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Intermittent fasting has been linked to metabolic health by improving lipid

profiles, reducing body weight, and increasing insulin sensitivity. However,

several randomized clinical trials have shown that intermittent fasting is not

more effective than standard daily caloric restriction for short-term weight

loss or cardiometabolic improvements in patients with obesity. Observational

studies also suggest cardiovascular benefits from extended rather than reduced

eating windows, and indicate that long-term intermittent fasting regimens may

increase the risk of cardiovascular disease mortality. In this perspective, we

discuss evidence that may support potential adverse effects of intermittent

fasting on cardiovascular health through the loss of lean mass, circadian

misalignment and poor dietary choices associated with reward-based eating.

Given the ongoing revolution in obesity pharmacotherapy, we argue that

future research should integrate anti-obesity medications with dietary strategies

that confer robust benefits to cardiometabolic health, combine exercise

regimens, and consider genetic factors to personalize obesity treatment.

Comprehensive approaches combining diet, pharmacotherapy, and lifestyle

modifications will become crucial for managing obesity and minimizing long-

term cardiovascular risk.

KEYWORDS

intermittent fasting, precision medicine, anti-obesity pharmacotherapy, cardiovascular
disease, genetics, GLP-1, GIP

1 Introduction

Intermittent fasting (IF) has gained attention as an effective strategy for reducing
body weight and improving metabolic health. IF includes various protocols, such as time-
restricted eating (TRE), alternate-day fasting (ADF), and the 5:2 diet (1). TRE confines
food intake to a specific window each day, typically less than 12 h, and involves fasting
for the remaining hours. ADF alternates between days of normal eating and days with
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significant calorie restriction or complete fasting. The 5:2 diet
involves eating ad libitum for 5 days and restricting caloric
intake for two nonconsecutive days each week. Several lines of
clinical, epidemiological and experimental evidence have suggested
that short-term application of IF protocols may improve risk
factors associated with cardiovascular disease (2–5). These benefits
have been attributed to weight loss, improved lipid profiles,
reduced oxidative stress and systolic blood pressure that have been
extensively reviewed elsewhere (3, 6, 7).

However, several randomized clinical trials (RCTs) (8–11) and
a recent meta-analysis of RCTs (12) have provided robust evidence
that neither TRE nor ADF or 5:2 IF is more effective than standard
daily caloric restriction in terms of short-term reductions in body
weight or improvements in cardiometabolic risk factors in patients
with obesity. Likewise, a 3-week ADF regimen in lean adults was
reported to be less effective at reducing body fat and improving
cardiometabolic health parameters than an equivalent daily energy
restriction (13). These observations suggest that many of the short
term health-promoting effects of IF are most likely mediated by
caloric restriction. Indeed, an 8-week ADF intervention study in
overweight patients failed to improve cardiometabolic risk factors
in the absence of caloric restriction (14).

In this perspective, we critically evaluate the effects of IF on
cardiovascular health, focusing on potential adverse outcomes that
may be associated with loss of lean mass, circadian misalignment,
and dietary patterns driven by reward-based eating. These links
are examined also in the context of the transformative advances
in obesity pharmacotherapy, by discussing how pharmacological
agents could be combined with dietary interventions for the
management of cardiometabolic risk. By synthesizing current
evidence, we aim to provide a comprehensive understanding of the
role of IF in cardiovascular health and stimulate discussions about
optimized personalized dietary strategies for obesity management
in the era of obesity pharmacotherapy.

2 Emerging concerns of intermittent
fasting for cardiovascular health

The scarcity of observational studies addressing the effects of
long-term application of IF on cardiovascular health has been
recognized as a major gap in nutrition research (1). Intriguingly, a
recently published observational analysis of data from the National
Health and Nutrition Examination Survey (NHANES) revealed
that an eating window extending beyond 11 h is associated with
lower cardiovascular disease (CVD) mortality in adults with heart
failure (15). Along the same lines, an independent preliminary
analysis of data from the NHANES presented at the 2024 American
Heart Association conference by Zhong et al. (16) suggested that
adhering to an 8-h TRE schedule is associated with a 91% increased
risk of CVD mortality among a cohort of over 20,000 adults.
The mortality risk was found to be particularly pronounced in
individuals with preexisting heart conditions (16). Despite potential
limitations, such as confounding factors and reliance on self-
reported data which may introduce errors, these studies raise
concerns about the long-term impact of IF on cardiovascular
health.

