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Nutraceuticals-including resveratrol (RSV), curcumin (CUR), piperine (PPR), and 
quercetin (QUE)-exhibit dual therapeutic and toxicological profiles, are necessitating 
balanced risk–benefit evaluation. This review synthesizes evidence from about 
120 preclinical/clinical studies sourced from PubMed, Scopus, and Web of Science 
using keywords (e.g., nutraceutical-drug interactions, bioavailability, CYP/P-gp 
modulation), prioritizing recent advances (2015–2024) alongside seminal works to 
contextualize mechanisms. Studies were selected based on methodological rigor, 
clinical relevance, and mechanistic insights into protective effects (antioxidant, 
anti-inflammatory, anticancer) and risks (organ toxicity, pro-oxidant activity, 
drug interactions). Key findings highlight PPR’s bioavailability-enhancing and 
neuroprotective properties, yet its inhibition of CYP3A4/P-gp elevates toxicity risks 
for carbamazepine (68.7% ↑ plasma concentration) and warfarin. CUR demonstrates 
hepatoprotective benefits but alters cardiovascular drug pharmacokinetics (e.g., 
amlodipine) and induces oxidative stress at high doses. RSV and QUE improve 
cardiovascular/neurological outcomes but interact with chemotherapeutics (RSV ↓ 
drug resistance via apoptosis; QUE ↑ methotrexate efficacy via anti-inflammatory 
synergy). Critical risks include reproductive toxicity (PPR >10 mg/kg), neurocognitive 
deficits (high-dose CUR), and CYP3A4-mediated interactions (QUE + cyclosporine). 
Nanotechnology-driven formulations (e.g., CUR/PPR nanoemulsions) mitigate 
risks by enhancing stability and enabling targeted delivery, though rigorous safety 
validation remains essential. This review underscores the need for evidence-
based guidelines to optimize nutraceutical use in polypharmacy populations, 
emphasizing interdisciplinary collaboration to manage interactions. Innovations like 
nanoencapsulation could transition nutraceuticals from supplements to precision 
medicine adjuvants, pending resolution of dose–response ambiguities and long-
term safety gaps through targeted research.
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1 Introduction

The concept of using food as a form of medicine dates back thousands of years, when 
plants, herbs, and various foods were employed to treat illnesses and promote healing. 
Even in modern times, it is widely recognized that diet plays a significant role in 
influencing human physiology and overall health (1). Nutraceuticals, a term derived from 
“nutrition” and “pharmaceutical,” refer to food-derived products that provide health 
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benefits beyond basic nutritional value. These bioactive 
compounds, available as dietary supplements, functional foods, 
and fortified products, have gained global popularity due to their 
natural origins and lower side-effect profiles compared to synthetic 
drugs (2). However, their therapeutic potential is accompanied by 
potential risks, necessitating a balanced understanding of their 
benefits and limitations.

Nutraceuticals are distinct from dietary supplements, which 
primarily provide essential nutrients like vitamins, minerals, and 
amino acids to address dietary deficiencies (3). In contrast, 
nutraceuticals, such as resveratrol (RSV), curcumin (CUR), piperine 
(PPR), and quercetin (QUE), are bioactive compounds with therapeutic 
properties that can modulate cellular pathways and disease processes 
at a biochemical level (4). These compounds are increasingly consumed 
to prevent or treat specific health conditions, owing to their antioxidant, 
anti-inflammatory, and neuroprotective effects. However, their 
pharmacokinetic profiles, including bioavailability and potential 
toxicity, vary significantly and require careful consideration.

The growing interest in nutraceuticals stems from their potential 
to address chronic diseases, such as cardiovascular disorders, 

neurodegenerative conditions, and metabolic syndromes, which are 
often linked to oxidative stress and inflammation (5, 6). For instance, 
four well-known nutraceuticals-RSV, CUR, PPR, and QUE-have been 
extensively studied for their protective effects on human health 
(Figure 1). These compounds demonstrate a wide range of potential 
beneficial effects, including antioxidant, anti-inflammatory, 
pro-apoptotic, and metabolic-regulating properties, which positions 
them as promising candidates for disease prevention and management. 
These compounds exhibit antioxidant, anti-inflammatory, and 
metabolic-regulating properties, making them promising candidates 
for disease prevention and management. However, despite their 
therapeutic potential, the safety and long-term efficacy of nutraceuticals 
remain understudied, particularly regarding dosage-specific toxicity, 
bioavailability, and interactions with pharmaceuticals.

While the protective effects of nutraceuticals are well-
documented, their potential risks are often overlooked. Excessive 
consumption, prolonged use, or interactions with medications can 
lead to adverse outcomes, highlighting the need for a cautious 
approach to their use (7). For example, CUR, known for its 
hepatoprotective effects at low doses, may exhibit adverse effects at 
higher doses (8). Similarly, the bioavailability of these compounds, 
which is influenced by their formulation and delivery systems, 
remains a critical challenge that limits their therapeutic efficacy. 
Furthermore, the global regulatory landscape for nutraceuticals is 
inconsistent, complicating efforts to ensure their safety and 
quality (9).

The transition from traditional use to modern application 
underscores the enduring significance of bioactive compounds in 
human health. However, the complexity of their mechanisms and the 
lack of comprehensive studies on their long-term safety and efficacy 
necessitate further research. The primary purpose of this study is to 
provide a balanced and comprehensive review of the dual nature of 
nutraceuticals, with a focus on four major bioactive compounds. 
While these compounds are celebrated for their antioxidant, anti-
inflammatory, and disease-preventive properties, their potential 
toxicities and interactions with pharmaceuticals are often overlooked. 
This review aims to:

FIGURE 1

Representative classification of well-known nutraceuticals: resveratrol, curcumin, piperine, and quercetin.
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 1. Explore the mechanisms underlying their protective and 
potential challenges, including pro-oxidant activity, organ-
specific alteration, and drug interactions.

 2. Provide evidence-based recommendations for their safe and 
effective use, particularly in vulnerable populations and 
clinical settings.

By addressing these challenges, we hope to guide researchers, 
clinicians, and policymakers in making informed decisions about the 
use of nutraceuticals in health and disease management. This review 
is particularly timely given the growing global consumption of 
nutraceuticals and the increasing reports of adverse effects associated 
with their use. Addressing these potential risks is essential to maximize 
QUE’s therapeutic potential while minimizing its risks.

