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Objective: This randomized controlled study investigated the independent and 
combined effects of High-Intensity Functional Training (HIFT) and spinach-
derived thylakoid supplementation on adipo-myokines, glycemic control, and 
lipid profiles in obese males. To compare the effects of HIFT alone, thylakoid 
supplementation (Thyl) alone, and their combination (HIFT+Thyl) on circulating 
adipokines (CTRP-2, CTRP-9, GDF-8, GDF-15), insulin resistance, and lipid 
profiles in obese adult males.
Methods: A total of 68 participants who were obese with BMI: 32.6 ± 2.6 kg/m2  
were randomly assigned to four groups (n = 17  in each group): thylakoid 
supplementation (Thyl), HIFT + Placebo High-Intensity Functional Training (HIFT), 
HIFT + thylakoid supplementation (HIFT+Thyl), and control+Placebo group (C). 
The training groups (HIFT and HIFT+Thyl) completed a 12-week program of 
three 60-min sessions per week. Participants in the Thyl and HIFT+Thyl groups 
dissolved and consumed 5 g/day of spinach extract high in thylakoids (or 
placebo) for 12 weeks. Baseline and post-intervention measurements included 
circulating C1Q/TNF or TGF-β related proteins (CTRP-2, CTRP-9, GDF-8, GDF-
15), insulin resistance (HOMA-IR, plasma glucose, and insulin), lipid profile 
(HDL-C, LDL-C, triglycerides [TG], total cholesterol [TC]), and body composition 
(BMI, fat mass [FM], and fat-free mass [FFM]). Randomization was performed 
using a block randomization method with allocation concealment.
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Results: There were significant group × time interactions for all variables (all 
p < 0.001): CTRP-9 (η2 = 0.6), CTRP-2 (η2 = 0.7), GDF-8 (η2 = 0.8), GDF-15 
(η2 = 0.4), BMI (η2 = 0.45), FM (η2 = 0.42), HDL-C (η2 = 0.37), LDL-C (η2 = 0.34), TC 
(η2 = 0.46), TG (η2 = 0.66), insulin (η2 = 0.78), glucose (η2 = 0.5), and HOMA-IR 
(η2 = 0.7). Compared with baseline, all interventions (HIFT, Thyl, and HIFT+Thyl) 
significantly decreased adipokine levels (CTRP-9, CTRP-2, GDF-8, GDF-15), 
BMI, fat mass, LDL-C, TC, TG, insulin, glucose, and HOMA-IR, while increasing 
HDL-C (all p < 0.05). Post-hoc between-group comparisons showed that 
HIFT+Thyl resulted in significantly greater improvements in all adipo-myokines, 
lipid profile, glycemic and insulin control, and body fat compared to Thyl alone 
(all p < 0.05). HIFT and HIFT+Thyl showed comparable reductions in BMI, fat 
mass, and improvements in lipid profile and insulin sensitivity.
Conclusion: These findings indicate that HIFT combined with spinach-derived 
thylakoid supplementation significantly decreases circulating adipo-myokines 
and improves insulin resistance and lipid profiles in obese adults, suggesting a 
promising lifestyle intervention for obesity management and cardiometabolic 
disease prevention. Further research is warranted to explore long-term effects 
and underlying mechanisms.
Clinical Trial Registration: https://irct.behdasht.gov.ir/trial/69048, identifier 
(IRCT20151228025732N77).
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Introduction

Adipose tissues and skeletal muscles act as active endocrine 
organs, secreting a variety of proteins, known as adipokines and 
myokines, which play crucial roles in maintaining cardiometabolic 
health (1–5). Adipokines, such as adiponectin are involved in 
regulating fat and glucose metabolism and mediating associated 
pathological and physiological processes (6). Tumor necrosis factor 
C1q (C1q/TNF)-related proteins (CTRPs) are members of the 
adiponectin family, which include CTRP-1 to CTRP-15 (7). While 
several in-vitro and in-vivo reports linked each CTRP with a specific 
metabolic pathway of lipid and glucose regulation (8–15), two CTRPs, 
CTRP-2 and CTRP-9 have been specifically associated with 
mechanisms of obesity and insulin resistance metabolic dysfunction 
(16, 17). Moreover, the myokines, transforming growth factor-beta 
(TGF-β) members, such as Growth differentiation factor 8 & 15 
(GDF-8 & 15), are associated with pathological conditions such as 
obesity and diabetes. It has been demonstrated that baseline levels of 
myostatin (GDF-8) are elevated in skeletal muscle in individuals with 
obesity (18). In vitro and in vivo evidence suggests that GDF-8 affects 
protein synthesis by acting on the Akt/mTOR pathway and acting as 
a negative regulator (19, 20). Knockout/genetic deletion of GDF-8 in 
mice is accompanied by increased skeletal muscle mass and 
improvement in insulin resistance and lipid profile such as increased 
HDL-C and decreased LDL-C (21). GDF-15 is expressed in and 
secreted by various cell types including both adipocytes and skeletal 
muscles in response to cellular stress (22). In addition to its new 
function as a component that controls energy metabolism and 
homeostasis, GDF-15 is thought to have protective effects on a 
number of organs (19, 20). Mice overexpressing GDF-15 have been 
shown to have altered appetite and body weight management (21, 22). 
However, elevated GDF-15 levels have also been implicated in a 

