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Background: Cardiometabolic multimorbidity (CMM) has emerged as a global 
health challenge with a high mortality risk. This study aimed to explore the 
association between the metabolic score for insulin resistance (METS-IR) and 
the incidence of CMM.

Methods: This study included 6,977 individuals in the CHARLS database. We used 
multiple cox proportional hazards regression and restricted cubic splines (RCS) 
analysis to evaluate the association between METS-IR and CMM. Subgroup 
analyses and interaction tests were also performed.

Results: During a median 109 (108–109) months of follow-up, 745 (10.7%) 
participants were diagnosed with new-onset CMM. The incidences of CMM 
among participants in quartiles (Q) 1–4 of METS-IR were 4.99, 7.51, 10.67, and 
19.54%, respectively. METS-IR was significantly higher in individuals with CMM 
compared to those without CMM (p < 0.001). After multivariate adjustment, 
a higher METS-IR was significantly associated with an increased risk of CMM. 
Compared to participants in Q1 of METS-IR, the hazard ratios (HRs) (95% 
confidence intervals [CIs]) using cox proportional hazards regression analysis 
for those in Q2–4 were 1.52 (1.15–2.00), 2.02 (1.56–2.63), and 3.61 (2.80–4.64), 
respectively. RCS analysis revealed a significant nonlinear association between 
METS-IR and CMM (nonlinear p < 0.05). The association between METS-IR and 
the incidence of CMM was present in almost all the subgroups. Furthermore, the 
predictive ability of METS-IR for CMM was 0.669, which surpassed that of both 
the triglyceride to high-density lipoprotein cholesterol ratio and the triglyceride 
glucose index.

Conclusion: A higher METS-IR was closely associated with an increased risk 
of CMM. Further studies on METS-IR could be  beneficial for preventing and 
treating CMM.
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Introduction

Cardiometabolic multimorbidity (CMM), defined as the simultaneous presence of at least 
two cardiometabolic diseases, including heart disease, diabetes, and stroke, constitutes one of 
the most common and severe multimorbidity profiles (1, 2). Previous study has reported that 
individuals with CMM exhibited nearly a two-fold higher risk of all-cause mortality compared 
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to those with individual cardiometabolic diseases (CMD) (3). 
Additionally, CMM has been demonstrated to be  associated with 
frailty (4), cognitive decline (5), and even dementia (6). Over the past 
few decades, the prevalence of CMM has significantly increased due 
to the rise in life expectancy and various risk factors associated with 
cardiovascular diseases, imposing substantial health and economic 
burdens on both society and individuals (6, 7). However, previous 
studies have primarily focused on individual CMD, rarely exploring 
this complex condition in its entirety. Given the severity of CMM and 
its rapidly increasing incidence globally (8), early prediction of CMM 
is crucial for timely diagnosis and treatment, aiming to reduce the 
adverse outcomes.

Insulin resistance (IR), characterized by a diminished response to 
insulin in target cells, has been reported to be associated with various 
diseases, including hypertension, diabetes, and coronary artery 
disease (9, 10). The hyperinsulinemic euglycemic clamp (HEC) has 
long been considered as the gold standard for assessing insulin 
resistance (11). However, its invasive, expensive, and complex nature 
limits its applicability in large-scale clinical and epidemiological 
studies (12, 13). Additionally, other insulin-based IR metrics are also 
constrained in practical application due to concerns regarding their 
accuracy and stability (12, 14). The metabolic score for insulin 
resistance (METS-IR), a novel surrogate indicator of insulin resistance, 
has gained increasing attention in recent years (14). In a cross-
sectional study involving 1,576 participants without cardiovascular 
disease, increased METS-IR was correlated with a higher prevalence 
of coronary artery calcification (15). Su et al. found that METS-IR was 
positively associated with the risk of heart failure (16). A cohort study 
by Duan et al. indicated that METS-IR was a significant predictor of 
all-cause and cardiovascular mortality in the U.S. population (17). 
Additionally, METS-IR was demonstrated to be independently and 
positively associated with the risk of prediabetes in the Chinese 
population (18). However, these studies have primarily focused on the 
relationships between METS-IR and individual CMD. To date, no 
research has assessed the association between METS-IR and CMM 

using a prospective cohort. In the present study, we  performed a 
longitudinal analysis using data from the China Health and Retirement 
Longitudinal Study (CHARLS) to evaluate the predictive value of 
METS-IR for the risk of developing CMM among the 
Chinese population.