2 Beyond nutrition: the therapeutic 
and protective potential of 
nutraceuticals

In terms of mechanisms, nutraceuticals function as ligands that 
bind to various receptors, influencing critical cellular signaling 
pathways. This interaction directly affects processes such as 
neurogenesis, synaptogenesis, synaptic transmission, neuro-
inflammation, oxidative stress management, cell death modulation, 
survival promotion, and structural remodeling of cells (9). For 
instance, RSV activates sirtuins-a family of proteins instrumental in 
regulating aging and inflammatory processes (10).

Moreover, another crucial aspect of their action lies in their 
antioxidant properties, which play a pivotal role in neutralizing free 
radicals and reactive oxygen species (ROS). Free radicals, being highly 
reactive molecules, can induce oxidative stress and damage vital 
cellular components like DNA, proteins, and lipids. Bioactive 
compounds such as polyphenols and flavonoids serve as effective 
scavengers of these free radicals, thereby reducing oxidative stress and 
safeguarding cellular integrity (7).

In addition to their potent antioxidant activities, these 
nutraceuticals also provide significant health benefits through their 
anti-inflammatory properties. The bioactive compounds within them 
can regulate inflammatory pathways by suppressing the production of 
pro-inflammatory cytokines and enzymes, such as tumor necrosis 
factor-alpha (TNF-α), interleukin-6 (IL-6), and cyclooxygenase-2 
(COX-2) (11, 12). By reducing chronic inflammation, a key risk factor 
for various diseases-including cardiovascular disease, cancer, and 
neurodegenerative disorders-these nutraceuticals play a vital role in 
disease prevention and management (13–18).

Building on the previously discussed mechanisms by which bioactive 
food ingredients modulate inflammatory pathways, these compounds 
also play a crucial role in influencing metabolic processes. Specifically, 
bioactive food ingredients can activate or inhibit key enzymes and 
signaling pathways involved in metabolism, leading to improvements in 
lipid profiles, enhanced glucose metabolism, and better overall energy 
balance (19–21). This dual action—addressing both inflammation and 
metabolism-highlights their potential as natural therapeutic agents for 
promoting health and preventing chronic diseases.

Building on the mechanisms underlying nutraceuticals’ health-
promoting and protective effects, the following section examines the 
distinct attributes of four key compounds-RSV, CUR, PPR, and 

QUE-whose unique properties underpin their efficacy in mitigating 
disease risk and enhancing therapeutic outcomes.

2.1 The therapeutic and protective 
potential of resveratrol

RSV, a polyphenolic compound abundant in grapes, red wine, and 
berries, has received significant scientific interest due to its wide-ranging 
therapeutic potential. Its health benefits-spanning cardiovascular, 
neurological, metabolic, and anti-inflammatory domains-are primarily 
mediated through antioxidant, anti-inflammatory, pro-apoptotic, and 
signaling pathway modulation mechanisms, as summarized in Table 1.

Cardiovascular Benefits: RSV exerts cardioprotective effects by 
enhancing endothelial function through increased nitric oxide (NO) 
production and reduced oxidative stress, promoting vasodilation and 
lowering blood pressure (13, 14). It also improves lipid metabolism by 
reducing LDL cholesterol and elevating HDL cholesterol, thereby 
mitigating atherosclerosis risk (22). These findings are supported by 
clinical trials, such as a randomized controlled study demonstrating 
that RSV supplementation significantly improves endothelial function 
and reduces hypertension (14), underscoring its role as a promising 
therapeutic agent for cardiovascular diseases.

Neuroprotective Potential: Beyond cardiovascular health, RSV 
shows remarkable neuroprotective efficacy. It inhibits amyloid-beta 
plaque accumulation in Alzheimer’s disease (AD) and enhances 
cognitive function by activating sirtuins (e.g., SIRT1) and modulating 
AMPK/NF-κB pathways (23). Clinical trials corroborate these effects: 
long-term, low-dose RSV supplementation improves memory, 
attention, and cerebrovascular function in postmenopausal women 
(15), underscoring its potential in combating neurodegenerative 
disorders like AD and Parkinson’s disease.

Anti-Cancer and Anti-Inflammatory Actions: RSV’s anti-cancer 
properties stem from its ability to regulate pathways governing cell 
proliferation, apoptosis, and angiogenesis. It selectively induces 
apoptosis in cancer cells while suppressing metastasis (7, 22). 
Concurrently, its potent anti-inflammatory effects mitigate chronic 
conditions such as rheumatoid arthritis and inflammatory bowel 
disease by inhibiting pro-inflammatory cytokines (e.g., TNF-α, IL-6) 
and enzymes like COX-2 (24). Notably, RSV reduces renal cell 
apoptosis by suppressing mitochondrial cytochrome C release and 
ROS levels, thereby alleviating oxidative damage (22).

Metabolic and Broader Health Implications: Emerging evidence 
highlights RSV’s metabolic benefits, including enhanced insulin 
sensitivity and glucose regulation via AMPK and sirtuin activation 
(19, 22). These mechanisms position RSV as a viable candidate for 
managing metabolic syndrome and type 2 diabetes.

Collectively, RSV’s pleiotropic effects underscore its potential as 
both a therapeutic adjunct for chronic diseases and a preventive agent 
in public health strategies. Further clinical research is warranted to 
optimize dosing regimens and validate long-term efficacy.

2.2 The therapeutic and protective 
potential of curcumin

CUR, the primary bioactive compound in turmeric (Curcuma 
longa), is widely consumed as a culinary spice and traditional 
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remedy (11). Upon ingestion, it undergoes extensive hepatic and 
intestinal metabolism, yielding bioactive metabolites such as 
tetrahydrocurcumin, hexahydrocurcumin, and octahydrocurcumin, 
which retain biological activities comparable to the parent 
compound (25). Renowned for its antioxidant, anti-inflammatory, 
anti-cancer, and neuroprotective properties, CUR addresses diverse 
mechanisms underlying chronic diseases, as summarized in 
Table 1.

CUR’s antioxidant and anti-inflammatory effects form the 
cornerstone of its therapeutic profile. It scavenges free radicals, mitigates 
oxidative stress, and suppresses pro-inflammatory mediators like 
TNF-α, IL-6, and COX-2 by inhibiting the NF-κB signaling pathway 
(11, 12, 26, 27). These dual actions make it effective in managing 
conditions such as cardiovascular disease, diabetes, and arthritis.

