). Recently, attention has been paid to the impact

of a ketogenic diet on osteoporosis; however, BHB seems to have

different outcomes for osteoporosis. In this review, we summarize

the possible mechanisms underlying the actions of ketogenic

diet and BHB in osteoporosis, hoping to provide directions for

future research.

2 Overview of ketogenesis and the
ketogenic diet

Woodyatt et al. first identified ketone bodies in the blood of

healthy subjects on a starvation diet or a high-fat, low-carbohydrate

(HF-LC) diet in 1921. Ketone bodies are intermediate products

of fatty acid β-oxidation during starvation or certain pathological

states. Acetyl coenzyme A, which is converted from free fatty

acids, is transported to hepatocyte mitochondria through carnitine

palmitoyl transferase and then converted to acetoacetate through a

series of biochemical reactions. β-hydroxybutyrate dehydrogenase

1 (BDH1) reduces acetoacetate to β-hydroxybutyrate (BHB),

which enters the blood circulation via the monocarboxylic acid

transporter (12–14). Serum levels of BHB are quite low under

normal circumstances but can reach 1–2mM after fasting and

even 6–8mM with prolonged starvation. Meanwhile, BHB levels

can spike to 20mM in diabetic ketoacidosis (12, 15). As a major

component of ketone bodies, BHB can be used by metabolically

active tissues, such as the heart, brain, and muscles, where it

generates cellular energy in mitochondria (13, 16). Recently, in

addition to serving as an alternative fuel during starvation, more

and more studies have found that BHB ameliorates oxidative

stress-inflammatory states by inhibiting HDAC or binding to

GPCRs (12, 16). Besides that, research on new histone post-

translational modifications (HPTMs) has shown that BHB as a

histone modification β-hydroxybutyrylation modified substrate

regulates epigenetics (17), which may play an important role in

the development of cardiovascular diseases, metabolic diseases, and

other diseases (18–21).

Simultaneously, the “ketogenic diet”, which is heavy in fat and

low in carbohydrates, was initially suggested by Wilder et al. at the

Mayo Clinic to treat patients with refractory epilepsy by simulating

a fasting condition. As such, the classic ketogenic diet was born

(8, 22). With the introduction of anti-epileptic drugs, the use of the

ketogenic diet declined dramatically. However, in recent decades,

the ketogenic diet has drawn extensive attention again. Four

variants of the ketogenic diet have emerged to provide flexibility

to boost adherence: the classic ketogenic diet (cKD), the modified

Atkins diet (MAD), the low glycaemic index treatment (LGIT), and

the medium-chain triglyceride ketogenic diet (MCTKD) (23). The

most conventional type of ketogenic diet is the classic one, which

has a 4:1 ratio of fat to protein and carbs (grams to ams). Under this

diet, fats provide 90% of the energy, and they are mainly derived

from long-chain fatty acids, with carbohydrates and proteins

providing the remaining 10%. The MCTKD provides 70%−75%

of total daily energy from fat, 15%−18% from carbohydrates,

and 10% from protein. Unlike the classical ketogenic diet, the

MCTKD consumes more medium-chain triglycerides, which have

a higher ketogenic efficiency and are more acceptable. The MAD

is a much less restrictive diet with a 1:1–2:1 ratio of fat to protein

and carbs (grams to ams). Here, patients can consume 1 g of

carbohydrates and protein for every 1–2 g of fat consumed. During

the low glycaemic index treatment, 40–60 g of carbohydrates per

day is allowed, but the glycaemic index of the carbohydrate source

needs to be <50, while fat and protein intakes are not restricted.

It is worth mentioning that very low-energy ketogenic therapy

(VLEKT) is a novel nutritional regimen frequently employed in

the management of overweight and obese individuals. VLEKT

prioritizes complete calorie restrictions, permitting a total energy

intake of less than 800 kcal per day, with carbohydrates limited

to around 30 g/day, while fats and proteins contribute ∼44% and

43%, respectively (24, 25). During the ketogenic diet, fatty acid

metabolism produces ketone bodies, and ketone body levels are

elevated (23, 26).

Growing evidence has demonstrated that patients with different

diseases can benefit from the ketogenic diet. The ketogenic diet

can assist in managing obesity and type 2 diabetes mellitus

by improving fat catabolism and raising insulin sensitivity to

lower blood lipids, facilitate weight loss, and improve glycosylated

hemoglobin and glycaemia (10, 27). Studies have shown that the

ketogenic diet can slow tumor growth, inhibit tumor metastasis,

and increase sensitivity to radiotherapy or chemotherapy (28–30).