number of pathophysiological conditions related to muscle atrophy 
and cachexia in intensive care patients (23), non-fatty liver disease in 
overweight adolescents (24), and lower physical performance in older 
adults (25). The paradoxical role of GDF-15 in obesity treatment is still 
a matter of research interest (26).

Regular physical activity is well established as an effective 
prevention and management of obesity and cardio metabolic diseases 
(27). High-Intensity Functional Training, is a modern fitness method 
that focuses on diverse, practical exercises performed at high intensity 
such as single-mode aerobic activities (e.g., running, cycling, rowing), 
body weight movements (e.g., squats, push-ups), and strength-based 
exercises (e.g., shoulder press, snatch, deadlift) (28). HIFT trains both 
aerobic and anaerobic systems and elicits greater muscle recruitment 
than repetitive aerobic exercises, and a degree of adaptability various 
fitness levels and potential adherence (28). Limited recent 
interventions with HIFT in adults with obesity, diabetes and metabolic 
syndrome, lasting between 6 and 12 weeks, have reported promising 
improvements in body composition and lipid profile, insulin resistance 
and physical fitness (29–31). However, there are no reports about 
levels of adiponectin and TGF-β members, and associated mechanisms 
in individuals with obesity in response to HIFT. Whereas, moderate 
exercise showed conflicting results on CTRP-2 and CTRP-9 levels in 
patients with obesity complications (32, 33). Twelve weeks of 
resistance training have either decreased plasma myostatin GD-8 
levels in type-2 diabetes (T2D) patients or increased myofibril 
biopsied levels in healthy men (34). Furthermore, an increase in 
GDF-15 level was accompanied by an improvement in metabolic 
factors following aerobic and resistance training (35–38). Therefore, 
it would be  important to know whether and how HIFT type 
intervention encompassing different types of aerobic, resistance and 
functional, would affect the adipokines like CTRP-2 & 9 and 
GDF-8 & 15.
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Previously reported effectiveness of a combined exercise 
intervention with functional foods, especially green leafy vegetables 
has been well documented in a variety of high-risk populations (39). 
In the context of ameliorating obesity and associated risk of diabetes, 
there has been some recent evidence of spinach derived thylakoids 
benefits on appetite suppression, improved glucose, insulin and lipid 
profiles in overweight individuals (40–42). However, there remains a 
question whether and how thylakoid- rich spinach consumption 
affects Adipo-Myokine.

Despite growing evidence on the individual benefits of HIFT and 
thylakoids, a notable research gap exists regarding their combined 
effects on adipo-myokines and comprehensive metabolic health 
markers in obese populations. Specifically, the interplay between these 
interventions and their impact on specific adipokines (CTRP-2 & 9) 
and myokines (GDF-8 & 15) remains underexplored. Therefore, this 
study aimed to investigate the independent and combined effects of 
HIFT, spinach-derived thylakoid supplementation (Thyl), or their 
combination (HIFT+Thyl) on obesity-related adipo- and myokines 
(CTRP-2 & 9 and GDF-8 & 15), as well as their impact on glycemic 
control, lipid profile, and cardiorespiratory fitness in men with obesity. 
We hypothesized that the combined HIFT+Thyl intervention would 
result in greater improvements in these primary outcomes compared 
to either intervention alone or control.

Methods

Experimental design and participants

This randomized controlled trial adopted a parallel design and 
involved 100 male adults with obesity who volunteered to participate. 
Ultimatesubjly, 68 individuals meeting the inclusion criteria were 
included in the study. The participants had a mean age of 
27.6 ± 8.4 years, mean height of 168.4 ± 2.6 cm, mean body mass of 
95.7 ± 3.8 kg, and a mean Body Mass Index (BMI) of 32.6 ± 1.6 kg/m2.

Inclusion criteria required participants to have obesity, defined by a 
BMI greater than 30 kg/m2, no engagement in regular physical activity, 
and no alcohol consumption within the 6 months preceding the study. 
The exclusion criteria were physical limitations, joint problems, endocrine, 
metabolic, and cardiovascular illnesses, as well as the use of prescription 
drugs and supplements that may interfere with the metabolic processes 
of muscle and adipose tissue. Individuals taking over-the-counter 
medications containing caffeine, protein, etc., were also excluded.