Anti-Cancer Potential: CUR demonstrates significant anti-cancer 
properties by targeting multiple pathways involved in tumor 
progression. It inhibits tumor growth, induces apoptosis in cancer 
cells, and suppresses angiogenesis, thereby preventing the spread of 
cancer (28). These mechanisms have been observed in various cancers, 
including breast, prostate, and colorectal cancer, highlighting CUR’s 
potential as an adjunct to conventional cancer therapies.

Beyond oncology, CUR’s neuroprotective effects are notable. It 
reduces amyloid-beta plaques in Alzheimer’s disease, modulates 
neuroinflammation, and enhances cognitive function by crossing the 
blood–brain barrier (29). Clinical evidence highlights its ability to 
improve cognitive performance and lower amyloid-beta levels in older 
adults with mild cognitive impairment (30).

Emerging research further underscores CUR’s metabolic benefits, 
including enhanced insulin sensitivity and glucose regulation. By 
activating PPARs, it improves lipid metabolism and energy 
homeostasis, offering therapeutic potential for type II diabetes and 
obesity (12, 20).

Clinical validation reinforces these findings. A randomized 
controlled trial in patients with metabolic syndrome reported 
improved endothelial function and reduced inflammation following 
CUR supplementation (31). Collectively, CUR’s multifaceted 
properties-spanning antioxidant, anti-inflammatory, anti-cancer, 
neuroprotective, and metabolic domains-highlight its versatility in 
chronic disease management and preventive health strategies.

2.3 The therapeutic and protective 
potential of piperine

PPR, the bioactive alkaloid in black pepper (Piper nigrum), 
undergoes extensive metabolism in enterocytes and the liver, 
where glucuronidation, sulfation, and methylation produce 
water-soluble derivatives for excretion (27). As illustrated in 
Table 1 and Figure 2, PPR is well-known for its diverse health 
benefits. Its therapeutic potential lies in its ability to enhance 
bioavailability, reduce inflammation, combat oxidative stress, 
inhibit cancer progression, and protect neural function. These 
properties collectively address key mechanisms involved in 
chronic diseases.

TABLE 1 Therapeutic and protective effects of resveratrol, curcumin, piperine, and quercetin.

Nutraceutical Key beneficial effects Mechanisms Key references

Resveratrol Cardioprotective, neuroprotective, anti-

cancer, anti-inflammatory, antioxidant, 

metabolic benefits

 • Enhances endothelial function and 

reduces atherosclerosis.

 • Reduces amyloid-beta accumulation in 

Alzheimer’s disease.

 • Modulating lipid profiles.

 • Activates sirtuins, promoting longevity.

(13–15, 22, 23)

Curcumin Anti-inflammatory, antioxidant, 

neuroprotective, anti-cancer, metabolic 

benefits

 • Inhibits NF-κB and COX-2 pathways, 

reducing inflammation.

 • Protects liver from oxidative damage.

 • Induces apoptosis in cancer cells.

 • Scavenges free radicals.

 • Inhibits NF-κB.

 • Activates PPARs, improves insulin sensitivity.

(11, 12, 20, 27–29)

Piperine Bioavailability enhancer, 

neuroprotective, anti-inflammatory, 

antioxidant, metabolic benefits

 • Inhibits drug-metabolizing enzymes, enhancing 

bioavailability of other compounds.

 • Reduces oxidative stress in the brain.

 • Improves cognitive function and synaptic plasticity.

 • Activates AMPK, regulates lipid metabolism.

(21, 32, 35–37, 39)

Quercetin Antioxidant, anti-inflammatory, 

cardiovascular protection, 

neuroprotection, cardiovascular 

protection, metabolic and immune 

benefits

 • Scavenges free radicals and reduces oxidative stress.

 • Improves endothelial function and reduces 

LDL cholesterol.

 • Protects neurons from oxidative damage 

and inflammation.

 • Enhances insulin sensitivity, modulates immune 

response.

(18, 43–48)
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Bioavailability Enhancement: A hallmark of PPR is its ability to 
augment the bioavailability of drugs and nutrients. By inhibiting 
drug-metabolizing enzymes (e.g., cytochrome P450, 
UDP-glucuronosyltransferase) and enhancing intestinal absorption 
(21, 32), PPR significantly inhibits P-glycoprotein (P-gp) and 
enhances the efficacy of co-administered compounds like CUR and 
RSV, positioning it as a critical adjunct in nutraceutical formulations 
(33, 34).

Building on this foundational role, PPR’s antioxidant effects further 
contribute to its therapeutic profile. It reduces oxidative stress by 
scavenging free radicals (35, 36) and suppresses inflammatory and 
pro-inflammatory cytokines (e.g., TNF-α, IL-6) (37), offering promise 
in managing chronic inflammatory conditions such as arthritis and 
metabolic disorders.

Expanding into oncology, PPR demonstrates anti-cancer 
properties by inhibiting cancer cell proliferation and inducing 

apoptosis in breast, colon, and prostate cancers (38, 39). Its modulation 
of key pathways like PI3K/AKT and NF-κB disrupts tumor growth 
and metastasis, underscoring its potential as an adjunct to 
conventional therapies.

In neuroprotection, PPR improves cognitive function and 
mitigates neurodegenerative pathology. By modulating 
neurotransmitter levels, reducing neuroinflammation (40),  
and enhancing cognitive function through oxidative stress 
protection and increased hippocampal synaptic plasticity (36), it 
exerts protective effects against AD, as evidenced in 
preclinical studies.

Emerging research highlights PPR’s metabolic benefits, including 
enhanced insulin sensitivity and lipid metabolism regulation via 
AMPK activation and adipocyte differentiation modulation (21). 
These mechanisms position PPR as a candidate for managing obesity 
and type II diabetes.

FIGURE 2

Potential beneficial effects of piperine alongside its associated risks and potential toxicities.

FIGURE 3

Potential beneficial effects of quercetin alongside its associated risks and potential toxicities.
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2.4 The therapeutic and protective 
potential of quercetin

QUE, a flavonoid abundant in fruits and vegetables, has emerged 
as a potent nutraceutical with antioxidant, anti-inflammatory, 
cardiovascular, and neuroprotective properties, positioning it as a 
versatile agent for chronic disease prevention and management 
(Table 1; Figure 3). While QUE glycosides—bound to sugar residues—
are commonly consumed through dietary sources like apples and 
onions (41), its aglycone form is predominant in supplements, offering 
enhanced bioavailability (42).