Materials and methods

Study population

Study participants were drawn from the China Health and 
Retirement Longitudinal Study (CHARLS), which is a nationally 
representative longitudinal survey of residents in rural and urban 
areas of China of ≥45 years old that commenced in 2011 and their 
spouse. Detailed information regarding the study design and 
enrollment criteria have been previously reported (19). The study 
consists of five waves of surveys conducted between 2011 and 2020, 
with participants recruited from 23 Chinese provinces using a 
multistage stratified probability proportional-to-size sampling 
strategy. The national baseline survey was conducted in 2011, 
enrolling 17,708 participants, followed by four subsequent waves: 
Wave 2 (2013–2014), Wave 3 (2015–2016), Wave 4 (2017–2018), and 
Wave 5 (2019–2020). We  applied data from wave 1–5, which are 
available online at http://charls.pku.edu.cn. The inclusion criteria 
encompassed individuals aged 18 years or older who had completed 
follow-up data, including complete data on CMM and METS-IR. The 
exclusion criteria included: (1) participants with CMM in Wave 1; (2) 
individuals without complete data on METS-IR at baseline; and (3) 
Missing data on CMM at baseline or lost to follow-up. Ultimately, a 
total of 6,977 individuals met the eligibility criteria for subsequent 
analysis (Figure 1). The original CHARLS study was approved by the 
Ethical Review Committee of Peking University (IRB00001052-
11015), and written informed consent was obtained from all 
participants at the time of enrollment.

FIGURE 1

Flow chart of sample selection and the exclusion criteria.
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Assessment of CMM events

CMM events were defined as the simultaneous presence of at least 
two cardiometabolic diseases, including diabetes, heart disease and 
stroke. The diagnoses of heart disease and stroke were confirmed 
through self-report of a physician’s diagnosis obtained via the 
questionnaire survey, including “Have you been told by a doctor that 
you have been diagnosed with a heart attack, Angina, coronary heart 
disease, heart failure, or other heart problems?” or “Have you been 
told by a doctor that you have been diagnosed with a stroke?” (20). In 
addition to self-reporting diabetes, participants were diagnosed with 
diabetes if they met any of the following criteria: (1) fasting plasma 
glucose ≥ 7.0 mmol/L; (2) random plasma glucose ≥ 11.1 mmol/L; or 
(3) HbA1c ≥ 6.5% according to the American Diabetes Association 
criteria (21). The incidence of CMM was determined at the time of 
diagnosis of the second CMD, at which point the individuals presented 
with two distinct types of CMD.

Assessment of METS-IR and other 
covariates

In this study, extensive baseline information was collected 
by trained.

interviewers following standard procedures. Anthropometric 
variables including the height (m) and weight (kg) were measured by 
trained medical staff according to standard protocol. The body mass 
index (BMI) was calculated as weight divided by height squared (kg/
m2). After at least 5 min spent sitting down, the blood pressure of the 
participants was measured three times by a trained interviewer at 45-s 
intervals using a digital sphygmomanometer (Omron TM 
HEM-7200). Blood samples were collected after an overnight fast, 
then stored at −20°C and transported to Beijing for further 
measurements. The biochemical parameters included white blood cell 
count (WBC), platelet count (PLT), hemoglobin, fasting blood glucose 
(FBG), uric acid (UA), serum creatinine, Cystatin C, high-sensitivity 
C-reactive protein (hsCRP), and lipid profiles. The METS-IR were 
calculated according to the following formula: METS-IR = ln 
[2 × FPG (mg/dL) + fasting serum TG (mg/dL)] × BMI (kg/m2)/ln 
[HDL − C (mg/dL)] (22).

All participants provided medical history and lifestyle 
information during face-to-face interviews by trained interviewers. 
A structured questionnaire was employed to collect the baseline 
data, including age, gender, hypertension, marital status (married 
and others), residence (rural, urban), education (elementary school 
and below, secondary school, and college and above), smoking 
status, and drinking status. Smoking status was categorized as “never 
smoking,” “current smoker” and “former smoker.” Participants were 
diagnosed with hypertension if their systolic blood pressure was 
≥140 mmHg, diastolic blood pressure was ≥90 mmHg, or they had 
a self-reported history of hypertension, or were currently using 
antihypertensive medications.

Statistical analysis

Continuous variables were presented as the mean ± standard 
deviation or the median with interquartile range, depending on the 

normality of the data distribution. Categorical variables were 
presented as frequency and percentage. For comparison of variables 
between CMM group and non-CMM group, independent t-test was 
used for normally distributed data and Man-Whitney test were for 
skewed data. One-way analyses of variance (for normally distributed 
data), Kruskal-Wallis tests (for skewed data), and chi-square tests 
(for categorical data) were performed to assess the differences 
between more than two groups. In our study, the population was 
divided into four groups according to the quartiles of baseline 
METS-IR as follows: Q1 (<29.6), Q2 (≥29.6, <34.2), Q3 (≥34.2, 
<40.0), and Q4 (≥40.0). The Kaplan–Meier analysis was used to 
assess the cumulative incidence of CMM among METS-IR quartiles, 
and the differences of curves were examined utilizing the log-rank 
test. Cox proportional hazards regression was used to estimate the 
hazard ratios (HRs) and 95% confidence intervals (95% CIs) between 
METS-IR quartiles and incidence of CMM. Prior to conducting the 
Cox regression model, we  evaluated the proportional hazards 
assumption using Schoenfeld residuals and found no potential 
violations. The dose–response relationship between METS-IR and 
the risk of developing CMM was investigated through restricted 
cubic splines (RCS) analysis. Subgroup analyses were performed to 
explore whether the association between METS-IR with CMM 
differed by gender, age, hypertension, residence, marital status, 
education, smoking status, and drinking status. Receiver operating 
characteristic (ROC) curve analysis was used to evaluate the 
predictive ability of variables for CMM and Delong’s test was used to 
compare the differences between variables.