All participants had a familiarization session 1 week prior to the 
start of the intervention programs, when study protocols were clearly 
discussed. They completed written informed consent and a Physical 
Activity Readiness Questionnaire (PAR-Q) (43). The PAR-Q is a widely 
used screening tool for physical activity readiness, and its validity and 
reliability have been well-established in various populations. The 
participants’ diet was monitored using a 24-h food recall questionnaire. 
The Research and Ethics Committee of the Islamic Azad University 
(Damghan Branch) approved all procedures of this study (Ethics code: 
IR.IAU.DAMGHAN.REC.1401.034). The research was also registered 
at the Iranian Registry of Clinical Trials1 with code IRCTID: 

1  https://irct.ir/trial/69048

IRCT20151228025732N77. All procedures were performed according 
to the latest revision of the Declaration of Helsinki (44).

Participants underwent a physical assessment conducted by an 
examinator during the initial visit. Subsequently, baseline assessments, 
including anthropometry, body composition, cardiorespiratory, and 
blood tests, were conducted during a second visit. These evaluations 
occurred at two stages: baseline and after the 12-week training period. 
Post-tests was place in all groups 48 h following the final session, and 
baseline evaluations were carried out 48 h before to the training and/or 
supplementation regimens. Under constant ambient conditions, study 
measures were routinely taken in the morning and within an hour. 
Random assignment then placed participants into one of four equal 
groups: Control (C), Supplement (Thyl), Training (HIFT), and Training 
+ Supplement (HIFT+Thyl) (Figure 1). The randomization procedure 
involved a computer-generated block randomization list, with a block 
size of four, ensuring an equal number of participants in each group. 
Allocation concealment was maintained by using opaque, sealed 
envelopes prepared by an independent researcher not involved in 
participant recruitment or data collection. This was a single-blinded 
study, where participants were unaware of their group assignment 
(placebo or thylakoid), but researchers and trainers were not blinded to 
the training intervention. A similar diet was followed by participants in 
the intervention protocols 48 h prior to the baseline and final measures.

However, 8 participants withdrew during the study due to reasons 
such as poor physical fitness, joint weakness, and others, resulting in 
15 participants in each group. The sample size was calculated a priori 
based on detecting a clinically meaningful difference in adiponectin 
levels. Assuming an effect size (Cohen’s d) of 0.8 for adiponectin, with 
an alpha level of 0.05 and a power of 90%, it was determined that 14 
participants per group would be required. Allowing for a potential 
dropout rate of 20%, we aimed to recruit 17 participants per group, 
totaling 68 participants. After baseline measurements, the HIFT group 
commenced the 12-week training program (3 sessions per week), the 
Thyl group initiated the 12-week supplementation intervention, and 
the HFT + Thyl group commenced both training and supplementation. 
The control group maintained their existing lifestyles throughout the 
12-week of research.

Baseline assessments

Assessment of body composition
BMI (kg/m2) was calculated by measuring body mass (kg) and 

height (m). To determine fat-free mass (FFM) and fat mass (FM), a 
bio-electrical impedance analyzer from Medigate Company Inc. 
(Dan-dong Gunpo, Korea) was utilized.

Before every test, the gas analyzer system (Metalyzer 3B analyzer, 
Cortex: biophysics, GMbH, Germany) was calibrated in accordance 
with manufacturer specifications. An electronic sphygmomanometer 
(Kenz BPM AM 300P CE, Japan) was used to measure blood pressure, 
and a Polar V800 heart monitor (Finland) was used to record 
heart rate.

Preparation of spinach thylakoids and placebo
Following established techniques (45–47), the thylakoid 

supplement was prepared from a fresh baby spinach leaf in the 
laboratory of Islamic Azad University, following the procedure 
outlined by Emerk et al. (47).
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The process involved washing and soaking fresh spinach leaves 
in cold water after removing stems and veins. The homogenized 
spinach leaves were then filtered, and the filtrate was diluted and 
adjusted to pH 4.7 using hydrochloric acid (HCl). After standing in 
the cold for 4 h, the thylakoids precipitated, forming a green 
precipitate. The filtrate thylakoids were collected through 
centrifugation, washed, freeze and dried to produce a green 
chloroplast powder adjusted to pH 7.0.

The placebo, resembling the thylakoid powder, was made of edible 
green maize starch with kiwi flavor extract. Corn starch was chosen 
for its adaptability and ease of modification.

The specified amount, 5 grams, of the material was evenly 
distributed and enclosed in identical sachets and participants 
dissolved and consumed the contents of 1 sachet in water 30 min 
before lunch. The timing of 30 min before lunch was chosen based 
on previous research demonstrating optimal thylakoid-induced 
satiety and appetite suppression when consumed prior to a meal, 
allowing for sufficient gastrointestinal transit and release of 
satiety hormones.

