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Objectives: The associations between various minerals’ intake and thyroid

dysfunction (TD), including hyperthyroidism and hypothyroidism, are still

inconclusive, which may be attributed to the potential synergistic e�ects among

various minerals.

Methods: The data were obtained from the National Health and Nutrition

Examination Survey (NHANES) 2001–2002 and 2007–2012 databases.

Dietary interviews were conducted to collect the consumption of multiple

minerals. Blood samples were collected to measure concentrations of free

triiodothyronine, free thyroxine, and thyroid-stimulating hormone. A total of

7,779 participants with aged over 20 years were e�ectively enrolled in this study

and categorized into hyperthyroidism or hypothyroidism groups. Weighted

multivariate logistic regression model along with three machine learning models

WQS, qg-comp, and BKMR were employed to investigate the individual and

joint e�ect of multiple minerals’ consumption on TD.

Results: Among 7,779 subjects, 134 participants were diagnosed as

hyperthyroidism and 184 participants were diagnosed as hypothyroidism, with

prevalence of 1.6 and 2.4%, respectively. The results from logistic regression

model showed that the higher the intakes of calcium,magnesium and potassium,

the lower the prevalence of hyperthyroidism, with OR values of 0.591, 0.472, and

0.436, respectively (all P < 0.05); while the higher the intake of iodine, the higher

the prevalence of hyperthyroidism, with OR and 95%CI values of 1.262 (1.028,

1.550). Three machine learning models were employed to evaluate the joint

e�ect of nine minerals’ consumption on TD, revealing a negative correlation

with both hyperthyroidism and hypothyroidism. Of them, the potential

minerals associated with TD were calcium, zinc, copper, and magnesium.
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Conclusion: In short, the maintenance of a well-balanced consumption of

multiple minerals is considered crucial in the prevention and treatment of TD,

and the intakes of variousminerals exhibit varying degrees of associationwith TD.

KEYWORDS

minerals, hyperthyroidism, hypothyroidism, machine learning model, dietary health

1 Introduction

Thyroid dysfunction (TD) including hypothyroidism and

hyperthyroidism is a great common endocrine disorder worldwide,

whose characteristics is of the over-expression or low-expression

of blood thyroxine (T4), triiodothyronine (T3), and thyroid

stimulating hormone (TSH). At present, the prevalence and

incidence of TD reported by epidemiological studies are increasing

gradually and different significantly in various countries and

regions (1).Madariaga et al. conducted ameta-analysis in European

population and found that the prevalence of TD was of 3.05

and 0.75% for hypothyroidism and hyperthyroidism, respectively

(2). Another U.S. study revealed that 4.6% of the population

had hypothyroidism and 1.3% had hyperthyroidism by analyzing

the data of National Health and Nutrition Examination Survey

(NHANES) III (3). In China, the prevalence is high to 13.95% for

hypothyroidism and 1.22% for hyperthyroidism (4). It exhibits that

TD has emerged as a global public health issue, necessitating an

exploration of the factors influencing its progression.

Multiple factors participated in the occurrence and

development of TD, such as age, gender, educational attainment,

cigarette smoking, alcohol drinking, heredity, and diet (5–8).

Diet especially for the minerals’ consumption may be regarded

as one of the most important factors of association with TD

(9). Epidemiological studies found that people with chronic

mild to moderate iodine deficiency had a higher incidence of

hyperthyroidism than those with normal or excessive iodine

intake (10). While increased iodine intake may lead to an

increased risk of subclinical hypothyroidism (11). Pedersen et al.

conducted a case-control study and revealed that compared to

control group, there was a significantly lower serum selenium

level for patients with newly diagnosed Graves’ disease and

autoimmune overt hypothyroidism (12). Another cross-sectional

study showed a comparable prevalence of hyperthyroidism in

both counties, irrespective of selenium intake (13). Meanwhile,

low zinc concentrations were reportedly associated with both

hypothyroidism and hyperthyroidism (14). The impact of

manganese on the thyroid remains poorly comprehended. One

study clarified that high serum manganese concentrations would

reduce free thyroxine and triiodothyronine levels, leading to

hypothyroidism (15). Above studies suggest that the relationships

between minerals’ consumption and TD is still unclear and has

the contradictory results, which can be ascribed to the synergistic

interaction among various minerals.