All statistical analyses in the present study were performed using 
RStudio 4.2.1 software, SPSS 26, and an online statistical analysis 
platform called I STATISTICS.1 All comparisons were two-sided, and 
a significance level of p < 0.05 was considered statistically significant.

Results

Participants characteristics

Figure  1 depicts the overall methodological workflow of the 
present study. A total of 6,977 participants were included for analysis 
according to the inclusion and exclusion criteria. During a median 109 
(108–109) months of follow-up, 745 (10.7%) participants were 
identified with new-onset CMM. Compared to individuals without 
CMM, those with CMM were older, had a higher proportion of 
females, and exhibited elevated levels of systolic blood pressure (SBP), 
diastolic blood pressure (DBP), BMI, WBC, PLT, hemoglobin, FBG, 
total cholesterol (TC), triglycerides (TG), low-density lipoprotein 
cholesterol (LDL-C), UA, hsCRP, METS-IR, as well as a higher 
incidence of hypertension, basal diabetes, basal stroke, and basal heart 
disease (p < 0.05) (Table 1). Conversely, individuals in this group had 
a lower prevalence of current smoking and drinking and exhibited 
reduced level of high-density lipoprotein cholesterol (HDL-C) 
(p < 0.05).

We also compared the baseline characteristics of the included and 
lost individuals. Supplementary Table S1 showed that participants 

1 https://medsta.cn/software
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who were lost to follow-up were older, more likely to be male and live 
in urban, less likely to be married and educated, exhibited higher 
levels of SBP, DBP, FBG, UA, serum creatinine, hsCRP, and had higher 
prevalence of basal stroke, and basal heart disease (p < 0.05). 
Conversely, individuals in this group had a lower prevalence of current 
smoking and drinking, and exhibited reduced level of BMI and 
hemoglobin (p < 0.05).

Baseline characteristics based on the 
quantiles of METS-IR

The participants were divided into four groups based on the 
quartiles of baseline METS-IR (Table 2). The incidence of CMM 
in quartiles Q1, Q2, Q3, and Q4 were 4.99, 7.51, 10.67, and 
19.54%, respectively. Participants in the higher METS-IR quantile 

TABLE 1 Baseline characteristics of the study participants according to cardiometabolic multimorbidity.

Characteristics Overall Non-CMM group CMM group p-value

Participants, no 6,977 6,232 745

Age, years 58.75 ± 9.61 58.54 ± 9.71 60.49 ± 8.61 <0.001

Male, n (%) 3,171 (45.45) 2,878 (46.18) 293 (39.33) <0.001

SBP, mmHg 128.64 ± 21.17 127.74 ± 20.82 136.21 ± 22.57 <0.001

DBP, mmHg 74.98 ± 12.06 74.64 ± 12.00 77.83 ± 12.17 <0.001

Residence, n (%) 0.142

Rural 4,644 (66.56) 4,166 (66.85) 478 (64.16)

Urban 2,333 (33.44) 2,066 (33.15) 267 (35.84)

Marriage, married, n (%) 6,151 (88.16) 5,500 (88.25) 651 (87.38) 0.486

Educational level, n (%) 0.174

Primary 4,953 (70.99) 4,406 (70.70) 547 (73.42)

Secondary 1,388 (19.89) 1,259 (20.20) 129 (17.32)

Third 636 (9.12) 567 (9.10) 69 (9.26)

Smoking, n (%) <0.001

Never 4,291 (61.50) 3,791 (60.83) 500 (67.11)

Former 582 (8.34) 504 (8.09) 78 (10.47)

Current 2,104 (30.16) 1,937 (31.08) 167 (22.42)