Antioxidant Effects: QUE’s hallmark lies in its ability to neutralize 
free radicals and mitigate oxidative stress, a key driver of chronic 
conditions such as cancer and cardiovascular disease (43). By 
scavenging ROS and bolstering endogenous antioxidant defenses, it 
safeguards cellular integrity, protecting DNA, proteins, and lipids from 
oxidative damage.

Building on its antioxidant prowess, QER exerts anti-
inflammatory effects through inhibition of pro-inflammatory 
cytokines (e.g., TNF-α, IL-6) and enzymes like COX-2, mediated via 
NF-κB and MAPK pathway modulation (44, 45). These properties are 
exemplified in a study by Demkovych et al. (46), where water-soluble 
QUE (corvitin) stabilized oxidative balance in rats with bacterial-
immune periodontitis by reducing superoxide dismutase activity and 
sustaining catalase and ceruloplasmin levels. Such findings underscore 
its therapeutic potential in inflammatory disorders like arthritis and 
inflammatory bowel disease.

Expanding to cardiovascular health, QUE enhances endothelial 
function, lowers blood pressure, and reduces LDL cholesterol, thereby 
curbing atherosclerosis risk (16, 47). Its antioxidant capacity further 
prevents LDL oxidation, a critical factor in cardiovascular 
disease progression.

In neuroprotection, QUE demonstrates promise in combating 
neurodegenerative diseases such as Alzheimer’s and Parkinson’s. By 
inhibiting beta-amyloid plaque formation, reducing neuronal 
oxidative damage, and dampening neuroinflammation (17, 18), it 
offers a multifaceted approach to brain health.

Emerging research highlights QUE’s metabolic and immune 
benefits, including improved insulin sensitivity and glucose 
metabolism regulation, vital for managing metabolic disorders (48). 
Concurrently, its immunomodulatory properties make it a candidate 
for addressing autoimmune and inflammatory conditions, bridging 
metabolic and immune health.

Overall, QUE’s multifaceted actions position it as a cornerstone of 
preventive and therapeutic strategies. Its synergy with pharmaceuticals 
and nutraceuticals further cements its role in bridging nutrition and 
pharmacotherapy, offering holistic solutions for complex 
health challenges.

3 Understanding nutraceutical risks 
and challenges

However, despite their widespread use and assumed safety, 
emerging evidence challenges this assumption, revealing potential 
risks associated with nutraceuticals-particularly at high doses, during 
prolonged use, or in combination with other bioactive compounds. 
These risks arise through direct or indirect interactions with cellular 

systems, which may disrupt homeostasis, trigger oxidative stress, and 
dysregulate critical molecular pathways that can culminate in organ 
toxicity or metabolic dysfunction. In the United  States, dietary 
supplements account for approximately 20% of drug-induced liver 
injuries, with nearly half attributed to combination products (49). 
Similarly, a Spanish registry documented herbal products as the cause 
of 2% of drug-induced liver injury cases (50), highlighting the need to 
evaluate nutraceutical safety through the lens of cellular and 
molecular interactions.

Antioxidants, typically known for neutralizing harmful ROS, 
can also act as prooxidants under certain conditions. In the 
presence of reduced metals (iron, copper), antioxidants like 
flavonoids can generate toxic ROS instead of protecting cells. This 
dual behavior is influenced by factors such as dose, environmental 
conditions, and the presence of metal ions. For instance, high 
doses of antioxidants like beta-carotene or vitamin E may not 
always be beneficial and could even exacerbate oxidative damage, 
particularly before exposure to harmful agents like radiation or 
cigarette smoke (51).

Many bioactive compounds, including flavonoids, exhibit dose-
dependent pro-oxidant activity. At low concentrations, they function 
as antioxidants, but at higher doses, they can promote the formation 
of free radicals, leading to oxidative stress and cellular damage. At high 
concentrations, QUE catalyzes the reduction of metal ions, generating 
ROS and causing oxidative damage to DNA and other cellular 
components (52). Similarly, PPR, due to the presence of amide groups 
in its structure, can exhibit pro-oxidant activity under certain 
conditions, increasing ROS production and oxidative stress (53). In 
the following sections, we will explore how some of these nutraceutical 
agents, despite their well-documented antioxidant properties, can 
potentially act as pro-oxidants under specific conditions.

3.1 Resveratrol: potential risks and 
challenges

RSV is among the most extensively studied natural polyphenols, 
well-known for its numerous health benefits, including antioxidant, 
anti-inflammatory, and cardioprotective effects. However, findings 
from human clinical trials have yielded mixed results regarding its 
protective effects against various diseases and their associated 
complications (Table 2). While RSV is generally considered safe for 
human consumption, emerging evidence suggests that it may exhibit 
toxic effects under certain conditions, particularly at high doses or 
with prolonged use (24). However, the toxicity of RSV remains subject 
to controversy, with conflicting evidence across studies.

One of the primary concerns with RSV is its dose-dependent 
biphasic and hormetic effects. At low concentrations, RSV functions 
as an antioxidant by directly scavenging ROS and downregulation 
NADPH oxidases, thereby protecting against DNA damage and 
oxidative stress. Conversely, at elevated concentrations, RSV acts as a 
pro-oxidant, upregulating NADPH oxidases and increasing oxidative 
stress, which can lead to DNA damage and cellular senescence (7). 
This dual behavior is influenced by factors such as concentration, 
treatment duration, cell type, and the basal redox state of the cells.

RSV’s potential to influence the bioavailability and therapeutic 
efficacy of other drugs is another critical concern. At high doses, RSV 
can inhibit cytochrome P450 (CYP3A4) enzymes (54), altering the 
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metabolism of co-administered drugs and potentially leading to 
adverse effects. Additionally, long-term consumption of RSV has been 
associated with goitrogenic properties, which may disrupt thyroid 
function (24, 55). The timing of RSV administration also plays a 
significant role in its effects. Chronobiological studies have shown that 
RSV decreases lipid peroxidation when administered during the dark 
phase but increases it during the light phase, highlighting the 
importance of timing in its therapeutic application (24). The results of 
a study showed that, in both in  vitro and in  vivo conditions, rats 
receiving RSV with daily dose of 25 mg/kg for 60 days exhibited 
elevated TSH levels. These findings were further confirmed by 
immunohistochemical analysis (55).