Experimental findings in rodents align with the conclusions
of these observational studies. Thus, rats subjected to ADF
for a prolonged period of time (i.e., 6 months, equivalent
to approximately 14 years in humans) developed reduced left
ventricular diastolic compliance, a 3-fold increase in interstitial
myocardial fibrosis and diminished cardiac reserve (17). Together,
these findings underscore the need to better appreciate the
behavioral and biological processes linking IF to cardiovascular
health and disease.

3 Putative behavioral and biological
processes that may link intermittent
fasting to cardiovascular disease

We suggest that increased loss of lean mass, circadian
misalignment of food consumption and/or compromised food
quality may underpin the adverse effects of IF on cardiovascular
health in genetically predisposed individuals (Figure 1).

3.1 Compromised food quality
associated with reward-based eating

An RCT in metabolically healthy patients with obesity reported
that the limited eating window of IF may lead to increased food
consumption on fast days (10). This behavior, termed "reward-
based eating," may degrade the overall diet quality by including
more satisfying rather than nutritionally balanced options (18).
Indeed, some studies have reported reduced cognitive restraint,
reduced fiber intake and greater sugar and meat consumption in
individuals on IF regimes than in those on continuous caloric
restriction (19–22). We speculate that at least some of the instances
of compromised food quality could be attributed to reward eating.
Poor food choices may also explain the elevated levels of LDL-
cholesterol, a risk factor for CVD, reported in obesity patients
undergoing a 12-month ADF but not in patients receiving a
continuous hypocaloric diet (10).

Protein consumption tends to also increase among individuals
practicing IF (23–25), potentially to increase satiety. While plant-
based protein sources are known to benefit cardiovascular health,
increased intake of animal protein has been linked to CVD and
all-cause mortality (26, 27). Exaggerated consumption of animal-
based foods such as red meat, eggs, and dairy is expected to
increase choline and carnitine intake, leading to the production
of trimethylamine-N-oxide (TMAO) through a metabolic pathway
involving the gut microbiota and the liver. Elevated levels of
circulating TMAO are associated with a higher incidence of
atherosclerotic CVD and major adverse cardiovascular events (28,
29). Although a definitive link between prolonged IF and TMAO
has not been established, elevated TMAO levels have been reported
in patients with obesity undergoing 5:2 IF for 4 weeks (30).

3.2 Loss of lean mass

Loss of lean mass is another factor that may link IF to adverse
cardiovascular outcomes. An RCT in patients with overweight or
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FIGURE 1

Some people may experience adverse cardiovascular effects following long-term application of intermittent fasting (bottom right) because of higher
loss of lean mass, circadian misalignment of food consumption and/or compromised food quality linked to reward eating. These factors, separately
or in combination, may particularly impact individuals with preexisting heart conditions or with genetic susceptibility to CVD leading to higher risk of
mortality (15, 16).

obesity found that a 12-week hypocaloric TRE regimen led to a
greater loss of lean mass compared to a conventional hypocaloric
diet (9). The reduction in lean mass accounted for approximately
65% of total weight loss (9) which is notably higher than the typical
20–30% range observed with standard hypocaloric diets (31), and
primarily involved loss of skeletal muscle mass. Reduced muscle
mass has been associated with an increased risk of CVD (32, 33),
as well as cardiovascular events and mortality (34). These findings
highlight the need for caution when considering IF for individuals
at risk of sarcopenia, such as the elderly and cancer patients.