It is also beneficial for the failing heart by driving increased use

of ketone bodies, which can be an alternate fuel to address fuel

metabolic deficits (31). Moreover, the ketogenic diet partially drives

gut microbial shifts, which alleviates colitis (32, 33).

3 Mechanism of the ketogenic diet in
bone metabolism

3.1 Inhibition of GH–IGF-1 axis

For normal longitudinal bone growth and bone mass build-

up, growth hormone (GH) and insulin-like growth factor I

(IGF-1) are necessary (34–36). IGF-1 mediates most impacts

of GH on skeletal metabolism. Chondrocytes and osteoblasts

in bone growth centers are targets of GH and IGF-1 action.

Osteoblasts, the cells responsible for bone formation, originate

from bone marrow-derived mesenchymal stem cells (BMSCs) (37).

IGF-1 binds to the IGF-1 receptor on preosteoblasts and uses

the phosphatidylinositol-3 kinase (PI3K)/Protein kinase B (PKB)

pathway to promote stabilization of β-catenin, a signal molecule

of the wingless-related integration site (Wnt) canonical pathway,

which is critical for osteoblastogenesis (34, 38, 39). Stabilized β-

catenin moves into the cell nucleus and attaches to members of the

T-cell factor/lymphoid-enhancer factor family of nuclear proteins

to regulate gene transcription, such as runt-related transcription

factor 2 (RUNX2) and osterix, and promote osteoblastogenesis

(38). The efficiency and rate of differentiation of preosteoblasts into

mature osteoblasts control the rate of bone formation. Additionally,

IGF-1 can also decrease osteoblast apoptosis and moderately

promote osteoblast proliferation (40, 41).
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GH and calorie intake primarily drive the expression of IGF-1,

and IGF-binding proteins (IGFBPs) regulate its availability (36, 42).

The ketogenic diet induces a catabolic state similar to starvation.

This state increases the levels of IGFBPs, leading to suppression of

IGF-1 activity (Figure 1) (43). Research also suggests that a HF-

LC diet, as opposed to one with a higher overall calorie intake,

may modulate the genetic programming of growth. Consumption

of such diets leads to decreased concentrations of circulating GH

and IGF-1, which ultimately impair osteogenic differentiation (44).

Moreover, the increase in BHB levels caused GH axis by the

ketogenic diet can create a chronic acidic environment, which

may disrupt the axis (45, 46). Previous studies have found that

in chronic metabolic acidosis, human serum IGF-1 concentrations

are significantly reduced, and the response of IGF-1 to GH is

diminished (45). The role of IGF-1 in promoting the proliferation

and differentiation of chondrocytes was significantly diminished in

mandibular condyles cultured under acidic conditions (46).

3.2 Excess of acid load

Growing evidence has demonstrated that the acid environment

caused by the ketogenic diet can impair bone mineralization

(Figure 1) (47, 48). Osteoblasts synthesize and secrete bone matrix,

such as collagen type 1 and osteocalcin, to form dense, laminated

collagen fibers. And then inorganic salts such as calcium phosphate

are deposited to mineralize and harden the bone matrix. Blood pH

is usually normal on a ketogenic diet, but serum bicarbonate is

below normal levels, suggesting an underproduction or increased

demand for associated bicarbonate ions (48). Chronic acidosis

reduces bone mineral content (BMC) by speeding up the liberation

of cations from bone in conjunction with bicarbonate to provide

the necessary extra buffering capacity (49). This is possible

due to the huge amount of potential proton buffers that bone

contains. Moreover, acidosis interferes with the conversion of

serum 25-hydroxyvitamin D (25(OH)D) to 1,25 dihydroxyvitamin

D3 (1,25(OH)2D3), exacerbating bone damage (50).

3.3 Loss of weight

The ketogenic diet often causes weight loss (27), however,

weight loss always results in bone loss and increased fracture

risk (Figure 1) (51–53). According to the theory of mechanical

homeostasis, weight loss leads to the mechanical unloading of

bones, resulting in a decrease in bone mass (54). Osteocytes are

particularly susceptible to biomechanical stress, and they undergo

apoptosis without loading. In the absence of loading, osteoblastic

activity will be suppressed and osteoclast differentiation will be

encouraged (54, 55). Another possible explanation is that there

are interactions among endocrine, inflammatory, and bone (56).