Clinical studies have further underscored the potential risks of 
RSV. For example, Popat et al. (56) reported that administering a high 
dose of RSV (5 g/day) to multiple myeloma patients unexpectedly 
caused renal damage in five cases, leading to the premature 
termination of the trial. Similarly, animal studies have demonstrated 
that while low doses of RSV promote the healing of indomethacin-
induced gastric ulcers, higher doses exacerbate ulcer severity and 
delay the healing of pre-existing ulcers (57). These findings suggest 
that RSV has a narrow therapeutic window, with beneficial effects at 
low doses and potential adverse effects at high doses.

3.2 Curcumin: potential risks and 
challenges

Despite numerous studies highlighting the potential benefits of CUR, 
certain adverse effects and toxicities have been reported, particularly at 
high doses or with prolonged use. While CUR longa and its active 
compound CUR are generally well-tolerated, emerging evidence suggests 
potential risks that remain under debate. Some of the potential risks and 
challenges associated with CUR are outlined in Table 2.

One of the most commonly reported adverse effects of CUR is 
gastrointestinal irritation, which can manifest as nausea, diarrhea, and 

abdominal pain, particularly at high doses (58, 59). These symptoms 
are often dose-dependent and may limit the tolerability of CUR in 
some individuals.

Alongside the hepatoprotective effects of CUR, which have 
been demonstrated in the literature, instances of liver alteration 
associated with its use have also been reported (58, 60). There are 
also reports regarding its impact on thyroid function. For 
instance, a study by Papiez et al. (61) demonstrated that CUR 
administration significantly increased free plasma T3 and T4 
levels in young rats but decreased free serum T3 levels in older 
rats, suggesting age-dependent effects on thyroid function. 
However, the extent to which these adverse effects can be directly 
attributed to CUR remains unclear.

CUR’s pro-oxidant effects at high doses have also raised concerns 
about its potential to cause DNA damage and cellular toxicity. Animal 
studies have shown that high-dose CUR, particularly when delivered 
via nanoparticles, can induce tissue toxicity through inflammation-
mediated injury (62, 63). These findings suggest that while CUR has 
therapeutic potential, its dose-dependent dual nature—acting as both 
an antioxidant and a pro-oxidant—requires careful consideration to 
avoid unintended consequences.

The potential challenges associated with CUR further 
complicate its therapeutic application. For instance, a study by 
Cianfruglia et al. (64) showed that CUR concentrations exceeding 
10 μM induced cell death in normal human dermal fibroblast 
cells. This finding highlights concerns regarding its possible 
adverse effects on healthy tissues, underscoring the need for 
careful dose optimization and further investigation into its 
safety profile.

According to animal experiments, CUR has been shown to inhibit 
sperm motility and function in a concentration-dependent manner, 
significantly reducing fertility in both in vitro and in vivo models (65, 
66). These findings highlight its “double-edged sword” status and the 
importance of cautious dosing and thorough safety assessments in 
preclinical and clinical settings.

TABLE 2 Potential adverse effects and toxicity profiles of resveratrol, curcumin, piperine, quercetin.

Nutraceutical Organ-
specific 
adverse 
effects

Pro-
oxidant 
effects

Drug 
interactions

Reproductive 
toxicity

Dose-
dependent 
effects

Key 
references

Resveratrol Chemically-induced 

organ injury 

concern

High doses 

increase 

oxidative stress 

and DNA 

damage

Inhibits cytochrome 

P450 enzymes

Limited evidence, but 

potential hormonal 

disruption

Low doses: 

antioxidant; high 

doses: pro-oxidant

(7, 24, 69–71)

Curcumin Gastrointestinal 

irritation, potential 

tissue-damaging 

effect

High doses 

cause DNA 

damage and 

oxidative stress

Inhibits CYP3A4, 

alters drug 

bioavailability

Reduces sperm motility 

and fertility

Low doses: anti-

inflammatory; high 

doses: toxic

(72–80)

Piperine Organ-specific 

adverse effect, drug 

negative interaction

Limited pro-

oxidant effects

Broad-spectrum 

inhibitor of drug 

metabolism

Reduces sperm count, 

motility, and viability

Low doses: 

protective; high 

doses: toxic

(40, 81–86)

Quercetin Potential metabolic 

and tissue damaging 

concern

High doses 

induce 

oxidative stress 

and ROS

Inhibits drug-

metabolizing enzymes 

and transporters

Limited evidence, but 

potential reproductive 

effects

Low doses: 

antioxidant; high 

doses: pro-oxidant

(42, 73, 88–92)
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3.3 Piperine: potential risks and challenges

PPR is widely recognized for its ability to enhance the 
bioavailability of other nutraceuticals and pharmaceuticals. However, 
despite its long history of use and perceived safety, emerging evidence 
suggests that PPR may pose significant risks, particularly at high doses 
or with prolonged use. These risks include organ-specific changes, 
reproductive toxicity, and drug interactions, underscoring the need 
for cautious use and further research. Some of the potential risks and 
challenges associated with PPR are outlined in Table 2 and Figure 2.

One of the primary concerns with PPR is its metabolic 
transformation into potentially harmful metabolites. Several 
metabolites of PPR are formed through processes such as 
hydrogenation and modification of the methylenedioxyphenyl ring, 
which can alter its biological activity and raise toxicity concerns (40, 
67, 68). These structural modifications may lead to adverse effects, 
highlighting the importance of understanding PPR’s metabolic 
pathways and their implications for safety.

Animal studies have provided mixed evidence regarding 
PPR’s toxicity. While low doses of PPR have been associated with 
neuroprotective effects, such as enhanced cognitive function and 
prevention of oxidative stress in the brain, high doses have been 
shown to impair cognitive performance and dampen long-term 
potentiation (69). Additionally, findings from a recent study 
indicate that high doses of PPR may lead to cardiac adverse 
effects in rat (unpublished data), further complicating its 
safety profile.

PPR’s impact on male reproductive health is another area of 
concern. Studies have shown that high doses of PPR (e.g., 10 mg/kg) 
significantly reduce sperm motility, concentration, and viability in 
adult male rats, with adverse effects on key reproductive markers and 
antioxidant enzymes (70, 71). Although many of these effects were 
reversible after a withdrawal period, they highlight the potential risks 
of prolonged or high-dose PPR use.