Diet comprising a variety of food items needs to be

considered as a whole, involving the co-consumption of multiple

minerals. There may be synergistic interactions among various

minerals for maintaining the normal thyroid function. For

example, the interaction between iodine and selenium plays a

crucial role in thyroid metabolism. Excessive intake of selenium

exacerbates the consequences of iodine deficiency, whereas an

appropriate supply of selenium can mitigate the adverse effects of

excessive iodine on thyroid function and prevent inflammation,

fibrosis, and destruction (16). However, the majority of studies

failed to account for the synergistic interactions of multiple

minerals’ intake and instead focused solely on the relationships

between individual or paired minerals’ intake and TD using

linear or logistic regression models (12, 17). This may be

associated with the limitation of statistical methods. Multiple

minerals’ intake is inappropriate to be simultaneously put into

the linear or logistic regression model due to collinearity

question. Thus, when evaluating the synergistic interactions of

multiple minerals’ intake, traditional models like multiple linear

regression and multivariate logistic regression may not provide

accurate results.

In the field of nutrition, machine learning approaches,

involving weighted quantile sum (WQS), quantile g-computation

(qg-comp), bayesian kernelmachine regression (BKMR) and others

can address the multicollinearity of multiple variables through

sophisticated internal algorithms. These methods are increasingly

being adopted to supplement traditional statistical techniques,

with the goal of generating more scientifically robust conclusions.

Growing number of researchers have started applying machine

learning techniques to explore the complex relationships between

the co-consumption of various nutrients and health outcomes

(18, 19). However, there is a scarcity of studies examining the

relationship between the combined intake of multiple minerals

and TD. Based on current scientific evidence, we propose

that the concurrent consumption of multiple minerals may be

protectively associated with the prevalence of TD. Thus, it is

imperative to employ machine learning methods to delve the

deep association between simultaneous consumption of multiple

minerals and TD.

In this study, totals of 7,779 eligible participants were

enrolled from National Health and Nutrition Examination Survey

(NHANES) database. The novel machine learning methods were

used to unveil the associations between consumption of multiple

minerals and TD, and further elucidate their joint effect and

the individual contribution. To our best knowledge, this study

is the first time to explore the combined interaction between

the consumption of multiple minerals and TD by the emerging

machine learning methods in U.S. adults.
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FIGURE 1

Flow chart for study participants selection.

2 Materials and methods

2.1 Study population

NHANES used a stratified multistage sampling design to

conduct a nationwide survey that investigated detailed information

about the health, nutrition, and lifestyle of U.S. residents. All

surveys were reviewed by the Ethics Committee and received

informed consent from the participants. All details are available

on the NHANES official website and data are supported

for local download (https://www.cdc.gov/nchs/nhanes/index.htm).

Four cycles of NHANES (2001–2002, 2007–2008, 2009–2010,

and 2011–2012) were included in this study. A total of 41,481

participants were selected from the NHANES datasets spanning

2001–2002 and 2007–2012. Participants with missing data on

thyroid function (N = 29,092), mineral intake and energy intake

(N = 563), urinary iodine and creatinine levels (N = 325), as well

as those lacking covariate data, aged under 20 years, or who were

pregnant (N = 3,722) were excluded. Consequently, a final sample

of 7,779 participants was included in this study. The flow chart is

shown in Figure 1.

2.2 Assessment of multiple minerals’ intake

Minerals’ intake data were directly available in NHANES. It is

worth noting that only one 24-h dietary recall was conducted in

the 2001–2002 wave, whereas two 24-h dietary recalls were done

in the other three waves included in the study. Therefore, when

processing data on average daily mineral intake, for participants

with only one day of 24-h dietary data, we used the minerals

consumed during that day as their representative intake level. For

participants with 2 days of 24-h dietary data, we used the average

of the minerals consumed on both days as their representative

intake level. A total of nine minerals were ultimately included in

the study: calcium, iron, zinc, selenium, magnesium, phosphorus,

potassium, copper, and iodine. However, NHANES does not

provide the data of iodine intake. Considering that iodine is

an important influence on thyroid function, the current study

included creatinine-corrected urinary iodine as the participants’

iodine intake level. Urinary iodine testing methods can be found

on the official website.