To ensure compliance, participants were reminded through 
weekly phone calls, daily text messages, and a supplement 
consumption chart turned in at each visit. Compliance was assessed 

FIGURE 1

CONSORT flow diagram.
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by counting leftover sachets, with participants considered adherent if 
they consumed 80% or more of the extracts. For the training groups, 
adherence was monitored by attendance records at each session, and 
participants were considered compliant if they completed at least 80% 
of the prescribed training sessions.

High-intensity functional training (HIFT)
A certified trainer implemented the High-Intensity Functional 

Training (HIFT) protocol, comprising 36 sessions over 3 days per 
week, each lasting up to 60 min. Participants were familiarized with 
the training movements in the initial two sessions. From the third 
session onward, HIFT sessions involved 10–15 min of stretching and 
warm-up, followed by 10–20 min of technique practice. The core of 
each session consisted of a high-intensity workout lasting 5–30 min, 
known as the Workout of the Day (WOD). Modalities included 
aerobic activities (e.g., running, jumping rope), body weight 
movements (e.g., squats, pull-ups, pushups), and resistance-based 
exercises (e.g., front squats, kettlebell swings). The CrossFit training 
template was employed, ensuring constant variation in exercise 
programming. Training loads were adapted to each participant’s 
physical conditions. The average duration for each workout session 
and the overall mean workout time per week were computed for the 
HIFT groups.

Participants aimed to complete each workout as quickly as 
possible or achieve as many repetitions as possible. Metrics such as 
time to completion, repetitions, and any modifications made were 
recorded for each participant, along with the weight used.

Detailed Training Protocol: The HIFT program followed a 
structured progression, adapting loads and complexity based on 
individual participant’s fitness levels, ensuring adherence to the 
principles of specificity (exercises mimicking functional movements 
and targeting energy systems relevant to HIFT), individualization 
(adjusting intensity and volume to individual capacities), and 
progressive overload (gradually increasing demands over the 
12 weeks). The full program for all 36 sessions, including specific 
WODs, exercise variations, prescribed repetitions/times, and load 
progression guidelines, will be provided in a supplementary file.

Blood biomarkers
Blood samples were drawn from the right antecubital vein after a 

fast 12 h and 72 h before the first workout and 72 h after the last 
workout. The samples were collected in EDTA-containing tubes, 
centrifuged for 10 min at 3000 rpm, and then kept at −70°C until 
additional testing was done. The testing methods were always 
conducted in the same manner and under the same time constraints, 
which were 8 to 10 am. Plasma glucose levels were measured using a 
colorimetric enzymatic kit (Parsazmun, Tehran, Iran) with a sensitivity 
of 5 mg/dL.

	•	 Insulin resistance was evaluated using the homeostasis model of 
assessment for insulin resistance (HOMA) calculated as follows: 
HOMA-IR = 22.5 μmol/(fasting plasma insulin × fasting 
plasma glucose).

	•	 Plasma total cholesterol (TC) and triglyceride (TG) levels were 
measured by enzymatic methods (CHOD-PAP).

	•	 High-density cholesterol (HDL-C) and low-density cholesterol 
(LDL-C) were determined using a photometric method (Pars 
Testee’s Quantitative Detection kit, Tehran, Iran) with a 

coefficient and sensitivity of 1.8% and 1 mg/dL, and 1.2% and 
1 mg/dL, respectively.

	•	 Insulin levels were measured with an ELISA kit (Demeditec, 
Germany) with a sensitivity of 1 ng/mL and within-coefficients 
of variation between 5.1 and 8.4%.

	•	 Plasma CTRP-9 was quantified using an enzyme-linked 
immunosorbent assay (ELISA) kit (Aviscera Bioscience, USA; 
Catalogue No: SK00081-02, Sensitivity: 1 ng/mL, Intra-CV = 4%, 
inter-CV = 8%).

	•	 CTRP-2 was measured with an ELISA kit (MyBioSource, San 
Diego, CA, USA) with a minimum detectable dose (MDD) of 
0.039 ng/mL and detection range of 0.156–10 ng/mL (intra-assay 
CV: < 8%, inter-assay < 10%).

	•	 GDF-15 levels were determined using an ELISA kit (Thermo 
Scientific, Frederick, MD, USA) with a sensitivity of 2 pg/mL and 
a detection range of 1.10–800 pg/mL (intra-assay CV < 10%, 
inter-assay CV < 12%).

	•	 Plasma GDF-8 was measured with an ELISA kit (R&D Systems, 
USA; Catalogue No: DGDF80, Sensitivity: 5.32 pg/mL, 
Intra-CV = 5.4%, inter-CV = 6%).