A recent study examining the sub chronic effects of PPR in mice 
identified significant alterations in the histopathological characteristics 
of certain internal tissues. At doses as low as 35 mg/kg, notable 
changes were observed, potentially affecting physiological function. 
Higher doses (140 mg/kg) further exacerbated these effects, leading 
to more pronounced tissue modifications that could influence overall 
health outcomes (72). These findings highlight the importance of 
careful dose selection when evaluating PPR’s safety and efficacy.

Despite its broad therapeutic potential, PPR’s clinical applications 
are limited by its dose-dependent toxicity and potential interactions 
with pharmaceuticals. Recent advancements in delivery systems, such 
as nanotechnology-based formulations, have shown promise in 
optimizing PPR’s therapeutic efficacy while minimizing adverse effects 
(73). These innovations have significantly improved PPR’s stability and 
bioavailability, paving the way for more effective 
therapeutic applications.

3.4 Quercetin: potential risks and 
challenges

QUE, a widely studied flavonoid, is distinguished for its 
antioxidant, anti-inflammatory, and neuroprotective properties. 
However, emerging evidence suggests that QUE may also pose 

significant risks, particularly at high doses or under specific 
conditions. Some of the potential risks and challenges associated with 
QUE are outlined in Table 2 and Figure 3.

QUE undergoes extensive metabolic transformation in the 
body, primarily in the enterocytes and liver, leading to the 
formation of numerous metabolites. Some of these metabolites, 
such as QUE –quinone methide, have the potential to cause cellular 
or tissue damage due to their pro-oxidant properties. These 
metabolites can act as electrophiles and contribute to the 
production of ROS through redox cycling mechanisms (42, 74, 75), 
highlighting the dual nature of QUE’s biological effects. Animal 
studies have further demonstrated QUE’s dose-dependent changes 
in the body. For example, research using zebrafish models revealed 
that while low doses of QUE provide antioxidant benefits, high 
doses induce oxidative stress and cause hepatic and renal 
alterations (59). Similarly, QUE –Cu (II) complexes can generate 
harmful hydroxyl radicals through Fenton-like reactions, 
highlighting its pro-oxidant potential under certain conditions 
(76). These findings emphasize the need to balance QUE’s 
therapeutic benefits with its potential risks.

The dose-dependent dual nature of QUE is a key concern. At 
low doses, QUE exhibits antioxidant and anti-inflammatory effects, 
as demonstrated in a study where a low dose (10 mg/kg) reduced 
pro-inflammatory markers (TNF-α and IL-1β) in rats with 
doxorubicin-induced nephrotoxicity. However, at higher doses 
(100 mg/kg), QUE increased oxidative stress markers and reduced 
key antioxidants (e.g., glutathione and catalase), exacerbating renal 
damage (77). In addition, it has been reported that QUE, at high 
doses, induces oxidative stress, leading to neuronal damage and 
exacerbation of neurodegenerative conditions in experimental 
in vitro models of neurodegeneration (78). This paradoxical effect 
underscores the importance of careful dosing in 
therapeutic applications.

In summary, QUE’s dual, dose-dependent nature—characterized 
by protective effects at low doses and toxic effects at high doses—
highlights its “double-edged sword” status. While it offers significant 
promise as a therapeutic agent, its potential for pro-oxidant activity, 
organ-specific toxicity, and drug interactions necessitates careful 
consideration of dosing regimens and further research to establish safe 
and effective use.

4 Uncovering potential nutraceutical 
interactions: mechanisms, risks, and 
clinical implications

The study of nutraceutical interactions encompasses two key 
domains: nutraceutical-nutraceutical and nutraceutical-
pharmaceutical interactions. The interplay between nutraceuticals and 
pharmaceuticals has emerged as a critical focus in clinical research, 
driven by the dual potential to enhance therapeutic outcomes or 
inadvertently compromise patient safety (79, 80). Nutraceuticals are 
increasingly being utilized to address age-related cognitive 
impairments due to their neuroprotective and cognitive-enhancing 
properties (9). However, their growing popularity as cognitive 
enhancers raises concerns, particularly among older adults who use 
multiple medications, as this can increase the risk of adverse 
interactions (81). A thorough understanding of the pharmacokinetic 
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and pharmacodynamic profiles of these compounds is essential for 
predicting potential adverse drug reactions and preventing 
therapeutic failure.

4.1 Nutraceutical-pharmaceutical 
interactions

International epidemiological studies highlight significant 
variability in the global incidence of interactions between nutritional 
supplements and pharmacological agents, with reported rates ranging 
from 6 to 70% (82). These interactions are particularly prevalent 
among elderly individuals, patients with chronic conditions, and 
populations undergoing polypharmacy regimens (81). A key 
contributor to this variability is the role of metabolic enzymes such as 
CYP3A4, which processes approximately 70% of clinically used 
medications. Notably, nutraceuticals like RSV, PPR, and QUE have 
been shown to inhibit CYP3A4 activity, thereby reducing systemic 
drug elimination rates and increasing toxicity risks due to prolonged 
drug retention in circulation (9, 21, 32, 54).

Furthermore, such interactions extend beyond CYP3A4. For 
example, PPR exhibits competitive/reversible and non-selective 
inhibition of monoamine oxidase (MAO) enzymes, which are 
critical targets for anti-Parkinsonian and antidepressant therapies 
like MAO inhibitors (83). Additionally, certain bioactive 
compounds induce CYP enzyme activity, accelerating drug 
metabolism and reducing therapeutic efficacy. St. John’s Wort and 
PPR, for example, induce CYP3A4 and P-gp, increasing the 
clearance of oral contraceptives, antivirals, and 
immunosuppressants (84). Similarly, CUR alters the 
pharmacokinetics of blood pressure medications, potentially 
compromising their efficacy or safety (80). This underscores the 
complexity of nutraceutical-drug interplay and its implications for 
clinical safety.

Emerging evidence highlights the dual role of nutraceuticals in 
modulating drug efficacy and toxicity. For instance, PPR significantly 
alters the pharmacokinetics of carbamazepine, increasing its 
maximum plasma concentration, half-life, and area under the curve 
by 68.7, 47.9, and 43.2%, respectively—elevating risks of drug toxicity 
(85). Preclinical studies further demonstrate that combining PPR with 
donepezil enhances therapeutic efficacy in AD rat models by 
improving synaptic plasticity, reducing oxidative stress, and 
ameliorating histopathological outcomes (36). These findings 
underscore the potential of nutraceutical synergies to optimize 
therapeutic outcomes while reducing pharmaceutical dosages and 
minimizing side effects.