2.3 Definition of hyperthyroidism and
hypothyroidism

NHANES contains blood test data for thyroid function

indicators. The indicators utilized in this study included free

thyroxine (FT4), free triiodothyronine (FT3) and thyroid

stimulating hormone (TSH). Serum FT4, FT3, and TSH levels

were measured by ELISA kit, and light generated by the reaction

was measured with a luminometer. The light production was

positively or negatively proportional to the concentrations

of serum FT4, FT3, and TSH in the sample. The amount of

analyte was determined from a stored, multi-point calibration

curve. Reference ranges for these three markers are listed in the

laboratory procedures manual, with TSH being 0.30–5.60 µIU/mL,

FT3 being 2.50–3.90 pg/mL, and FT4 being 0.60–1.60 ng/dL

(20). With reference to previous categorizations in the literature,

we categorized the thyroid function indices of the participants

as less than the reference range, within the reference range and

beyond the reference range. Accordingly, four categories were

distinguished among the participants: clinical hyperthyroidism,

subclinical hyperthyroidism, clinical hypothyroidism and
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subclinical hypothyroidism. Clinical hyperthyroidism was defined

as TSH lower than the reference range and FT3 or FT4 higher

than the reference range; subclinical hyperthyroidism was defined

as TSH lower than the reference range and FT3 and FT4 within

the reference range; clinical hypothyroidism was defined as TSH

higher than the reference range and FT3 or FT4 lower than the

reference range; and subclinical hypothyroidism was defined as

TSH higher than the reference range and FT3 or FT4 within

the reference range (20). We combined clinical and subclinical

hyperthyroidism and uniformly declared it as hyperthyroidism.

Clinical and subclinical hypothyroidism were combined and

uniformly declared as hypothyroidism.

2.4 Covariates

Similar to the previous NHANES study (20, 21), the following

confounders were selected as covariates: i) Categorical variables:

sex (male, female), age (under 35, 35–50, 50–65, 65 and over),

race/ethnicity (Mexican American, Other Hispanic, non-Hispanic

White, non-Hispanic Black, Other Race-Including Multi-Racial),

energy intake (divided into four categories by quartile), marital

status (married, widowed, divorced, separated, never married,

living with partner), educational attainment [<9th grade, 9th−11th

grade (includes 12th grade with no diploma), high school

Grad/GED or equivalent, some college or AA degree, college

graduate or above], drinking status (no drinking, light drinking,

moderate drinking, heavy drinking, and missing categories); and

(ii) continuous variables: blood cotinine concentration (as an

indicator of smoke exposure level), poverty-to-income ratio (PIR),

body mass index (BMI).

2.5 Statistical analyses

Categorical variables were presented as frequencies and

percentages, and continuous variables as means (standard

deviations). Certain variables in mineral intake fail to align

precisely with the normal distribution by the Shapiro-Wilk test,

including iodine, copper, potassium, phosphorus and magnesium;

therefore, the intake of all minerals was log-transformed to

achieve normality and consistency, facilitating the joint effect

analysis using machine learning methods. Sex, age, race, education,

poverty-to-income ratio, energy intake, BMI, marriage, alcohol

consumption, serum cotinine, and alcohol consumption were

included as covariates to adjust all models for decreasing the

potential biases. For preliminary analyses, we set hyperthyroidism

and hypothyroidism as dichotomous variables (1 for event

and 0 for non-event) to perform weighted multivariate logistic

regression. In order to avoid multicollinearity between the

independent variables, instead of including all minerals in the

same model, we included each mineral in its own separate model

and output their ORs and 95% confidence intervals. Compared

to traditional statistical methods, machine learning models offer

several advantages. They can be applied to a wide range of data

types and tasks, effectively handle noise and outliers in data,

reduce reliance on parameter selection, and capture complex

non-linear relationships. Additionally, machine learning models

are better suited for handling multivariate and high-dimensional

data, thereby enhancing the reliability of results and improving

analysis efficiency. Thus, we further evaluated the combined effects

of nine minerals on hyperthyroidism and hypothyroidism using

three state-of-the-art statistical methods, namely, WQS, qg-comp,

and BKMR, and identified minerals with higher weighted effects in

the joint effect.