Current drinking, n (%) 2,297 (32.92) 2,096 (33.63) 201 (26.98) <0.001

Hypertension, n (%) 3,246 (46.52) 2,740 (43.97) 506 (67.92) <0.001

Basal diabetes, n (%) 885 (12.68) 682 (10.94) 203 (27.25) <0.001

Basal stroke, n (%) 110 (1.58) 77 (1.24) 33 (4.43) <0.001

Basal heart disease, n (%) 648 (9.29) 449 (7.20) 199 (26.71) <0.001

BMI, kg/m2 23.05 (20.85–25.67) 22.88 (20.70–25.39) 24.95 (22.33–27.55) <0.001

WBC, 109/L 6.00 (4.97–7.20) 5.95 (4.90–7.20) 6.20 (5.10–7.50) 0.002

PLT, 109/L 213.31 ± 76.40 212.07 ± 72.29 223.66 ± 104.15 0.003

Hemoglobin, g/dL 14.35 ± 2.22 14.32 ± 2.22 14.55 ± 2.26 0.01

FBG, mg/dL 102.06 (94.32–112.50) 101.52 (93.96–111.42) 108.72 (99.00–123.66) <0.001

TC, mg/dL 193.35 ± 38.41 192.44 ± 38.12 200.94 ± 40.00 <0.001

TG, mg/dL 103.54 (74.34–152.22) 101.78 (73.46–148.68) 124.79 (88.50–182.31) <0.001

LDL-C, mg/dL 116.69 ± 34.86 115.94 ± 34.31 122.97 ± 38.62 <0.001

HDL-C, mg/dL 51.33 ± 15.12 51.81 ± 15.09 47.26 ± 14.70 <0.001

UA, mg/dL 4.40 ± 1.24 4.38 ± 1.23 4.54 ± 1.30 0.001

Serum creatinine, mg/dL 0.78 ± 0.24 0.78 ± 0.24 0.79 ± 0.22 0.184

Cystatin C, mg/L 0.98 (0.86–1.13) 0.98 (0.86–1.12) 0.99 (0.86–1.16) 0.125

hsCRP, mg/L 0.99 (0.54–2.13) 0.96 (0.53–2.04) 1.36 (0.68–2.60) <0.001

METS-IR 34.15 (29.61–39.96) 33.72 (29.35–39.17) 39.17 (33.04–45.19) <0.001

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WBC, white blood cell count; PLT, platelet count; FBG, fasting blood glucose; TC, total cholesterol; TG, 
triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; UA, Uric acid; hsCRP, high-sensitivity C-reactive protein; CMM, cardiometabolic 
multimorbidity; METS-IR, Metabolic score for insulin resistance.
Normal variables were reported as mean ± SD, non-normal variables were reported as median (Q1–Q2).
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groups were younger, more likely to be  female, and exhibited 
higher levels of SBP, DBP, BMI, WBC, PLT, hemoglobin, FBG, TC, 
TG, LDL-C, UA, and hsCRP (p < 0.05). Additionally, individuals 
in the higher METS-IR quantile groups were more likely to reside 
in urban areas and to be married, while also exhibiting higher 

levels of education and a greater proportion of hypertension, 
basal diabetes, and basal heart disease (p < 0.05). In contrast, the 
levels of HDL-C, Cystatin C, and the prevalence of current 
smoking and drinking were lower in the higher METS-IR quantile 
groups (p < 0.05).

TABLE 2 Baseline characteristics of participants according to the quartiles of METS-IR.

Characteristics

METS-IR

p-value
Q1 (<29.6) Q2 (≥29.6, <34.2)

Q3 (≥34.2, 
<40.0)

Q4 (≥40.0)

Participants, no 1,744 1,744 1,744 1,745

Age, years 61.32 ± 10.13 58.38 ± 9.81 58.12 ± 9.07 57.17 ± 8.89 <0.001

Male, n (%) 909 (52.12) 832 (47.71) 745 (42.72) 685 (39.26) <0.001

SBP, mmHg 125.10 ± 21.67 126.08 ± 20.38 129.75 ± 20.78 133.66 ± 20.76 <0.001

DBP, mmHg 71.89 ± 11.91 73.30 ± 11.34 75.85 ± 11.83 78.91 ± 11.95 <0.001

Residence, n (%) <0.001

Rural 1,327 (76.09) 1,247 (71.50) 1,089 (62.44) 981 (56.22)

Urban 417 (23.91) 497 (28.50) 655 (37.56) 764 (43.78)

Marriage, married, n (%) 1,465 (84.00) 1,539 (88.25) 1,545 (88.59) 1,602 (91.81) <0.001

Educational level, n (%) <0.001

Primary 1,368 (78.44) 1,259 (72.19) 1,183 (67.83) 1,143 (65.50)

Secondary 266 (15.25) 339 (19.44) 374 (21.44) 409 (23.44)

Third 110 (6.31) 146 (8.37) 187 (10.72) 193 (11.06)

Smoking, n (%) <0.001

Never 920 (52.75) 1,044 (59.86) 1,130 (64.79) 44.69 (42.10,48.58)

Former 137 (7.86) 131 (7.51) 137 (7.86) 177 (10.14)

Current 687 (39.39) 569 (32.63) 477 (27.35) 371 (21.26)