Clinically, nutraceutical-pharmaceutical interactions are as 
critical as nutraceutical-nutraceutical interactions. For example, 
RSV enhances chemotherapeutic efficacy by promoting apoptosis 
and reducing drug resistance (86), while QUE amplifies 
methotrexate’s anti-inflammatory effects via dual targeting of 
oxidative stress and inflammation (45). QUE also shows promise 
in boosting chemotherapeutic efficacy, offering improved 
outcomes for cancer patients (87). However, such benefits are 
counterbalanced by risks: P-gp-mediated drug efflux, a key 
contributor to therapeutic resistance for drugs like MAO 
inhibitors and anticancer agents, can be  modulated by 
nutraceuticals like PPR and QUE (81, 88). By inhibiting P-gp, 

these agents enhance cellular drug retention but may 
inadvertently increase systemic drug concentrations, posing 
toxicity risks for narrow-therapeutic-index medications (e.g., 
chemotherapeutics, cardiovascular drugs) (32, 88–90).

QUE exerts dose-dependent inhibition of drug-metabolizing 
enzymes and transporters in rats, significantly altering cyclosporine 
pharmacokinetics (89, 90). This underscores the need for close 
monitoring when combining QUE-containing supplements with 
drugs metabolized by P-gp or CYP3A4 (e.g., cyclosporine). Similarly, 
CUR inhibits CYP3A4 and induces P-gp, altering the bioavailability 
of calcium channel blockers (e.g., amlodipine) and beta-blockers (e.g., 
carvedilol) (80). Such interactions are particularly critical for narrow-
therapeutic-index drugs like warfarin, digoxin, and flecainide, where 
minor dosage changes can trigger severe adverse effects (86). 
For example:

 • PPR inhibits cytochrome P450 enzymes, reducing metabolism of 
warfarin’s active metabolite (7-hydroxywarfarin) and potentially 
diminishing anticoagulant efficacy (91).

 • Conversely, co-administering CUR with warfarin increases its 
bioavailability, elevating bleeding risks (92).

 • In vitro studies reveal that CUR alone up-regulates CYP3A (but 
not CYP1A2), while combined CUR/QUE and warfarin 
up-regulates both CYP3A and CYP1A2, altering warfarin 
metabolism (93).

While combining nutraceuticals with pharmaceuticals can 
amplify efficacy (e.g., enhancing drug absorption) or enable dose 
reduction (87, 89, 90), such synergies require meticulous scrutiny. 
Unmanaged interactions may disrupt drug metabolism pathways, 
heightening toxicity or reducing therapeutic effectiveness-particularly 
in vulnerable populations (49, 94). For instance, conflicting findings 
on PPR-warfarin interactions highlight this complexity: some studies 
report PPR-mediated inhibition of warfarin metabolism, increasing 
plasma concentrations and anticoagulant effects (95), while others 
suggest diminished efficacy (91).

These dual effects emphasize the need for evidence-based 
integration of nutraceutical-pharmaceutical regimens. A schematic 
overview of nutraceutical impacts on drug transport/metabolism, 
interaction mechanisms, and at-risk populations is provided in 
Figure  4. To mitigate risks, interdisciplinary collaboration among 
pharmacists, physicians, and nutrition specialists is essential to 
systematically identify and manage medication-nutrient 
interactions (96).

4.2 Nutraceutical-nutraceutical 
interactions

Emerging evidence highlights the therapeutic potential of 
synergistic nutraceutical combinations. For instance, co-administering 
CUR with PPR or RSV significantly enhances CUR’s bioavailability, 
amplifying its anti-inflammatory (33), apoptotic, and anticancer 
effects (34, 97). Similarly, combining RSV with PPR improves cerebral 
blood flow and oxygen utilization, thereby boosting therapeutic 
efficacy in neurological conditions (10). These findings underscore the 
capacity of strategic nutraceutical pairings to optimize 
pharmacological outcomes.
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Despite their benefits, nutraceutical combinations may 
inadvertently increase toxicity risks. A notable example is the 
CUR-PPR interaction: while PPR enhances CUR’s bioavailability by 
inhibiting CYP3A4 and P-gp—critical enzymes for CUR 
metabolism—via competitive binding to their active sites, this 
inhibition prolongs systemic CUR exposure. Molecular docking 
studies reveal that hydrogen-bonded complexes formed between PPR 
and CUR further facilitate metabolic transport, raising toxicity 
concerns (32). For instance, adding 20 mg of PPR to turmeric 
increases CUR’s serum bioavailability by 20-fold (98), and 
co-administering PPR with RSV (10 mg/kg in mice) elevates RSV’s 
maximum plasma concentration by over 1,500% compared to solo 
administration at 100 mg/kg (10). Such interactions emphasize the 
need for cautious evaluation of bioavailability-enhancing strategies to 
balance efficacy and safety.

Recent advancements in nanotechnology-driven 
formulations, such as nanoencapsulation, offer promising 
solutions to mitigate risks while enhancing therapeutic outcomes. 
These systems improve the bioavailability and stability of 
nutraceuticals like PPR, enabling precise control over delivery 
and reducing toxicity risks (40). For instance, nanoparticle-based 
delivery optimizes PPR’s efficacy while minimizing adverse 
effects, highlighting the potential of engineered formulations to 
bridge safety and efficacy gaps.

Although nutraceuticals like CUR, PPR, and RSV are classified as 
Generally Recognized as Safe (GRAS) by the U.S. FDA for dietary use, 
none have received formal approval as pharmaceutical agents for 
disease treatment or prevention (99–101). Their GRAS status 
underscores the need for rigorous clinical trials to validate therapeutic 
efficacy, safety, and optimal dosing in medical contexts. Persistent 
knowledge gaps regarding interaction dynamics and long-term safety 
further necessitate evidence-based frameworks to guide their 
integration into clinical practice.