Statistical analysis

The study employed descriptive statistics (means ± standard 
deviation) to summarize the data, with the normality of the data 
assessed using the Shapiro–Wilk test. Baseline data across all groups 
were evaluated using one-way ANOVA and Fisher LSD post-hoc 
tests. To assess interactions between groups (C, Thyl, HIFT, 
HIFT+Thyl) and time (pre and post), a two-way ANOVA repeated 
measures test was conducted. Tukey’s post hoc test and pairwise 
comparisons were employed when ANOVA detected significant 
differences. Effect sizes (ES) were reported in terms of partial 
eta-squared, categorized as trivial (< 0.2), small (0.2–0.6), moderate 
(0.6–1.2), large (1.2–2.0), and very large (2.0–4.0). Statistical analysis 
was carried out using SPSS software (version 24), with the 
significance level set at (p < 0.05).

Results

Plasma adipokines levels

Plasma adipokines variables showed significant group x time 
interactions for CTRP-9 (η2 = 0.6, p < 0.001), CTRP-2 (η2 = 0.7, 
p < 0.001), GDF-8 (η2 = 0.8, p < 0.001) and GDF-15 (η2 = 0.4, 
p < 0.001) (Table 1). Within-group analysis revealed that levels of 
CTRP-2, CTRP-9, GDF-8, and GDF-15 significantly decreased in the 
HIFT and HIFT+Thyl groups (all p < 0.05), but not in the control 
group (all p > 0.05). The Thyl group also showed significant decreases 
in CTRP-2, CTRP-9, GDF-8, and GDF-15 (all p < 0.05).

Post-hoc multiple comparisons between the intervention groups 
showed a greater reduction in the HIFT+Thyl group compared to 
either HIFT or Thyl groups for CTRP-9 (p < 0.05) and GDF-8 
(p < 0.05). Additionally, the HIFT+Thyl group demonstrated a greater 
reduction in CTRP-2 (p < 0.05) and GDF-15 (p < 0.05) compared to 
the Thyl group. No significant difference was found between 
HIFT+Thyl and HIFT groups for GDF-15 (p = 0.4) and CTRP-2 
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(p = 0.5), and no difference between either Thyl or HIFT, or Thyl and 
Control groups was found for CTRP-9 (p = 0.2, p = 0.1 respectively).

Anthropometry, body composition, lipid 
profile, and cardio-respiratory fitness 
variables

Obesity related anthropometric, lipid profile and cardiorespiratory 
variables showed significant group x time interactions for body weight 
with effect size (0.37), FFM (0.23), FM (0.42), HDL-C (0.37), LDL-C 
(0.34), TC (0.46) and TG (0.66) (all p < 0.05, ANOVA main effects), 
(Table 2). Within and between group differences were also different 
(p < 0.05, main ANOVA effects for all aforementioned variables). Post 
hoc comparisons showed significant effects of the Thyl, HIFT and 
HIFT+Thyl interventions, but not in the control group, in all of the 
measured variables (p < 0.05).

Pairwise comparisons among the control group and all HIFT 
and HIFT+Thyl groups revealed significant differences in 
anthropometric, body composition, and cardiorespiratory fitness 
variables (p < 0.05). Notably, the Thyl group displayed no significant 
differences compared to the control group for BMI (p = 0.62), TG 
(p = 0.78), and HDL (p = 0.22). However, all pairwise comparisons 
between Thyl and HIFT groups were statistically significant 
(p < 0.05), except for body weight (p = 0.06), BMI (p = 0.87), and 
FFM (p = 0.78). No significant differences were identified between 
HIFT and HIFT+Thyl in body weight (p = 0.57), FM (p = 0.64), 
HDL (p = 0.78), LDL-C (p = 0.68), TC (p = 0.31), and TG (p = 0.1). 
Furthermore, HIFT+Thyl showed significant differences compared 
to Thyl across anthropometry, body composition, lipid profile, and 

cardiorespiratory fitness variables (p < 0.05), except for FFM 
(p = 0.14).

Insulin, glucose, and HOMA-IR

There was a significant effect for groups, time, and interaction 
(group × time) for insulin, glucose and HOMA-IR variables (p < 0.05), 
(Table  2). While the intervention significantly affected the 
aforementioned variables in the Thyl, HIFT, and Thyl+HIFT 
(p < 0.05), there was no significant changes in the control group 
(p > 0.05). The post hoc comparisons also showed significant 
differences post intervention between the control group and all 
intervention groups (Thyl, HIFT, and Thyl+HIFT) (p < 0.01). When 
comparing HIFT and HIFT+Thyl through pairwise analysis, no 
significant differences were observed in glucose levels (p = 0.33) and 
HOM-IR (p = 0.9). However, the HIFT+Thyl intervention 
demonstrated significantly lower levels of insulin, glucose, and 
HOM-IR compared to the Thyl group (all p < 0.05).