Yu et al. found that bone resorption marker β-Crosslaps increased

and bone formation marker procollagen I N-terminal propeptide

(PINP) decreased after 10% body weight was lost (57). Although

most studies have shown that weight loss often leads to a decrease

in adipose tissue, we do not consider the inhibition of osteogenic

activity caused by a decrease in estrogen and other factors caused

by adipose tissue reduction.

3.4 High-fat diet-induced lipotoxicity

The ketogenic diet has a high fat content, which causes

bone loss through local and systemic pathways (Figure 1) (58).

Firstly, the current results of animal studies have shown that

a high-fat diet leads to increased bone marrow tissue fat (59,

60). Bone marrow adipose tissue (BMAT) and osteoblasts are

from BMSCs. The more bone marrow adipocytes there are, the

fewer osteoblasts there are (61, 62). Secondly, there are numerous

pieces of evidence showing that high-fat diet intake is associated

with an increase in adipokines. Adipokines such as chemerin

and resistin promote osteoclast differentiation (63–65), while

adiponectin and leptin have a dual effect on bone cell differentiation

(66–69). Generally speaking, the positive action of adipokines is

not enough to counteract the negative effects, resulting in bone

resorption (70, 71). What’s more, a continuous high-fat diet leads

to up-regulation of inflammatory genes, such as Fam3c, InhBa,

Tnfsf11, and Ackr2. Inflammatory cytokines not only participate

in inflammatory activities but also in bone cell differentiation

(71). Previous studies indicate that inflammatory factors motivate

osteoclast overactivity primarily via the receptor activator of

nuclear factor-κB ligand (RANKL) signal pathway and inhibit

bone marrow-derived mesenchymal stem cell differentiation into

osteoblasts (72). A high-fat diet is a source of palmitic acid,

which inhibits osteoblastogenesis and function and promotes

apoptosis by decreasing the expression and activity of osteogenic

markers such as RUNX2, alkaline phosphatase(ALP), osteocalcin,

and osteomyelin (73–75). Similarly, octanoic acid derived from

a medium-chain triglyceride ketogenic diet (MCTKD) leads

to lower ALP and higher levels of the bone resorption

marker triphosphatase (TRAP), which can adversely affect

bone (76).

4 Mechanism of the BHB in bone
metabolism

4.1 Regulation of osteoblastogenesis

BHB causes an increase in calcium inward flow, which

sets off a signal cascade that promotes cell growth (Figure 2)

(77). Calcium ions activate calmodulin (CaM), which regulates

the nuclear factor of activated T-cells (NFAT) and calmodulin

dependent kinase II (CaMKII) pathways and promotes osteoblast

differentiation (78). The likely mechanism is that BHB boosts the

output of adenosine 5′-triphosphatase produced by mitochondria,

which causes the cell membrane to depolarize, voltage-gated

calcium channels to open, and potassium channels to close (77).

Calcium signaling mediates important cell cycle events, such

as the re-entry of quiescent cells into G1 and the start and

conclusion of the M phase (79). In addition, more energy from

BHB metabolism speeds up the G1 phase of macromolecular

synthesis. Considering that fatty acids make up much of the
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FIGURE 1

The ketogenic diet impairs bone metabolism.

cell membrane, another logical hypothesis is that BHB supplies

carbon atoms for the synthesis of fatty acids. In a manner

akin to how glucose stimulates the production of insulin, a

number of trophic factors are released that activate pathways

that speed up the advancement of G1 (77). Apart from this,

previous studies have shown that BHB promotes osteoblastogenesis

in vivo and in vitro, thereby ameliorating osteoporosis (80).

Thus, polyhydroxyalkanoates (PHAs) containing BHB are often

used for bone repair (81). Nevertheless, it seems that the

conclusion is debatable. Saito et al. concluded that acetoacetate and

BHB, respectively, increase and decrease osteoblast function (82),

although the exact method by which ketone bodies alter osteoblast

activity remains unknown.

4.2 Inhibition of osteoclast di�erentiation

The only cells that can resorb bone are called osteoclasts, which

are derived from the large, multinucleated haematopoietic cells of

the monocyte/macrophage lineage. Macrophagecolony stimulating

factor (M-CSF) binds to its receptor in osteoclast precursors to

control cell proliferation and survival throughout differentiation.