2.6 Introduction of machine learning
methods

WQS was utilized to quantify both the mixing effect and the

degree to which individual components were characterized within

it (22). It constructs a weighted index of mixed effects and includes

penalized weight estimates in the built-in function to identify the

individual weights of the components (22). We fitted the model

using quarticied independent variables and set the ratio of training

and validation sets to 4:6, performing 10,000 iterations. Mineral

intake with an estimated weight >0.111 (1/9) was considered

to have a significant effect on the joint effect. However, there

is an obvious limitation to the WQS in that the direction of

the total effect needs to be constrained in advance as either

positive or negative, which restricts the accuracy of parameter

estimates with effects in different directions (22). Qg-comp has

similar characteristics to WQS in that it can estimate mixed

effects and output individual weights. Wonderfully, compared

to WQS, qgcomp does not constrain a consistent direction,

which makes the results more reliable. The qgcomp.boot function

was used to estimate the combined effect of the nine minerals

on hyperthyroidism and hypothyroidism. The qgcomp.noboot

function was used to estimate the weights of each mineral in a

positive or negative direction. Estimated weights above 0.05 were

considered to have a higher effect in the total effect (19). The

BKMR processes the model using probabilistic regression rather

than logistic regression, with an embedded set of functions to

address the issue of mixed exposures in relation to outcomes

(23). The high-dimensional functions make it feasible to estimate

the joint effects of mixed exposures as well as the interactions

between exposures (23). Different machine learning methods

possess distinct advantages in statistical analysis. In the field of

nutrition, three primary machine learning methods—WQS, qg-

comp, and BKMR—are commonly employed to investigate the

associations of combined nutrients’ intake with health outcomes

(18, 19). Therefore, we selected these three common machine

learning approaches to examine the relationships between multiple

minerals’ consumption and TD in this study.

3 Results

As shown in Table 1, totals of 7,779 study subjects were eligibly

enrolled in this study, including 3,963 males and 3,816 females.

The prevalence of hypothyroidism and hyperthyroidism was 2.4%

(2.0%, 2.7%) and 1.6% (1.3%, 1.9%), respectively. The means of

BMI, energy intake, and urine iodide were 28.57 kg/m², 2148.28

kcal, and 5.93 µg/L Cre. The majority of study subjects were of
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TABLE 1 The demographic characteristics of study subjects (n = 7,779).

Demographic characteristics n (weight%)/Mean (SD)

Age (years)

20–34 1,872 (27.1)

35–49 2,007 (30.6)

50–64 2,031 (26.2)

65- 1,869 (16.1)

Sex

Male 3,963 (49.4)

Female 3,816 (50.6)

BMI (kg/m²) 28.57 (0.1)

Race/ethnicity

Mexican American 1,276 (7.6)

Other Hispanic 722 (4.8)

Non-Hispanic White 3,843 (72.2)

Non-Hispanic Black 1,492 (9.8)

Other Race-Including Multi-Racial 446 (5.6)

PIR

Below poverty (<1.0) 6,249 (86.5)

Above (≥1.0) 1,530 (13.5)

Education level

Less than 9th grade 866 (5.6)

9–11th grade 1,289 (12.4)

High School graduate/GED 1,808 (23.8)

Some college or associate degree 2,170 (30.5)

College graduate or above 1,646 (27.7)

Marital status

Married 4,156 (56.8)

Widowed 648 (5.7)

Divorced 822 (9.9)

Separated 259 (2.4)

Never married 1,315 (17.6)

Living with partner 579 (7.5)

Alcohol consumption

Never 2,133 (23.2)

Mild 1,874 (25.7)

Moderate 1,775 (26.5)

Heavy 1,082 (14.7)

Unknown 915 (9.9)

Energy intake (kcal) 2148.28 (14.1)

Urine Iodide (µg/L Cre) 5.93 (3.2)

Serum cotinine (ng/mL) 62.3 (3.5)

Hypothyroidism

(Continued)

TABLE 1 (Continued)

Demographic characteristics n (weight%)/Mean (SD)

Yes 184 (2.4)

No 7,595 (97.6)

Hyperthyroidism

Yes 134 (1.6)

No 7,645 (98.4)

SD, standard deviation; BMI, body mass index; FIR, family income to poverty ratio; GED,

general educational development.

TABLE 2 The associations between each mineral intake and thyroid

dysfunction by multivariate logistic regression.