Discussion

The primary conclusion of this study reveals that combining 
High-Intensity Functional Training (HIFT) with spinach-derived 
thylakoid extract effectively reduces obesity-related adipo-
myokines (CTRP-2 & 9 and GDF-8 & 15). Additionally, the 
intervention improved lipid profiles and glucose homeostasis in 
men with obesity. These effects, observed at the cellular level, 
contributed to overall improvements in cardiorespiratory capacity 

TABLE 1  Mean, standard deviations (±) and effect size (η2) of adipokines.

Adipokines Group Pre-training
Mean (±SD)

Post-training
Mean (±SD)

p values (η2)

Time G × T interaction Group

CTRP-9 (ng/ml)

C 148.9 (±7.9) 153.7 (±10.1)

0.001 (0.6) 0.001 (0.6)$ 0.001 (0.6)
Thyl 145.2 (±9.3) 133.8 (±12.3)*,#

HIFT 150.1 (±9.6) 127.1 (±10.9)*,#

HIFT+Thyl 153.5 (±9.6) 106.8 (±12.1)*,#

CTRP-2 (ng/ml)

C 5.1 (±0.5) 4.9 (±0.3)

0.001 (0.8) 0.001 (0.7)$ 0.001 (0.8)
Thyl 4.7 (±0.5) 4 (±0.4)*,#

HIFT 5.3 (±0.4) 2.9 (±0.3)*,#

HIFT+Thyl 4.8 (±0.4) 2.8 (±0.3)*,#

GDF-8 (pg/ml)

C 11.8 (±0.8) 12 (±0.5)

0.001 (0.8) 0.001 (0.8)$ 0.001 (0.7)
Thyl 11.9 (±0.7) 10.1 (±0.4)*,#

HIFT 12.1 (±0.6) 9.5 (±0.5)*,#

HIFT+Thyl 12.0 (±0.9) 8.1 (±0.4)*,#

GDF-15 (pg/ml)

C 4.0 (±0.4) 3.9 (±0.4)

0.001 (0.6) 0.001 (0.4)$ 0.001 (0.4)
Thyl 3.9 (±0.3) 3.6 (±0.2)*,#

HIFT 3.9 (±0.5) 3.1 (±0.5)*,#

HIFT+Thyl 4.1 (±0.3) 3.0 (±0.2)*,#

C1q-TNF related protein 9 (CTRP9), C1q-TNF related protein 2 (CTRP2), growth/differentiation factor 8 (GDF8), growth/differentiation factor 15 (GDF15).
*p < 0.05 compared to Pre-training values within the same group. #p < 0.05 compared to the Control group post-intervention. $Significant interaction between time and groups (main ANOVA 
effects, p < 0.05).
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TABLE 2  Mean, standard deviations (±) and effect size (η2) of anthropometry, body composition, lipid profile, insulin resistance and cardio-respiratory 
fitness variables.

Variables Group Pre-training
Mean (±SD)

Post-training
Mean (±SD)

p values (η2)

Time G × T interaction Group

Weight (Kg)

C 94.33 (±1.82) 93.55 (±2.43)

0.001 (0.63) 0.001 (0.44)$ 0.001 (0.37)
Thyl 93.28 (±2.61) 91.13 (±2.12)*,#

HIFT 92.78 (±1.89) 89.19 (±2.37)*,#

HIFT+Thyl 94.13 (±1.90) 87.25 (±2.30)*,#

BMI (kg/m2)

C 33.08 (±1.34) 32.87 (±1.44)

0.001 (0.63) 0.001 (0.45)$ 0.11 (0.14)
Thyl 32.66 (±1.37) 31.93 (±0.93)*

HIFT 33.22 (±1.07) 31.85 (±1.19)*,#

HIFT+Thyl 33.05 (±0.75) 30.68 (±0.95)*,#

FFM (kg)

C 27.63 (±1.20) 26.54 (±2.25)

0.001 (0.46) 0.001 (0.43)$ 0.01 (0.23)
Thyl 27.09 (±1.81) 29.36 (±0.92)*,#

HIFT 26.72 (±1.27) 29.54 (±1.5)*,#

HIFT+Thyl 27.18 (±1.77) 30.36 (±1.2)*,#

Fat percentage (%)

C 30.09 (±1.51) 30.83 (±2.05)

0.001 (0.54) 0.001 (0.46)$ 0.001 (0.42)
Thyl 30.10 (±1.59) 28.08 (±0.79)*,#

HIFT 30.36 (±1.50) 26.89 (±0.95)*,#

HIFT+Thyl 31.13 (±1.35) 26.62 (±1.21)*,#

HDL (mg.dl−1)