Current drinking, n (%) 667 (38.25) 599 (34.35) 560 (32.11) 471 (26.99) <0.001

Hypertension, n (%) 640 (36.70) 685 (39.28) 858 (49.20) 1,063 (60.92) <0.001

Basal diabetes, n (%) 89 (5.10) 163 (9.35) 217 (12.44) 416 (23.84) <0.001

Basal stroke, n (%) 29 (1.66) 20 (1.15) 29 (1.66) 32 (1.83) 0.394

Basal heart disease, n (%) 141 (8.08) 134 (7.68) 171 (9.81) 202 (11.58) <0.001

BMI, kg/m2 19.63 (18.36–20.73) 22.18 (21.17–23.18) 24.28 (23.06–25.55) 27.39 (25.81–29.27) <0.001

WBC, 109/L 5.76 (4.70–6.92) 5.90 (4.90–7.20) 6.00 (5.00–7.30) 6.20 (5.20–7.50) <0.001

PLT, 109/L 209.54 ± 74.62 209.61 ± 71.56 215.19 ± 74.60 218.87 ± 83.92 <0.001

Hemoglobin, g/dL 13.97 ± 2.10 14.31 ± 2.29 14.39 ± 2.11 14.73 ± 2.33 <0.001

FBG, mg/dL 98.28 (91.26–106.02) 100.08 (93.06–109.71) 102.78 (95.58–112.68) 109.08 (99.27–124.20) <0.001

TC, mg/dL 190.88 ± 35.94 189.62 ± 36.81 193.86 ± 39.07 199.02 ± 40.98 <0.001

TG, mg/dL 76.11 (58.41–97.57) 90.27 (69.03–122.13) 113.28 (84.96–155.76) 164.61 (118.59–240.72) <0.001

LDL-C, mg/dL 112.19 ± 31.78 116.69 ± 32.48 121.18 ± 34.48 116.70 ± 39.62 <0.001

HDL-C, mg/dL 64.54 ± 15.08 54.20 ± 11.49 47.44 ± 10.34 39.13 ± 10.06 <0.001

UA, mg/dL 4.27 ± 1.20 4.26 ± 1.18 4.44 ± 1.24 4.64 ± 1.28 <0.001

Serum creatinine, mg/dL 0.78 ± 0.23 0.77 ± 0.32 0.78 ± 0.18 0.78 ± 0.21 0.735

Cystatin C, mg/L 1.01 (0.89–1.17) 0.98 (0.87–1.12) 0.97 (0.85–1.12) 0.95 (0.81–1.09) <0.001

hsCRP, mg/L 0.73 (0.43–1.61) 0.81 (0.47–1.75) 1.04 (0.58–2.09) 1.46 (0.81–2.88) <0.001

METS-IR 27.04 (25.10–28.48) 31.89 (30.76–32.98) 36.76 (35.39–38.19) 44.69 (42.10–48.58) <0.001

CMM, n (%) 87 (4.99) 131 (7.51) 186 (10.67) 341 (19.54) <0.001

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; WBC, white blood cell count; PLT, platelet count; FBG, fasting blood glucose; TC, total cholesterol; TG, 
triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; UA, Uric acid; hsCRP, high-sensitivity C-reactive protein; CMM, cardiometabolic 
multimorbidity; METS-IR, Metabolic score for insulin resistance.
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Relationship between METS-IR and the 
incidence of CMM

Kaplan–Meier survival curve was utilized to analyze the 
cumulative incidence of CMM. Figure 2 illustrates that the cumulative 
incidence of CMM increased gradually with increasing METS-IR 
across the quartiles (log-rank = 223, p < 0.001). Subsequently, 
we performed multicollinearity analysis and determined that the 
variance inflation factor (VIF) for all variables (including METS-IR, 
age, gender, hypertension, smoking status, drinking status, rural 
residence, marital status, education, SBP, DBP, WBC, PLT, 
hemoglobin, serum creatinine, and hsCRP) were less than 5 
(Supplementary Table S2), indicating the absence of collinearity 
among these variables. We  assessed the proportional hazards 
assumption using the Schoenfeld residual test and found no violations 
(p > 0.05). Table 3 summarizes the association between METS-IR 
quantile and the risk of CMM using Cox proportional hazards 
regression model analysis. Model 1 was an unadjusted model; Model 
2 adjusted for age, gender; Model 3 further adjusted for hypertension, 
smoking status, drinking status, rural residence, marital status, 
education, SBP, DBP, WBC, PLT, hemoglobin, serum creatinine, and 
hsCRP. Among participants without CMM at baseline, multi-adjusted 
Cox regression models revealed that the HRs and 95% CIs of CMM 
were 1.52 (1.15–2.00) for participants in Q2, 2.02 (1.56–2.63) for 
those in Q3, and 3.61 (2.80–4.64) for those in Q4, compared to 