Minerals’
intake

Hypothyroidism Hyperthyroidism

OR (95%CI) P-
value

OR (95%CI) P-
value

Calcium 0.639 (0.398, 1.025) 0.063 0.591 (0.370, 0.943) 0.028

Magnesium 0.673 (0.358, 1.265) 0.215 0.472 (0.232, 0.960) 0.038

Phosphorus 0.677 (0.300, 1.527) 0.341 0.576 (0.273, 1.215) 0.145

Iron 0.746 (0.447, 1.245) 0.257 0.816 (0.431, 1.545) 0.527

Zinc 0.915 (0.594, 1.411) 0.683 0.663 (0.381, 1.153) 0.143

Copper 0.885 (0.541, 1.449) 0.623 0.680 (0.316, 1.463) 0.319

Potassium 0.659 (0.388, 1.120) 0.121 0.436 (0.230, 0.829) 0.012

Selenium 0.859 (0.422, 1.747) 0.670 0.777 (0.430, 1.401) 0.395

Iodide 1.089 (0.840, 1.412) 0.512 1.262 (1.028, 1.550) 0.027

All models were adjusted by age, gender, energy intake, serum cotinine, BMI, PIR, marital

status, alcohol consumption, educational level, and race/ethnicity.

35–49 years old (30.6%), non-Hispanic White (72.2%), married

(56.8%), and moderate alcohol drinkers (26.5%).

The associations between each mineral intake and TD by

multivariate logistic regression were shown in Table 2. After

adjusting for co-variables, the results showed that the higher

intake of calcium, magnesium, and potassium were associated with

lower hyperthyroidism prevalence, with the OR (95% CI) values

of 0.591 (0.370, 0.943), 0.472 (0.232, 0.960), and 0.436 (0.230,

0.829), respectively. The higher intake of iodide was associated

with higher hyperthyroidism prevalence, with a OR (95% CI)

value of 1.262 (1.028, 1.550). However, there was no significant

association between each mineral intake and hypothyroidism

found in multivariate logistic regression (all P > 0.05).

We adopted the WQS and qg-comp models to explore the

overall effect of multiple minerals on TD, as shown in Table 3. After

adjusting for co-variables, theWQSmodel showed the overall effect

of these nine minerals was negatively related with hyperthyroidism

(estimate value: −0.350), with the difference being statistically

significant (P = 0.05); the qg-comp model revealed the similar

result (estimate value: −0.187) although there were no statistically

significant (P > 0.05). Meanwhile, the overall effects of these nine

minerals were negatively related with hypothyroidism, with the

estimate values of−0.054 for WQSmodel and−0.113 for qg-comp

model (P > 0.05).
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TABLE 3 The overall e�ects of mixed minerals’ intake on thyroid

dysfunction obtained by WQS model and qg-comp model.

Model Outcomes Estimate Std. Error P value

WQS Hypothyroidism −0.054 0.170 0.750

Hyperthyroidism −0.350 0.179 0.050

Qg-comp Hypothyroidism −0.113 0.141 0.425

Hyperthyroidism −0.187 0.164 0.252

All models were adjusted by age, gender, energy intake, serum cotinine, BMI, PIR,

marital status, alcohol consumption, educational level, and race/ethnicity. WQS, weighted

quantile sum. The bold value indicated that P value was less than or equal to 0.05.

Figures 2, 3 displayed the weight of each mineral for the overall

effect on TD using WQS and qg-comp models. In WQS model,

the mineral contributing most to the risk of hypothyroidism was

zinc (mean weight = 0.323), followed by calcium (mean weight

= 0.247), and copper (mean weight = 0.230); and the mineral

contributing most to the risk of hyperthyroidism was copper (mean

weight: 0.284), followed by calcium (mean weight: 0.271), and

potassium (mean weight = 0.227). In qg-comp model, the mineral

contributing to the risk of hypothyroidism were potassium and

iodide for positive weight, andmagnesium and calcium for negative

weight; the mineral contributing to the risk of hyperthyroidism

were iodide and magnesium for positive weight, and calcium and

copper for negative weight.

We further employed the BKMR model to estimate the

overall effects of mixed minerals’ intake on TD, which were

exhibited in Figure 4. The overall effect showed that risk of

hyperthyroidism decreased with the higher consumption of these

nine minerals, with the difference being statistically significant.