C 39.34 (±1.22) 38.43 (±1.30)

0.001 (0.72) 0.001 (0.73)$ 0.001 (0.37)
Thyl 38.88 (±1.23) 39.74 (±3.99)*

HIFT 38.66 (±1.67) 44.51 (±1.34)*,#

HIFT+Thyl 38.56 (±1.41) 44.80 (±2.12)*,#

LDL (mg.dl−1)

C 125.22 (±4.47) 125.02 (±4.70)

0.001 (0.91) 0.001 (0.86)$ 0.001 (0.34)
Thyl 125.56 (±5.42) 121.41 (±5.24)*,#

HIFT 126.75 (±4.38) 111.20 (±2.92)*,#

HIFT+Thyl 127.14 (±3.64) 110.50 (±2.52)*,#

TC (mg.dl−1)

C 226.70 (±5.27) 226.81 (±5.26)

0.001 (0.97) 0.001 (0.96)$ 0.001 (0.46)
Thyl 227.44 (±5.48) 222.09 (±5.19)*,#

HIFT 227.81 (±5.29) 207.44 (±4.95)*,#

HIFT+Thyl 227.38 (±5.49) 205.23 (±4.77)*,#

TG (mg.dl−1) C 242.10 (±4.39) 242.81 (±3.85)

0.001 (0.90) 0.001 (0.89)$ 0.001 (0.62)
Thyl 245.83 (±5.93) 242.05 (±5.40)*

HIFT 244.58 (±7.48) 217.39 (±9.88)*,#

HIFT+Thyl 242.92 (±5.96) 212.85 (±4.64)*,#

Insulin (ng.ml)−1 C 18.81 (±0.67) 19.12 (±0.57)

0.001 (0.84) 0.001 (0.78)$ 0.001 (0.77)
Thyl 18.80 (±0.75) 17.60 (±0.51)*,#

HIFT 18.83 (±0.40) 16.12 (±0.43)*,#

HIFT+Thyl 19.12 (±0.49) 15.51 (±0.55)*,#

Glucose (mg.dl−1) C 96.44 (±13.10) 90.73 (±6.43)

0.001 (0.8) 0.001 (0.5)$ 0.02 (0.21)
Thyl 98.99 (±10.71) 84.77 (±4.50)*,#

HIFT 99.27 (±5.72) 74.08 (±5.43)*,#

HIFT+Thyl 101.63 (±7.13) 71.51 (±7.71)*,#

(Continued)
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and body composition. The combined approach of HIFT and 
thylakoid supplementation plays a critical role in mitigating 
obesity-related risks, particularly Type 2 Diabetes (T2D) and 
cardiovascular disease.

Recent studies highlight CTRP-9’s role in insulin resistance, where 
increased concentrations improve glucose homeostasis. A moderate 
increase in CTRP-9 expression, induced in mice through an adenoviral 
vector, decreased blood glucose and insulin levels. Conversely, 
prolonged overexpression of CTRP-9 led to a lean phenotype, while 
deletion of the CTRP-9 gene resulted in insulin resistance and 
impaired metabolic function (43). The administration of recombinant 
CTRP-9 enhanced AMPK activation and fatty acid oxidation, 
suggesting that upregulation of CTRP-9 may compensate for severe 
obesity and insulin resistance (44). The current study supports these 
findings by showing that exercise training and thylakoid 
supplementation reduce CTRP-9, likely improving body composition 
and insulin resistance (32).

CTRP-2 levels were also affected by HIFT and thylakoid 
supplementation. A study by Jerobin et  al. indicated that plasma 
CTRP-2 concentrations increase in response to lipid infusion, 
suggesting that CTRP-2 plays a role in lipid and energy metabolism 
(32). Mice lacking CTRP-2 exhibit increased energy expenditure and 
enhanced lipolytic enzyme expression. In contrast, transgenic mice 
overexpressing CTRP-2 demonstrate improved free fatty acid (FFA) 
clearance and higher glucose disposal rates (48). These results suggest 
that CTRP-2 plays a role in lipid metabolism and glucose homeostasis, 
and its regulation could be  a key factor in managing obesity and 
related metabolic diseases.

GDF-8, a myokine involved in regulating skeletal muscle mass, 
has been associated with impaired metabolic health, including 
elevated BMI, fasting plasma glucose, and dyslipidemia (49, 50). 
Suppressing GDF-8 in skeletal muscle has shown to improve insulin 
sensitivity and prevent diabetes development in mouse models (51). 
Studies have demonstrated that exercise, especially aerobic training, 
reduces GDF-8 levels, thereby improving insulin sensitivity (45, 46). 
In this study, GDF-8 levels decreased by around 30% following HIFT 
and thylakoid supplementation, accompanied by improvements in 
insulin sensitivity and glucose homeostasis, supporting the notion that 
GDF-8 may be  a crucial mediator of metabolic health in 
obese individuals.