participants in Q1 (Table  3). We  subsequently categorized the 
population into four groups based on the types of CMD: individuals 
without any CMDs at baseline, those with heart disease at baseline, 
those with diabetes at baseline, and those with stroke at baseline. 
Table 3 showed that METS-IR quantiles were significantly associated 
with the risk of CMM, regardless of adjustment for other confounding 
factors in the group without any CMDs at baseline, consistent with 
the results obtained prior to grouping. Additionally, a significant 
correlation between METS-IR quantile and CMM was also observed 
in groups with heart disease (Q4 vs. Q1: HR = 2.54, 95% CI = 1.55–
4.14, p < 0.001; Q3 vs. Q1: HR = 1.82, 95% CI = 1.12–2.96, p = 0.016) 
and diabetes (Q4 vs. Q1: HR = 2.21, 95% CI = 1.17–4.19, p = 0.015) 
at baseline.

Restricted cubic spline is a flexible and powerful method for data 
fitting, especially when dealing with time-varying covariant effects or 
non-proportional risks. Conversely, fractional polynomials may 
be  overly restrictive, often assuming linear or logarithmic time 
relationships, which might oversimplify and fail to capture complex 
data variations. Therefore, we performed RCS to model and visualize 
the relationship between METS-IR and the risk of CMM. Figure 3 
presented a positive nonlinear association between METS-IR and the 
risk of CMM, even after adjusting for confounding covariates 
including age, gender, hypertension, smoking status, drinking status, 
rural residence, marital status, education, SBP, DBP, WBC, PLT, 
hemoglobin, serum creatinine, and hsCRP (nonlinear p < 0.05).

FIGURE 2

Kaplan–Meier curves for the cumulative incidence of CMM. CMM, cardiometabolic multimorbidity.
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Subgroup analysis

We performed weighted interaction tests and subgroup analyses to 
assess whether the association between METS-IR and the risk of 
developing CMM differs across different subgroups. The result showed 
that individuals in quartiles Q3 and Q4 were associated with the risk of 
developing CMM across all subgroups, except for individuals who are 
not married and former smokers (Figure 4), when compared to those 
in quartiles Q1. Additionally, the difference in the risk of developing 
CMM between Q2 and Q1 was statistically significant in subgroups of 
male, individuals with age ≥ 60 years, without hypertension, be married, 
urban residence, with primary education, current smoking and drinking 
(p < 0.05). Furthermore, we observed no significant interactive effect 
between these subgroups and METS-IR on the risk of CMM in Cox 
proportional hazards regression analysis (p for interaction > 0.05).

Discriminative power analysis

Previous studies have identified several other alternative indicators 
of non-insulin–based IR, including the ratio of TG to HDL-C (TG/
HDL-C) and triglyceride glucose index (TyG index) (23, 24). In this 
study, we conducted ROC analysis to compare the predictive abilities 
of TG/HDL-C, TyG index, and METS-IR. As shown in Table 4 and 
Figure 5, the average AUCs for TG/HDL-C, TyG index, and METS-IR 

were 0.611 (95% CI = 0.600–0.623), 0.633 (95% CI = 0.621–0.644), 
and 0.669 (95% CI = 0.657–0.680), respectively. The METS-IR 
demonstrated significantly higher AUCs for predicting the risk of 
CMM compared to TG/HDL-C (p < 0.001) and TyG index (p < 0.001).

Discussion

To the best of our knowledge, this study is the first to explore the 
association between METS-IR and the risk of developing CMM using a 
nationally representative prospective cohort. Our study showed a 
significantly positive and nonlinear association between the METS-IR 
and CMM regardless of adjustment for other confounding factors. 
Furthermore, our findings also provided evidence that METS-IR had 
better discrimination ability in predicting the incidence of CMM than 
other non-insulin-based IR indexes including TG/HDL-C and TyG index.

IR is defined as the impaired biologic response of target tissues to 
insulin stimulation (15). Increasing evidence suggests that IR is closely 
associated with type 2 diabetes and can independently predict CVDs (9, 
25–27). Recently, a novel non–insulin-based surrogate indicator of IR, 
known as METS-IR, has gained increasing attention. METS-IR has been 
proved to be  superior to both the TyG index and TG/HDL-C in 
diagnosing diabetes (14), which was consistent with our results that 
METS-IR demonstrated significantly higher AUCs for predicting the risk 
of CMM compared to TG/HDL-C and TyG index. Additionally, previous 

TABLE 3 Cox proportional hazards regression model analysis of baseline METS-IR and CMM.