RANKL, amember of the tumor necrosis factor (TNF) superfamily,

triggers many signaling cascades through its binding to receptor

activator of nuclear factor-κB (RANK), thus starting the process of

osteoclast precursor development and subsequent fusing into adult

osteoclasts (83). The nuclear factor of activated T-cells (NFATC1),

which is the primary switch that regulates the differentiation

of osteoclast precursor cells, is transcriptionally activated under

microgravity, leading to osteoporosis. Phosphorylated NFATC1,

the inactive form of NFATC1 in the cytoplasm, dephosphorylates

under the induction of RNAKL. Dephosphorylated NFATC1

enters the nucleus, attaches itself to the promoter regions of

target genes, stimulates the expression of key genes for bone

resorption, and activates osteoclast pre-differentiation (84). BHB

or β-hydroxybutyrate methyl ester (BHBME) hinders osteoclast

differentiation by reducing the active form of NFATC1 and

preventing its nuclear translocation (Figure 2) (85).

On the other hand, accumulating evidence indicates that

osteoclasts are activated by high levels of reactive oxygen

species (ROS) and inflammatory cytokines, including TNF-α and
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FIGURE 2

β-hydroxybutyrate (BHB) benefits bone metabolism.

interleukin-β (IL-1β) (86, 87). Simultaneously, previous studies

have shown that BHB has a protective role in the nervous system,

reproductive system, and diabetes retinopathy by inhibiting the

activation of the nod-like receptor family pyrin domain containing

3 (NLRP3) inflammasome and decreasing levels of IL-1β and

reactive oxygen species (ROS) production (88, 89). Recently,

it has also been found that BHB inhibits inflammation and

osteoclast differentiation caused by alloy particles by inhibiting

apoptosis-associated speck-like protein containing a CARD (ASC)

oligomerisation, assembly, and spot formation and reducing IL-

1β secretion, thereby alleviating osteolysis. Notably, the inhibitory

function of BHB on inflammation caused by alloy particles does

not depend on the G protein-coupled receptor 109A (GPR109A)

or HDAC in macrophages, but the inhibition of osteoclast

differentiation and function of BHB is achieved by inhibiting

HDAC (90).

5 E�ects of the ketogenic diet on
bone health

5.1 Ketogenic diet aggravates osteoporosis

The adverse effects of the ketogenic diet on bone health

have been reported by diverse investigation groups. This section

summarizes studies on the findings of the ketogenic diet on bone

health and possible influencing factors. Table 1 covers research on

the effects of the ketogenic diet on bone health.

Several studies are related to bone abnormalities after a

ketogenic diet in children and adolescents. The alterations

associated with a ketogenic diet contributing to the failure of bone

mineral build-up include abnormalities in altered vitamin D levels,

acid loading, decreased weight, increased levels of blood BHB, and

indirect or direct disruption of the GH axis (43, 91–98). In these
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TABLE 1 Summary of e�ects of ketogenic diet in osteoporosis.

Type Design/sample Intervention Duration Result Ref.

Clinical research N= 22; 3.5–9.8 years;

Children with severe

epilepsy

cKD; the ratio of fat to protein and

carbohydrates is 4:1; Gradual

introduction of ketogenic diet over 3

days; Provide 75% of the recommended

daily calorie intake for children;

Vitamin and mineral supplementation;

Protein intake 1 g/kg/day.

1 year Blood ketone bodies levels increased.

Height, weight, BMI and serum IGF-1

decreased.

(43)

N= 25; 7.3± 1.9 yearsa ;

Children with intractable

epilepsy

cKD; the ratio of fat to protein and

carbohydrates is 4:1; Vitamin and

mineral supplementation; phase 1: two

KD initiation protocols [traditional

fasting initiation (FAST-KD); gradual

initiation without fasting (GRAD-KD)];

Phase 2: EUCAL-KD (supporting

weight gain at a normal velocity) and

HYPOCAL-KD (restrict caloric intake).

1 year Bone mineral content and BMI

decreased.

(48)

N= 20; 7–13 years;

Children with intractable

epilepsy

MCT; vitamin D3 5,000 IU/day; 1.3–3.0

years

Bone mass decreased. Serum

1,25-(OH)2-VitD3 and calcium levels

decreased.