When the consumption of all minerals increased from the 30th

percentile to 50th percentile, there was an observed approximate

5% decrease in the risk of hyperthyroidism. The decreasing trend in

the risk of hypothyroidism was also observed with higher mineral

consumption, although statistical significance was not reached.

Similar to the WQS and qg-comp models, the BKMR model

also estimated the mineral-specific contribution to TD, referred

to as the PIP, where a higher PIP indicates greater significance

for TD. As shown in Table 4, the highest contributor to the

risk of hypothyroidism was copper (PIP = 0.149), followed by

magnesium (PIP = 0.087); the highest contributor to the risk

of hyperthyroidism was magnesium (PIP = 0.648), followed by

phosphorus (PIP = 0.335). Supplementary Figure S1 showed that

the individual effect of each mineral on TD while holding other

minerals at median values.

4 Discussion

The present study used data from the National Health and

Nutrition Examination Survey (NHANES) to assess the effects of

nine minerals’ intake on the risk of TD in US adults aged 20

years and older using traditional logistic regression methods as

well as three advanced machine learning methods. Diet and thyroid

function are related closely. Poor diets such as vitamin and mineral

deficiencies or excesses may increase the risk of TD (24–26).

Maintaining normal thyroid function requires the co-regulation of

several minerals (27). In this study, we found the negative joint

effect of nine minerals on hyperthyroidism and hypothyroidism.

Similar results were found in a Chinese study of 489 pregnant

women, and they found that total concentrations of the six

minerals were negatively correlated with TSH concentrations and

positively correlated with FT3 and FT4 (28). Above results indicate

that the maintenance of normal thyroid function necessitates the

involvement of multiple minerals, rather than relying on a single

mineral alone. Of them, the potential minerals contributing to the

decreased risk of TD were calcium, zinc, and magnesium, while

iodine may exert an opposite effect on TD. Meanwhile, we fail to

found the significant results regarding the influence of selenium

on TD.

In this study, calcium intake may be negatively associated

with TD. In a Korean case-control study, high calcium intake

was associated with a lower risk of thyroid cancer (25). To date,

the epidemiological research examining the relationship between

calcium intake and thyroid function remains limited. Calcium is

known to be involved in numerous cellular activities in the body.

In the thyroid gland, the expression of the thyrotropin receptor,

the uptake of iodine by thyroid cells, and the dimerisation of

thyroglobulin are dependent on the regulation of calcium (29).

Moreover, calcium as important intracellular signaling molecules,

are involved in various cellular processes, including hormone

secretion. Research has found that calcium ions can directly act on

thyroid cells through specific receptors or channels to regulate their

functional activities (29). In clinical practice, patients with TD are

advised to incorporate calcium-rich foods, such as dairy products,

into their diet to support optimal thyroid function.

Zinc serves a critical role in human physiology, involving

thyroid function. Lu et al. found that low dietary zinc intake was

associated with the risk of hypothyroidism in a US population (24).

This is consistent with the results of the present study. Moreover,

some studies elucidated a substantial association between serum

zinc levels and thyroid hormone concentrations (14, 30). A case-

control study showed that higher serum zinc levels were associated

with higher T3 and T4 levels found in hypothyroid populations,

and lower serum zinc levels were observed in hypothyroid and

hyperthyroid populations and compared to healthy populations

(31). Hypothyroidism was also observed in rats fed a zinc-

deficient diet, as evidenced by a significant reduction in the serum

concentration of alkaline phosphatase, as well as a reduction in

the concentration of hormonal indicators of thyroid function (32).

As far as we know, zinc was identified as an important mineral

with a protective effect on TD in the current study. A possible

explanation is that zinc is also involved in the T4 to T3 conversion

as part of the nuclear receptor proteins (33). In the thyroid gland,

zinc is crucial for the function of thyroid peroxidase (TPO),

an enzyme that is vital for producing thyroid hormones. TPO

facilitates the iodination of thyroglobulin, which is a precursor

protein for thyroid hormones, and also enables the coupling of

iodotyrosine residues to generate T4 and T3 (34). Given the critical

role of zinc in thyroid function and volume, we recommend that

patients with TD incorporate zinc-rich foods such as oysters,

fish, beans, nuts, red meat, whole grains, and dairy products into

their diet.
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FIGURE 2

WQS model regression index weights for hypothyroidism (figure left) and hyperthyroidism (figure right). The WQS models were adjusted by age,

gender, energy intake, serum cotinine, BMI, PIR, marital status, alcohol consumption, educational level, and race/ethnicity. WQS, weighted quantile

sum.