3.3 Chrononutrition

Circadian misalignment in food intake may also impact
metabolic and cardiac health (35), suggesting additional
putative links between IF and CVD. Several observational
and interventional studies have shown that eating breakfast is
overall associated with cardiometabolic health (36), whereas
skipping breakfast increases the risk of CVD (37, 38) and type 2
diabetes (T2D) (39). The behavior of eating breakfast is highly
heritable, with twin studies indicating a 56% heritability rate (40).
In a Mendelian randomization analysis of data from 200,000
individuals, genetically predisposed breakfast skipping was
causally linked to obesity (41). Circadian misalignment caused
by irregular eating patterns, such as skipping breakfast during IF,
may exacerbate metabolic dysfunction in genetically predisposed
individuals. For example, the polymorphism 3111T/C in circadian-
related gene CLOCK has been associated with differences in
glucose tolerance and lipid metabolism (42), both of which are
critical to cardiovascular risk. These findings highlight the potential
risks of skipping breakfast, particularly for those with a genetic

predisposition, and underscores the importance of considering
genetic factors when assessing the health impacts of IF and related
dietary practices.

Similar to breakfast skipping, late-night eating has been linked
to arterial stiffness (43) and to a greater risk of CHD in a 16-
year cohort study (38). A recent observational analysis from the
NutriNet-Santé study, which included over 103,000 adults, found
that for each hour breakfast was delayed after 8:00 a.m. or the
last meal was consumed after 8:00 p.m., the overall risk of CVD
increased, regardless of body weight (44). This study also revealed a
potential protective association between a longer night-time fasting
duration and cardiovascular health, only when it was coupled
with early first and last meals but not with skipping breakfast
(44). Different TRE protocols have assigned varying eating time
windows (e.g., early 8 am–2 pm or 12 pm–8 pm), and the multitude
of differences in study designs and participant selection render
them largely incomparable (45). In the real world, unsupervised
individuals’ self-selection of the eating time window is the standard
practice. Since the health impacts of different durations of exposure
to IF diets can be important, future studies need to investigate this
parameter extensively.

Chrononutrition is an important modulator of peripheral
clocks in the circadian system controlling blood pressure rhythms
(46), partly through the hypothalamus–pituitary–adrenal (HPA)
axis. Cortisol is the main hormone produced by HPA. A small-
scale intervention study indicated that while morning cortisol is
reduced in females who skip breakfast as part of their intermittent
diet regimen, postprandial cortisol levels later in the day are
higher than those in females who do not skip breakfast (47).
The long-term impacts of such shifts in diurnal cortisol remain
undefined, but elevated cortisol levels are linked to hypertension
and glucose intolerance, which are known risk factors for CVD
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(48). Indeed, cortisol activates the rennin/angiotensin/aldosterone
system (RAAS), a complex hormonal network influencing blood
pressure, fluid and electrolyte balance, and systemic vascular
resistance. The activation of the RAAS, particularly through
angiotensin II, can influence myocardial energy metabolism. For
individuals with heart failure, especially those with compromised
left ventricular function, the vasoconstrictive effect of angiotensin II
may be detrimental by increasing blood pressure, impairing cardiac
output and exacerbating heart failure symptoms (49). Therefore,
the effects of skipping different meals in the framework of TRE (e.g.,
dinner versus breakfast) require further investigations through
controlled studies to elucidate how meal timing impacts HPA axis
rhythmicity and cardiovascular risk factors, including fluctuations
in blood pressure and glucose levels. Notably, the application of
an early (8 a.m. to 5 p.m.) TRE schedule for 1 week lowers fasting
glucose, whereas late feeding (12 p.m. to 9 p.m.) has no effect (50).

One of the well-established effects of cortisol is the reduction of
brain-derived neurotrophic factor (BDNF), which physiologically
functions to inhibit appetite and food intake (51). Compared to
continuous caloric restriction, cognitive restraint is reduced in
individuals following IF (21) but the effects of intermittent diets
on basal BDNF levels remain inconclusive (52). Importantly,
larger cortisol-to-BDNF ratios have been associated with
cardiometabolic risk and silent ischemia in African Americans (53,
54). BDNF is highly polymorphic, and the most common genetic
variation, rs6265 (Val66Met), has been associated with greater
severity of coronary artery disease (55). Experimental studies
in homozygous Val66Met knock-in mice have confirmed this
association and demonstrated that alterations in basal cardiac gene
expression profiles are associated with the development of diastolic
dysfunction (56). It would be interesting to examine whether
carriers of BDNF rs6265 in NHANES who have incorporated TRE
into their lifestyle are at higher risk of death from CVD compared
with noncarriers (15, 16).