(92)

N= 40; 0.58–15.52 years;

Children with epilepsy

cKD; the ratio of fat to protein and

carbohydrates is 4:1; Gradual

introduction of ketogenic diet over 3

days without fasting and fluid

restriction; Provide 75% of the

recommended daily calorie intake for

children; Protein intake 1 g/kg/day;

Sugar-free L-carnitine 66 mg/kg/day;

Calcium 225 mg/kg/day; Vitamin D2 40

IU/kg/day; Other multivitamins and

mineral supplementation.

2 years Height and weight decreased. Catch-up

growth was evident in both height and

weight after a year of diet

discontinuation.

(93)

N= 45; 0.8–17.3 years;

Children with refractory

epilepsy

cKD; the ratio of fat to protein and

carbohydrates is 4:1; Adequate energy;

Sugar-free multivitamin and calcium

and potassium citrate supplementation;

Protein intake 1 g/kg/day.

2 years The average BHB serum level is 3.2

mmol/L 9% (N= 4) of children

occurred growth retardation.

(94)

N= 34; 2–17 years;

Children with DRE or

GLUT1-DS

cKD; Started a 1:1 ketogenic ratios

subsequently increased to 2:1, 3:1, or 4:1;

More than

1 year

Serum β-OHB levels ranges from 1.8

mmol/L to 4.1 mmol/L; Fasting BHB

levels moderately negatively correlated

with height in the entire sample; 80%

children maintained or improved their

growth.

(95)

N= 40; 2–16 years;

Children with intractable

epilepsy

MCT; cKD; cKD: the ratio of fat to

protein and carbohydrates is 4:1; the

ratio can be changed modified between

3:1 and 5:1; MCT: MCT energy share

from 40 to 60%, carbohydrate energy

share from 13 to 15%.

1 year Height status declined. Weight status

and resting energy expenditure didn’t

change.

(96)

N= 24; 7 months−6 years

and 5 months; Children

with intractable epilepsy

cKD; a caloric composition of about

90% fat, 7% protein and 3%

carbohydrate; Multivitamin and mineral

supplementation.

1 year and 6

months

Linear growth status declined. Weight

status and REE were unchanged.

(97)

N= 29; 3.3–17.8 years;

Patients with refractory

epilepsy

cKD; the ratio of fat to protein and

carbohydrates ranges from 2:1 to 4:1;

Vitamin D3 and calcium

supplementation.

More than

6 months

Bone mass density decreased. Acidic

environment caused by KD altered bone

and calcium homeostasis.

(98)

N= 38; Mean age 6.1 years;

Children with intractable

epilepsy and some

metabolic conditions

MAD; starting gradually with 10–30 g of

carbohydrates per day; Multivitamin

and mineral supplementation.

2 years The ketone body levels were stable, near

2 mmol/L. PH was normal. Height and

bone mass didn’t change.

(102)

N= 38; 1.5–15.5 years;

Children with glycogen

storage disease type 1

MCT; Complex carbohydrates, proteins

and fats provide 60–70%, 15–20%, and

30% of total energy, respectively; MCT

oil intakes 0.16–0.44 g/kg/day for 32–40

months

3 months Significant improvements in skeletal

muscle mass and bone mineral content.

(103)

(Continued)
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TABLE 1 (Continued)

Type Design/sample Intervention Duration Result Ref.

Basic experiment Wistar rats CH: 9% fat, 33% protein, and 58%

Carbohydrates; LC-HF-1: 66% fat, 33%

protein, and 1% carbohydrates;

LC-HF-2: 94.5% fat, 4.2% protein, and

1.3% carbohydrates.

4 weeks Body length, bone mass, N-terminal

propeptide of type I procollagen,

expression of osteoblastogenesis

transcription factors and IGF-1

decreased in LC-HF diets;

(44)

C57BL/6J mice with

bilateral ovariectomy

SD+ Sham; SD+ OVX; KD+ Sham;

and KD+ OVX.

12 weeks Cancellous and cortical bones declined

in KD groups; TRAP increased and Col

I decreased in KD groups.

(99)

Sprague-Dawley rats KD; EODKD 12 weeks EODKD and KD both increased Blood

ketone body levels and fat percentage

increased; EODKD and KD both

deceased bone mass and mechanical

properties.

(100)

C57BL/6J mice with

bilateral ovariectomy

KD; Metformin (ip;100 mg/kg/d) Bone mass and biomechanical

properties are impaired; Metformin

attenuates bone loss.