Model 1 Model 2 Model 3

METS-IR, 
Categories

HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value

Without CMM 

at baseline

Q1 Reference Reference Reference

Q2 1.50 (1.14–1.96) 0.004 1.61 (1.23–2.11) <0.001 1.52 (1.15–2.00) 0.003

Q3 2.16 (1.67–2.78) <0.001 2.32 (1.80–3.01) <0.001 2.02 (1.56–2.63) <0.001

Q4 4.14 (3.27–5.23) <0.001 4.61 (3.63–5.85) <0.001 3.61 (2.80–4.64) <0.001

Without any 

CMD at 

baseline

Q1 Reference Reference Reference

Q2 1.65 (1.14–2.38) 0.008 1.80 (1.24–2.61) 0.002 1.73 (1.19–2.52) 0.004

Q3 1.98 (1.38–2.84) <0.001 2.22 (1.54–3.19) <0.001 2.03 (1.40–2.95) <0.001

Q4 3.19 (2.26–4.51) <0.001 3.71 (2.61–5.28) <0.001 3.16 (2.18–4.59) <0.001

With heart 

disease at 

baseline

Q1 Reference Reference Reference

Q2 1.09 (0.64–1.87) 0.752 1.12 (0.65–1.93) 0.671 1.14 (0.65–1.97) 0.648

Q3 1.90 (1.20–3.02) 0.007 1.90 (1.19–3.03) 0.007 1.82 (1.12–2.96) 0.016

Q4 2.80 (1.81–4.34) <0.001 2.84 (1.82–4.43) <0.001 2.54 (1.55–4.14) <0.001

With diabetes at 

baseline

Q1 Reference Reference Reference

Q2 1.27 (0.62–2.58) 0.509 1.25 (0.61–2.54) 0.546 1.24 (0.61–2.55) 0.551

Q3 1.46 (0.74–2.85) 0.272 1.41 (0.72–2.78) 0.317 1.21 (0.61–2.41) 0.586

Q4 2.74 (1.48–5.08) 0.001 2.74 (1.47–5.11) 0.002 2.21 (1.17–4.19) 0.015

With stroke at 

baseline

Q1 Reference Reference Reference

Q2 1.92 (0.52–7.15) 0.331 2.04 (0.55–7.58) 0.289 1.74 (0.42–7.26) 0.45

Q3 2.56 (0.79–8.33) 0.117 2.92 (0.89–9.63) 0.078 2.45 (0.61–9.81) 0.205

Q4 4.12 (1.36–12.44) 0.012 4.65 (1.50–14.41) 0.008 2.50 (0.64–9.68) 0.186

CMM, cardiometabolic multimorbidity; METS-IR, Metabolic score for insulin resistance; CMD, cardiometabolic disease; HR, hazard ratio; CI, confidence interval.
Model 1 was an unadjusted model; Model 2 adjusted for age, gender; Model 3 further adjusted for hypertension, smoking status, drinking status, rural residence, marital status, education, SBP, 
DBP, WBC, PLT, hemoglobin, serum creatinine, and hsCRP.
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FIGURE 3

Restricted cubic spline curves for CMM according to METS-IR using Cox proportional hazards regression model analysis without (A) or with 
(B) adjustment for other confounding factors. METS-IR, Metabolic score for insulin resistance; CMM, cardiometabolic multimorbidity.

studies have demonstrated a close association between METS-IR and 
various CVDs. In a prospective study involving 2,533 consecutive 
participants undergoing PCI, METS-IR was found to be associated with 
the major adverse cardiac and cerebrovascular events (28). A study by 
Xu et  al. revealed that METS-IR was linked to the risk of incident 
hypertension (29). Qian et al. identified METS-IR as a predictor of heart 
disease and stroke in the middle-aged and elderly population in China 
(30). Furthermore, METS-IR was proved to be a promising novel index 
for predicting the risk of heart failure (16). Additionally, previous studies 
have demonstrated that METS-IR was linked to the risk of Type 2 
Diabetes and could evaluate the cardiometabolic risk (14, 31). Similarly, 
our study also demonstrated a strong association between elevated 
METS-IR levels and an increased risk of CMM among middle-aged and 
elderly populations in China, corroborating the findings of previous 
research. However, no studies have investigated the predictive value of 
METS-IR for CMM risk, as previous studies have primarily focused on 
individuals CMD. In the present study, we demonstrated for the first time 
that higher METS-IR was significantly associated with increased risk of 
CMM in a large-scale, national prospective cohort study.