3.4 Clinical implications and research
gaps

The aforementioned mechanisms underscore the importance
of cautious implementation of IF strategies because of their
potential links with cardiovascular risk. In a clinical setting,
the loss of lean mass associated with some IF protocols, could
exacerbate sarcopenia in older adults or individuals with chronic
conditions and compromise cardiovascular resilience. Similarly,
deregulated chrononutrition caused by irregular eating patterns,
including genetically-predisposed breakfast skipping or late-night
eating, should be taken into consideration, as it is strongly
associated with metabolic dysfunction, elevated blood pressure,
and increased cardiovascular risk. Reward-based eating should also
be monitored among individuals practicing IF, as it may lead to
poor dietary patterns that contribute to atherosclerosis and adverse
cardiometabolic outcomes.

To address these concerns, future research should prioritize
large-scale, longitudinal studies evaluating the long-term
cardiovascular impacts of IF, particularly in vulnerable populations
such as the elderly or those with preexisting cardiovascular
conditions. Further exploration into the comparative effects of

different IF protocols, such as TRE and ADF, on eating behavior,
metabolic health, and circadian alignment is essential to delineate
the conditions under which IF may pose risks or confer benefits.

4 Intermittent fasting in the era of
obesity pharmacotherapy

From a therapeutic perspective, the controversy surrounding
the health outcomes of IF should also be considered in the
context of the evolving development of novel anti-obesity and anti-
diabetic medications. These drugs include (but are not limited to)
the glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide
and semaglutide; the dual GLP-1 and GIP (glucose-dependent
insulinotropic polypeptide) receptor agonist tirzepatide; and the
tri-agonist retatrutide, which activates GLP-1, GIP and glucagon
receptors. Their remarkable efficacy in reducing both body weight
and obesity-related comorbidities, including CVD and overall
mortality (57–60), places IF-based interventions in a new context.

Indeed, pharmacotherapy with GLP-1 receptor or dual
GIP/GLP-1 receptor agonists in patients with obesity achieves
impressive reductions in body weight in the range of 15–25%
compared with TRE or other nutritional interventions, which are
typically in the range of 3–4% (1, 61). For example, in a 72-
week clinical trial (61), a weekly dose of 15 mg of tirzepatide led
to 21% total body weight loss compared with 3% in the placebo
group receiving only a hypocaloric diet. Obesity pharmacotherapy
reduces food intake and enhances satiety without the need to
alter meal timing (62, 63), thus avoiding the potential health risks
and reward-based eating behaviors reportedly associated with IF
(44, 45). Several studies have also demonstrated that, unlike TRE
which decreases lean mass, treatment with tirzepatide, liraglutide
or semaglutide reduces body weight with small effects on lean
mass (61, 64, 65). Therefore, the available evidence suggests that
obesity pharmacotherapy may mitigate some of the behavioral and
biological processes observed with IF that could elevate CVD risk.

Indeed, although long-term monitoring of the adverse effects
of anti-obesity medications is still needed, data from clinical
trials supports favorable efficacy versus safety profiles and
demonstrates significant improvements in several cardiometabolic
health parameters (57–61). Overweight or obesity patients without
T2D but with preexisting CVD experience a marked decrease
in the incidence of cardiovascular death, nonfatal myocardial
infarction, or nonfatal stroke while on semaglutide treatment
(66, 67). Moreover, obesity pharmacotherapy significantly reduces
cardiovascular events in patients with type 2 diabetes (T2D) (68,
69).

A mixed strategy incorporating both pharmacotherapy
and dietary interventions may offer the most comprehensive
and pragmatic approach to obesity and cardiometabolic risk
management. Along these lines, the SURMOUNT-3 phase III
clinical trial revealed that patients with obesity or overweight
who achieved ≥5.0% weight reduction with intensive lifestyle
intervention prior to treatment with tirzepatide benefited the
most from pharmacotherapy (70). Optimizing long-term dietary
interventions will also be required to support and maintain the
metabolic and cardiovascular benefits achieved during treatment.
Incorporating genetics into this optimization process could provide
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a more precise and personalized approach, ensuring maximum
effectiveness and sustainability of critically required lifestyle
changes (71–73).