FIGURE 3

Qg-comp model regression index weights for hypothyroidism (figure left) and hyperthyroidism (figure right). The qg-comp models were adjusted by

age, gender, energy intake, serum cotinine, BMI, PIR, marital status, alcohol consumption, educational level, and race/ethnicity. qg-comp, quantile

g-computation.

Compared to other minerals, less research focused on

magnesium. In this study, we found that magnesium intake was

negatively associated with hyperthyroidism and hypothyroidism.

Luo et al. found that serum magnesium concentrations were

significantly lower in thyroiditis antibody-positive populations

than in healthy populations, especially in women of reproductive

age (35). In a recent meta-analysis, researchers also found lower

blood magnesium levels in the thyroid cancer population (36).

However, there are also contradictory results occurred in the

previous literature. A large cross-sectional study that included

6,480 participants showed that higher serum magnesium and

copper levels were positively associated with thyroid nodules

(37). Magnesium contributes to thyroid hormone production as

a stabilizing factor in nucleic acid structure as well as oxidative

phosphorylation and ATP synthesis (38, 39). Animal studies have

shown an independent correlation between hypomagnesemia and

TD, especially hypothyroidism, highlighting the critical role of

magnesium in iodine utilization by the thyroid gland and the

conversion of T4 to its active form, T3 (40, 41). Therefore,

maintaining a balanced magnesium intake through diet or

supplements may be beneficial for supporting thyroid health.

Higher iodine intake has been consistently considered a strong

risk factor for hyperthyroidism, and this notion was validated

by both traditional and emerging machine learning models in

the current study. Iodine is a crucial element for the normal

functioning of the thyroid gland, directly involved in the synthesis

and regulation of thyroid hormones (42). Compared to other

minerals, the relationship between iodine and TD is clearer,

and it has been widely reported that iodine excess and iodine

deficiency impair thyroid function (43–45). Urinary iodine is one

of the most common indicators used to evaluate iodine intake in

humans (42). The current study showed that urinary iodine was

positively associated with TD, which is consistent with previous

studies. In addition, we observed that iodine accounted for a
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FIGURE 4

The overall e�ects of mixed minerals’ intake on hypothyroidism (figure left) and hyperthyroidism (figure right) obtained by BKMR model. The BKMR

models were adjusted by age, gender, energy intake, serum cotinine, BMI, PIR, marital status, alcohol consumption, educational level, and

race/ethnicity. BKMR, bayesian kernel machine regression.

TABLE 4 Posterior inclusion probability (PIP) of the relationship between

multiple minerals’ intake and thyroid dysfunction.

Minerals’ intake PIP
(hypothyroidism)

PIP
(hyperthyroidism)

Calcium 0.037 0.001

Magnesium 0.087 0.648

Phosphorus 0.011 0.335

Iron 0.008 0.008

Zinc 0.028 0.011

Copper 0.149 0.024

Potassium 0.073 0.047

Selenium 0.072 0.022

Iodide 0.043 0.007

PIP, posterior inclusion probability. PIP suggests the relative significance of the impact on TD,

with a higher PIP suggesting the greater significance to TD.

high positive weight in the joint exposure models. Experimental

animal studies have shown that iodine overdose severely impairs

the pituitary-thyroid axis in rodents (46, 47). Excessive iodine can

lead to elevated TSH, which may be due to the fact that excessive

iodine promotes the secretion of TRH from the hypothalamus,

which causes elevated TSH, as well as affecting the activity of the

important enzyme type II deiodinase, which inhibits the conversion

of T4 to T3, and ultimately leads to elevated TSH levels (47–49).

Based on the aforementioned findings, we conclude that iodine

exerts a bidirectional influence on thyroid function. Therefore, it

is imperative to maintain an appropriate level of iodine intake.