Cardiometabolic multimorbidity (CMM) is defined as the 
simultaneous presence of at least two cardiometabolic diseases, 
including diabetes, heart disease and stroke (32). Previous studies have 
identified numerous risk factors for CMM. For instance, a study by Ye 
et al. found that the Chinese visceral adiposity index was linked to the 
risk of CMM (33). However, they did not group the population 
according to the types of CMD, which would have provided more 
detailed information. In the present study, we found that individuals in 
METS-IR quantiles Q4 were significantly correlated with higher risk of 
CMM in groups without any CMD, with heart disease, and with diabetes 
at baseline, compared to those in Q1. However, no association between 
METS-IR and CMM was observed in group with stroke at baseline, 
probably due to the limited number of participants with stroke. A cohort 
study including 7,970 participants from CHARLS found that a high TyG 
index was associated with an increased risk of incident CMM (32). In 
our study, the HRs of CMM reached 4.14 for participants in the quartiles 
Q4 compared to those in quartiles Q1 without adjustment, which is 
higher than that reported in above study. Furthermore, METS-IR was 
proved to be superior to TyG index in predicting the risk of CMM in our 

study. Additionally, a study by Behnam et  al. identified elevated 
triglyceride, VLDL-C, total cholesterol/HDL-C, TG/HDL-C, and apoB/
apoA1 as the predictors of CMM. In their study, only 1,728 male 
participants were included. Instead, our study encompassed a larger 
population that included both males and females, thereby enhancing the 
reliability of our findings. Overall, our results extend the application of 
METS-IR and fills the gaps in previous research, suggesting that the 
METS-IR might be a promising indicator for predicting CMM.

Several potential mechanisms may explain the association 
between METS-IR and the risk of CMM. First, IR can lead to 
dyslipidemia, visceral obesity, elevated inflammatory markers and 
reactive oxide species, each of which is an independent risk factor for 
CVDs (34, 35). Second, elevated insulin can disrupt fibrinolysis by 
increasing the circulating concentration of plasminogen activator 
inhibitor 1. This alteration may result in a pro-thrombotic 
environment, thereby enhancing platelet aggregation within the 
cardiovascular system (28). Third, inappropriate activation of the 
renin-angiotensin-aldosterone system by IR contributes to water and 
sodium retention and high blood pressure, ultimately increasing the 
risk of cardiovascular and cerebrovascular disease (36). Finally, the 
similar dietary behaviors and lifestyle among individuals with IR and 
CMM may partially account for this association, including excessive 
high-fat food intake and lack of exercise (35, 37, 38).

The present study is based on data from the China Health and 
Retirement Longitudinal Study, which is a large-scale and nationally 
representative prospective cohort. This study effectively adjusted for 
confounding factors and evaluated the nonlinear relationship between 
METS-IR and the risk of CMM using RCS analysis, thereby enhancing 
the reliability of the results. However, there are several limitations that 
should be acknowledged. First, our study focused mainly on individuals 
aged ≥45 years in China, and the generalizability to young persons and 
other races may be limited. Second, our focus was solely on baseline 
METS-IR level, disregarding its dynamic change that could have 
provided valuable insight into the underlying mechanism. Third, CMM 
was determined according to a self-reported physician diagnosis, which 
might have led to information bias. In the future, large-scale, randomized 
controlled trials are needed to confirm our findings. Forth, excluding 
participants with missing METS-IR values as well as those without 
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complete CMM data and lost to follow up could introduce the selection 
bias. But ultimately, our study included a large enough population to 
mitigate the effects of selection bias to some extent. Finally, some 

confounding factors, including the use of lipid-lowering medications, 
were not accounted for due to data limitations. Future study is needed 
to pay more attention to the collection and analysis of relevant data.

FIGURE 4

Subgroup analysis of the relationship between METS-IR and the risk of CMM using cox proportional hazards regression model. CMM, cardiometabolic 
multimorbidity; HR, hazard ratios; CI, Confidence interval.

https://doi.org/10.3389/fnut.2025.1518840
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhou et al. 10.3389/fnut.2025.1518840

Frontiers in Nutrition 10 frontiersin.org

TABLE 4 Analysis of the ROC curve for predictive power of CMM.

AUC SE 95% CI

TG/HDL-C 0.611 0.0107 0.600–0.623

TyG index 0.633 0.0106 0.621–0.644

METS-IR 0.669 0.0105 0.657–0.680

ROC, receiver operating characteristic; TG/HDL-C, triglyceride to high-density lipoprotein 
cholesterol ratio; TyG index, triglyceride glucose index; METS-IR, Metabolic score for 
insulin resistance; CMM, cardiometabolic multimorbidity; AUC, area under curve; SE, 
standard error; CI, Confidence interval.

FIGURE 5

Receiver-operating characteristic curves for prediction of CMM. 
AUC, area under the curve; CMM, cardiometabolic multimorbidity; 
TG/HDL-C, triglyceride to high-density lipoprotein cholesterol ratio; 
TyG index, triglyceride glucose index; METS-IR, Metabolic score for 
insulin resistance.

Conclusion

In the present study, we  found that a higher METS-IR 
was significantly associated with an increased risk of 
CMM. Our findings underscore the importance of 
maintaining low level of METS-IR to reduce the risk of CMM. This 
has substantial implications for clinical practice and 
epidemiological research.
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