GDF-15, another key biomarker, is elevated in obesity and 
associated with inflammation-related diseases. It is suggested that 
increased glucose and insulin levels in obesity trigger the release of 
GDF-15, which correlates with body weight, body fat, and 
triglyceride levels (47). In obese and T2D individuals, increased 
GDF-15 levels are linked to hyperinsulinemia and adiposity 

progression (47). Despite these associations, studies show that 
regular exercise can elevate GDF-15 levels, which correlates with 
improved insulin sensitivity, fat mass reduction, and enhanced 
β-cell function (37). In this study, we  observed a reduction in 
GDF-15 alongside improvements in metabolic health, including 
blood lipids, insulin resistance, and body composition. These 
findings further support the notion that exercise and thylakoid 
supplementation may exert therapeutic effects by modulating 
GDF-15 levels, ultimately improving cardiometabolic health.

This study also demonstrated that thylakoid supplementation, 
particularly in combination with HIFT, had favorable effects on 
BMI, lipid profile, and markers of cardiometabolic health, 
including insulin, glucose, HOMA-IR, and peak cardiorespiratory 
capacity (Table 2). Previous research has shown that thylakoids 
can improve obesity-related markers, including blood lipids, 
glucose, and insulin resistance, as well as body composition (41, 
42). Over 12 weeks, thylakoid supplementation significantly 
reduced body weight, waist circumference, LDL-C, fasting blood 
glucose, and insulin in overweight and obese women (41). In 
animal studies, thylakoid supplementation decreased food intake, 
body weight, and body fat in female apo-E mice (52). These effects 
are thought to be linked to altered hunger perception and energy 
intake, including a reduction in the desire for palatable foods (41, 
53, 54). Thylakoids also inhibit pancreatic lipase, which reduces 
lipid digestion and absorption, leading to a suppression of appetite 
and activation of satiety signals (55, 56). Our study aligns with 
these findings, showing that thylakoid supplementation led to a 
reduction in body mass, body fat %, and fat mass, along with 
improvements in metabolic health.

While the results of this study support the beneficial effects of 
HIFT and thylakoid supplementation on metabolic health, the 
mechanisms by which these interventions influence plasma adipo-
myokines, body composition, and metabolic markers remain 
unclear. It is essential to investigate whether changes in circulating 
adipo-myokines are causal, facilitating, or simply reflective 
of improved body composition following exercise and 
supplementation in obese individuals. Further studies are needed 
to explore the specific effects of HIFT and thylakoid 
supplementation on adipo-myokines and their relationship to 
metabolic health in obesity.

Limitations

A significant strength of this study is its randomized controlled 
design, employing a combined intervention approach to assess 

TABLE 2  (Continued)

Variables Group Pre-training
Mean (±SD)

Post-training
Mean (±SD)

p values (η2)

Time G × T interaction Group

HOMA-IR C 4.48 (±0.70) 4.27 (±0.30)

0.001 (0.87) 0.001 (0.7)$ 0.001 (0.44)
Thyl 4.58 (±0.46) 3.68 (±0.25)*,#

HIFT 4.61 (±0.24) 2.94 (±0.26)*,#

HIFT+Thyl 4.79 (±0.38) 2.73 (±0.31)*,#

*p < 0.05 compared to Pre-training values within the same group. #p < 0.05 compared to the Control group post-intervention. $Significant interaction between time and groups (main ANOVA 
effects, p < 0.05).
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synergistic effects. The detailed monitoring of training adherence 
and supplement consumption further strengthens the internal 
validity. However, limitations include the relatively small sample 
size per group, which may limit the generalizability of the findings 
to a broader obese population. The single-blinded nature of the 
study for supplementation, while necessary, meant that trainers and 
researchers were not blinded to the training intervention, which 
could introduce some bias. Future research should consider larger 
cohorts, double-blinded designs where feasible, and long-term 
follow-up to assess the sustainability of these metabolic 
improvements. Further mechanistic studies are also warranted to 
fully elucidate the pathways through which HIFT and thylakoids 
interact to influence adipo-myokines.

Conclusion

These findings conclusively demonstrate that combining HIFT 
with spinach-derived thylakoid supplementation is an effective 
strategy for significantly decreasing circulating adipo-myokines and 
improving insulin resistance and lipid profiles in adults with obesity. 
This integrated HIFT-thylakoid approach offers a potent lifestyle 
intervention, directly supporting its inclusion in comprehensive 
obesity management and cardiometabolic disease prevention 
programs. Further randomized controlled trials with larger sample 
sizes and longer follow-up periods are warranted to confirm these 
benefits and investigate optimal intervention parameters.
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