(101)

BMI, Body mass index; DRE, drug-resistant epilepsy; EODKD, every-other-day ketogenic diet; GLUT1-DS, glucose transporter type 1 deficiency syndrome; KD, ketogenic diet; LC-HF, Low-

carbohydrate and high-fat; MAD, the modified Atkins diet; MCT, medium-chain triglyceride diet; OVX, ovariectomy; REE, resting energy expenditure; SD, standard diet feeding; a: age

(x± SD).

studies, it has been mentioned that a ketogenic diet inevitably

leads to growth retardation in children, but there are also studies

indicating that after stopping the ketogenic diet for a period of time,

children will experience significant catch-up growth (93, 94). There

is poor clinical research on the potential impacts of the ketogenic

diet on adult bone health, and there is not much data on the long-

term risk of osteoporosis and a ketogenic diet. However, due to the

close correlation between the development of osteoporosis and the

accumulation of peak bone mass in adolescence, there are reasons

to believe that a ketogenic diet is harmful to the development

of osteoporosis.

In addition, there are several animal model studies that

support evidence of bone impairment induced by a ketogenic

diet (Table 1). The ketogenic diet disrupted cortical bone mass

and bone microstructure in a similar way to ovariectomy (OVX)

in mice, mediated by promoting osteoclast differentiation in the

research of Wu et al., while Xu et al. thought that a ketogenic diet

suppressed osteoblast activity by reducing weight and increasing

body fat percentage, leading to reduced bone formation (99, 100).

But it has been reported that metformin alleviates the cancellous

bone loss caused by the ketogenic diet (101). Rats on a high-fat

and low-carbohydrate diet demonstrated visceral fat accumulation,

and adipocytes in bone marrow were significantly increased.

The expansion of bone marrow adipose tissue (BMAT) inhibits

osteoblastogenesis, exacerbating bone loss (44).

5.2 Ketogenic diet does not worsen
osteoporosis

Nevertheless, some studies suggest that a ketogenic diet has

no unfavorable impacts on bone health. No adverse effects on

bone mass or longitudinal growth were noted in a study using

MAD. Stable pH, proper serum ketones levels, and more calorie

and protein consumption than a classical ketogenic diet may

explain the lack of detrimental effects on bone development

(102). In a separate trial utilizing MCTKD to treat children

with glycogen storage disorder, it revealed enhancements in the

patients’ BMC and skeletal muscle mass. This may be due to

MCTKD’s ability to improve hyperlactatemia, which can facilitate

osteoclastogenesis and impede osteoblastogenesis. Another reason

may be that MCTKD can enhance lipolysis and ameliorate fat

inflammation (103). A thorough evaluation found no significant

bone density changes in adults receiving a ketogenic diet. Only

female participants who dropped 10% of their weight had bone

mechanical unloading and increased bone turnover due to energy

restrictions and quick weight loss, but osteoporosis risk did not

increase (91).

6 E�ects of BHB on bone health

6.1 BHB improves osteoporosis

It is generally believed that BHB reduces bone loss and

improves osteoporosis by promoting osteoblastogenesis and

inhibiting osteoclast formation. Table 2 covers research on BHB’s

effects on bone health.

The research conducted both in vivo and in vitro supports the

potential benefits of BHB in enhancing osteoblastogenesis and anti-

osteoporosis in rats undergoing bilateral OVX (80). However, the

specific mechanism by which BHB promotes osteoblastogenesis

needs further exploration. Furthermore, some studies show that

poly(3-hydroxybutyrate) composed of BHB induces ectopic bone

formation after implantation into the back muscles of cats,

minipigs, and rats (81, 104). Another possible reason is that BHB

activates signal transduction pathways for osteoblast proliferation

by triggering rapid calcium ion flow into cells (77).

Besides that, Cao et al. found that BHB suppresses osteoclast

differentiation and improves osteoporosis under microgravity

conditions by inhibiting NFATC1 transcription (85). Wu et al.

administered 1,3-butanediol (a BHB precursor) tomice undergoing

bone osteolytic surgery. It was found that the bone density of mice

increased and the activity of osteoclasts was inhibited. The specific

mechanism is that BHB ameliorates osteolysis by inactivating

inflammasomes and inhibiting the development and function of

osteoclasts (90).
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TABLE 2 Summary of applications of BHB in osteoporosis.

Type Intervention model Intervention material Result Ref.

In vivo Wistar rats with bilateral

ovariectomy

30, 150, 750 mg/kg/d; BHB (po;12 weeks) Osteoblast differentiation increased. Bone mineral density

and bone mechanics increased.