5 Discussion and future directions

The prevailing view that IF is cardioprotective largely stems
from experimental rodent models and intervention studies (2–4).
However, it is important to note that rodents have a significantly
greater basal metabolic rate; thus, the reported beneficial metabolic
effects of time-restricted eating on blood pressure and cardiac
structure in mice and rats (4) may not fully translate to humans.
Intermittent fasting studies performed in animals also lack the
behavioral aspects of food choice and intake that typify humans,
including reward-based eating. Moreover, it is widely recognized
that TRE intervention studies in patients with obesity have focused
primarily on short-term effects (i.e., durations of less than 12 weeks)
and have small sample sizes (1), leaving a gap in our understanding
of the safety and effectiveness of long-term intermittent caloric
restriction. The observational analyses conducted by Zhong et al.
(16) and Billingsley et al. (15) underscore the need for further
investigations into the long-term impacts of intermittent diets on
cardiovascular health in additional large-scale cohorts.

A major goal for future research will be to identify
dietary interventions that both optimally support patients with
obesity during pharmacotherapy and maintain the metabolic and
cardiovascular benefits achieved during treatment. Given that the
health effects and long-term consequences of IF remain unclear (1,
16), we propose that hypocaloric Mediterranean diets may serve as
the preferred starting point. Mediterranean diets have been strongly
associated with both body weight control and improved long-
term cardiovascular outcomes, including clinically meaningful
reductions in coronary heart disease, ischemic stroke, and overall
CVD mortality (74, 75). Among several popular diets evaluated
in a recent meta-analysis (76), the Mediterranean diet had the
most consistent and robust evidence of a beneficial effect on both
anthropometric parameters and cardiometabolic risk factors.

In addition to Mediterranean dietary interventions, the
integration of exercise and behavioral modifications in new
pharmacotherapy protocols needs to be considered for their
potential to enhance both the achievement and maintenance of
reduced body weight. Increased physical activity in combination
with reduced caloric intake enables additional weight loss, better
glycemic control, and improved insulin sensitivity and lipid
profiles (77, 78). Emerging evidence suggests that adherence to
physical activity recommendations while on liraglutide leads to a
significant, albeit limited, reduction in body weight (79). Future
clinical trials should thus aim to identify the optimal combination
of diet, physical activity protocols, and behavioral modification
techniques to be combined with new pharmacotherapies, as this
combination could have a multiplier beneficial effect on the
management of obesity.

In conclusion, we herein underscore the need for caution
in applying intermittent fasting as a long-term dietary strategy
for cardiovascular health. While short-term benefits of IF,
such as weight loss and improvements in lipid profiles, have
been demonstrated, these effects appear primarily mediated by

caloric restriction rather than unique attributes of intermittent
fasting. Importantly, the long-term impacts of IF remain
largely unexplored. Emerging observational evidence indicates
cardiovascular benefits from extended rather than reduced eating
windows and increased mortality risk associated with long-term
application of TRE. Such adverse effects may be linked to the
loss of lean mass, circadian misalignment and poor dietary
choices associated with reward-based eating in genetically-
predisposed individuals (Figure 1). Conversely, advances in obesity
pharmacotherapy offer highly effective alternatives for managing
body weight and cardiometabolic risk, yet their long-term safety
profiles also require better evaluation.

As we continue to navigate the intricate balance between
diet, pharmacotherapy, and cardiovascular risk, it is essential
that future research prioritizes the development of integrative
approaches that not only address the immediate challenges of
obesity but also mitigate long-term cardiometabolic risks, ensuring
that treatment strategies are both effective and sustainable. We
propose that such a balanced strategy should incorporate evidence-
based dietary patterns with proven cardiometabolic benefits, such
as Mediterranean diets. Underpinned by genetic and nutritional
counseling, the integration of genetic parameters influencing
the response to dietary components, type of exercise, different
pharmacotherapies and behavioral traits, such as adherence
and reward eating, as well as their interactions, will enable
further personalization and greater potential for improved
pharmacotherapy outcomes in patients with obesity (73, 80–83).
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