The association between selenium intake and thyroid function

is inconclusive. The thyroid gland is the organ with the highest

selenium content (50). Previous studies have suggested that low

selenium diets were associated with goiter, hypothyroidism and

thyroid nodules (51–53). Meanwhile, selenium supplementation

has been used clinically, although a positive effect does not

always occur (54). A previous large cross-sectional study included

populations living in selenium-enriched areas and populations

living in low-selenium areas, with both groups having similar

dietary habits yet with significant differences in selenium intake

due to natural influences (13, 55). The findings of that study

implied that no significant association between serum selenium and

hyperthyroidism was observed, however, lower serum selenium

levels were associated with higher levels of clinical/subclinical

hypothyroidism (13). Our study evaluated the association between

selenium and TD, but no significant contribution of selenium

was found in any of the models. The primary mechanisms

linking selenium deficiency to thyroid disorders include the

GPX enzyme superfamily that aids in antioxidant defenses, the

deiodinase isoenzymes essential for activating and deactivating

thyroid hormones, and the immune-related selenoproteins that

regulate inflammatory responses and the interactions between

immune cells and thyroid cells (56–58). These findings indicate a

potential benefit of selenium supplementation for individuals with

thyroid disease. However, larger and more comprehensive studies

are necessary to conclusively establish these effects. Although

selenium supplementation has been utilized clinically for treatment

of thyroid-related diseases, the potential adverse effects brought

from selenium supplementation must be carefully considered,

particularly in individuals without selenium deficiency.

Multiple minerals are always consumed at the same time

through food, and it is difficult to tell exactly which minerals

play a role and whether there is a joint effect of these minerals.

Few previous studies have been conducted on the relationship

between minerals and thyroid diseases, and even fewer articles

have examined the joint effects of minerals. Limited by traditional

statistical methods is one of the reasons. Logistic regression
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incorporating a single mineral as the independent variable without

considering the levels of other minerals made the results highly

interpretable but with poor sensitivity, and only the effects of

calcium, magnesium and potassium on hyperthyroidism were

identified in that series of models. The joint effect between them

and the relative importance of each mineral was not known.

Fortunately, the emerging statistical methods of WQS, qg-comp

and BKMR allow for mixed exposure analyses, which provide

unique insights into the joint effects of minerals. They allowed

a set of substances with strong correlations to enter the model

simultaneously, and obtained empirical weights after millions of

samples. In our WQS analysis, the negative joint effect of nine

minerals on hyperthyroidism was statistically significant. The

results of BKMR corroborate the results of WQS which is the

significant negative joint effect of minerals on hyperthyroidism.

However,WQS imposed the direction ofmineral action, whichmay

pose some challenges. Qg-comp did not make such constraints,

and we still found a negative joint effect of minerals, in spite of

the fact that there was no statistically significant difference. All

results suggest that the maintenance of normal thyroid function

requires the coordinated involvement of multiple minerals, rather

than depending solely on a single mineral.

The current study is one of the first to assess the relationship

between individual and mixed mineral intake and hyperthyroidism

and hypothyroidism. The combined effect of mixed mineral intake

on the risk of developing hyperthyroidism and hypothyroidismwas

assessed by combining traditional and machine learning methods

and implied that the importance of theminerals differed in the joint

effect. However, we do have to face the limitations of this study.

Firstly, NHANES is a cross-sectional study, which does not support

the determination of a causal relationship between minerals’ intake

and hyperthyroidism and hypothyroidism. Second, we included

only 9 common minerals, which is indicative to some extent but

not exhaustive, and perhaps there are other minerals in trace

amounts but with important implications that we did not include

in the study. Third, the use of 24-h dietary recalls to assess dietary

minerals’ intake is informative, but may not be a representative

assessment of long-term exposure. The current inclusion of data

from the 4 NHANES cycles does not provide complete data

on serum mineral levels. Nevertheless, combining serum mineral

levels with dietary mineral intake may provide a more complete

explanation. Last, besides dietary mineral consumption, there are

any possible comorbidity in TD patients that might be caused by

the excretion of dietary trace elements from the body, which may

influence the results in this study.

5 Conclusion

In conclusion, the current study explored the association of

nine mineral intakes with TD by employing traditional regression

models and three advanced machine learning models. The machine

learning models reported the negative joint effect of the nine

mineral intakes on TD and implied a different weighting of

the effect of each mineral in the joint effect. The intake levels

of various minerals exhibit varying degrees of association with

TD. Maintaining a balanced intake of multiple minerals may be

advantageous in the prevention and treatment of TD.
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