(80)

ICR mice with hind limb

unloading

50,100,200 mg/kg/d; BHB (po;4 weeks) Serum calcium levels decreased. Bone mineral density

increased.

(85)

C57BL/6J mice with osteolysis

surgery

20% (v/v) 1, 3-butanediol in drinking

water (2 weeks)

Osteoclast differentiation and function decreased. Bone

mineral density increased. Osteolysis decreased.

(90)

In vitro MC3T3-E1 cells 0.005, 0.01, 0.02, 0.05, 0.1 g/L BHB Osteoblast differentiation increased. (80)

MC3T3-E1 cells 0.05, 0.5, 5 mmol/L Acetoacetate; 0.05,

0.5, 5 mmol/L BHB

Osteoblast functions, respectively, increased and decreased

under acetoacetate and BHB.

(82)

RAW 264.7 cell line 1, 10 mmol/L BHB Activated NFATC1 decreased. Osteoclast differentiation

decreased.

(85)

Osteoclasts 2,4,6 mol/L (R)–BHB or (S)–BHB HDAC decreased. Osteoclast differentiation decreased. (90)

HDAC, histone deacetylase; NFATC1, the nuclear factor of activated T-cells 1.

6.2 BHB aggravates osteoporosis

However, as mentioned earlier, acetoacetate and BHB,

respectively, up-regulate and down-regulate mineralization and

ALP activity in osteoblasts (82). It may partly explain the bone

degeneration in diabetics. The ratio of BHB to acetoacetate rises as

diabetes worsens (105), and it is possible that BHB has a stronger

inhibitory effect than the promotional effect of acetoacetate on

bone formation. This suggests that ketone bodies may also be the

cause of diabetic osteoporosis (82).

7 Conclusion

The effects of the ketogenic diet on osteoporosis remain

controversial. Most studies suggest that ketogenic diets may impair

bone health and increase the risk of osteoporosis by suppressing the

GH-IGF-1 axis, acid load, weight loss, and lipotoxicity (Figure 1).

However, other clinical studies have shown that some types

of ketogenic diets do not damage bone mass. This may be

because MAD does not severely restrict protein and calorie intake.

In addition, medium-chain triglycerides is thought to improve

bone mineral accumulation by inhibiting osteoclastogenesis and

promoting osteoblastogenesis. However, the sample size of

these studies was small and the follow-up period was limited.

BHB improves osteoporosis by inhibiting osteoclastogenesis and

promoting osteoblastogenesis through inhibition of the RANKL

signaling pathway and promotion of calcium in-flow, respectively

(Figure 2). However, it has also been shown that BHB may inhibit

ALP activity and thus inhibit mineralization. This may be one of

the causative factors of diabetic osteoporosis.

Most of the clinical studies of the effects of ketogenic diets

on bone health have targeted populations such as children with

refractory epilepsy, glycogen storage disorders, and other disorders

and obese populations (Table 1). The majority of clinical studies

have shown adverse effects of ketogenic diets on children’s bones.

Childhood and adolescence are critical stages for bone mass

accumulation. Impaired bone mass accumulation or inadequate

nutritional intake during this period may cause a decrease in

peak bone mass in adulthood, which may increase the risk of

osteoporosis and fractures (106). Therefore, during the application

of the ketogenic diet in children, regular follow-ups should be

performed to monitor growth, including annual growth rate,

height, weight, bone density, growth hormone, vitamin D, and

blood calcium levels. Adequate vitamin D, calcium, and protein

should also be taken during treatment (107, 108). Adequate

sunlight hours and physical activity are also important for bone

mass accumulation. When using the ketogenic diet for weight loss

in obese and overweight people, it should be ensured that the rate of

weight loss is within the normal range so as not to cause an increase

in bone turnover due to rapid weight loss.

The effects of ketogenic diets and BHB on osteoporosis are

the result of a multifactorial overlap. Conflicting results and the

lack of precise molecular and biochemical mechanisms of action

provide ample opportunities for future research. Emerging avenues

of research, including BHB-induced β-hydroxybutyrylation, may

play a role in modulating osteoporosis. Current clinical studies

have focused on adolescent subjects, and there is a lack of research

in the elderly population, where the prevalence of osteoporosis

is significantly higher. More targeted, longer-term, and broader

clinical studies, including precursor substances that induce ketone

bodies, or modified ketogenic diet formulation interventions for

different populations, may help to analyze the relationship between

ketone bodies and osteoporosis.
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