4.3 Clinical implications: balancing benefits 
and risks in practice

Healthcare providers should implement targeted strategies to 
address nutraceutical-related risks, focusing on comprehensive reviews 
of nutraceutical-drug interactions and the discontinuation of 
non-essential supplements in high-risk populations, such as the elderly 
or those undergoing polypharmacy (102). To facilitate safer 
recommendations, tools like the Natural Medicines Comprehensive 
Database or Drug Interaction Checkers can identify clinically significant 
nutraceutical-drug pairs. Additionally, collaborative care models 
involving pharmacists and nutrition experts are essential for reconciling 
nutraceutical use with prescribed medications, while patient education 
should emphasize the importance of disclosing all supplements during 
clinical consultations (103). Integrating nutraceutical documentation 
into electronic health records (EHRs) can further reduce the risk of 
adverse outcomes, aligning with emerging guidelines that advocate for 
proactive management of nutraceutical risks in polypharmacy care (104).

Furthermore, emerging tools such as in silico methodologies 
(105), and the Nutraceutical Interaction Risk Score (NIRS) (106), 
offer valuable resources for clinicians. These tools can predict 
potential toxicities and stratify patients into low-, moderate-, or high-
risk categories based on factors like age, polypharmacy status, and 
metabolic enzyme polymorphisms. For high-risk patients, 
alternatives such as dietary modifications may provide safer synergies 
with conventional therapies, potentially enhancing treatment safety 
and efficacy (107).

The dual nature of nutraceuticals underscores the critical need for 
vigilant biomarker monitoring in clinical practice (93, 94). For 
example, patients who combine nutraceuticals with anticoagulants 
may experience clotting modifications due to alterations in CYP 
enzyme activity (93, 96), necessitating regular coagulation monitoring 
on a weekly basis to ensure safety and efficacy.

FIGURE 4

Potential interactions between nutraceuticals and pharmaceuticals.
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Nutraceuticals can influence not only pharmacodynamic 
interactions but also affect their absorption, metabolism, and 
excretion characteristics. Most studies related to nutraceutical-
pharmaceutical interactions focus on their impact on CYP enzymes 
or P-gp transporters. However, these risks can also be exacerbated 
by CYP genetic polymorphisms and liver diseases, which may 
increase the production of potentially hepatotoxic drug metabolites 
(108, 109). Emerging tools, such as pharmacogenetic (110) and 
nutrigenomic (111) tests now facilitate large-scale 
pharmacogenomic and nutrigenomic analyses, enabling the early 
identification of genetic variants that affect nutraceutical-drug 
interactions. By translating genomic data into actionable insights, 
these tools play a crucial role in developing personalized monitoring 
strategies (112), particularly for elderly patients or those on 
polypharmacy regimens who use high-risk nutraceuticals. This 
approach not only improves biomarker monitoring but also equips 
clinicians to optimize the safety of nutraceutical use more effectively.

5 Nanotechnology in nutraceuticals: 
innovations for personalized therapies 
and enhanced bioavailability

Recent advancements in nanotechnology have revolutionized the 
field of nutraceuticals, offering innovative solutions to longstanding 
challenges such as poor solubility, instability, and low bioavailability 
of bioactive compounds. By leveraging nanoscience, researchers have 
developed sophisticated delivery systems-including liposomes, 
nanoemulsions, and polymeric nanoparticles-that encapsulate 
nutraceuticals, shielding them from degradation and enabling 
controlled, targeted release. For instance, nanoformulations of CUR 
and RSV have demonstrated significantly enhanced absorption rates 
and therapeutic efficacy against cancer cells compared to their 
conventional counterparts, underscoring the transformative potential 
of nanotechnology in nutraceutical delivery (10, 28, 113).

Interestingly, an in  vitro study has demonstrated that 
nanoemulsified particles of CUR or PPR exhibit greater efficacy 
compared to their free forms when used in cancer cell lines (34). 
Specifically, while nanoemulsified CUR resulted in a 4-fold increase 
in Caspase 3 levels-a key marker of apoptosis-the combination 
treatment involving nanoemulsified PPR led to a 6-fold elevation of 
this marker. These findings underscore the substantial improvement 
in anticancer activity achieved through the use of nanoemulsified 
particles of PPR and CUR, highlighting the potential advantages of 
nanoemulsion-based delivery systems for nutraceuticals.

A key advantage of these systems lies in their ability to enable 
personalized therapies. By tailoring nanoparticle size, surface charge, 
and functionalization, nutraceuticals can be engineered to target specific 
tissues or respond to physiological triggers (e.g., pH or enzymatic 
activity), ensuring precision delivery. This approach aligns with the 
growing demand for individualized nutrition, particularly in managing 
chronic diseases such as diabetes and cardiovascular disorders (73, 74).

Furthermore, nanotechnology contributes to sustainability in 
nutraceutical development. As highlighted in “Innovations in 
nanoscience for the sustainable development of food and agriculture 
with implications on health and environment” (114), biodegradable 
and eco-friendly nanoformulations reduce environmental impact 
while maintaining efficacy. For example, lipid-based nanoparticles 

derived from natural sources minimize toxicity and align with 
green chemistry principles. However, the adoption of these 
technologies necessitates rigorous safety evaluations and 
harmonized regulatory frameworks to address concerns about long-
term biocompatibility.

Looking ahead, the integration of artificial intelligence in 
nanocarriers design and the development of multifunctional 
“theranostic” systems-combining therapy and diagnostics-promise 
to unlock new frontiers in nutraceutical science. These innovations 
not only enhance therapeutic outcomes but also pave the way for 
sustainable, patient-centric healthcare solutions (115, 116).

From a prospective viewpoint, the exploration of novel 
therapies that are both effective and less toxic to normal cells 
represents a promising frontier in treatment development. Herbal 
compounds, well-known for their potent protective and anti-cancer 
properties, have emerged as potential candidates for smart medicine 
when formulated using nanotechnology-based approaches (117). 
The integration of nanotechnology into this field has further 
advanced the potential of these compounds by enabling the creation 
of smart nanomaterials that improve solubility, bioavailability, and 
metabolic stability (118). Furthermore, these innovations facilitate 
the controlled and targeted delivery of therapeutic agents directly 
to tumor sites or damaged organs, thereby minimizing off-target 
effects and systemic exposure (117, 118). This approach not only 
enhances the efficacy of herbal compounds but also significantly 
reduces toxicity, creating new opportunities for safer and more 
personalized treatment strategies.

On the other hand, while experimental approaches provide 
valuable insights into the biological effects of nutraceuticals, in 
silico molecular docking serves as a powerful computational tool to 
predict and elucidate the binding interactions between these 
compounds and their molecular targets (119). For instance, docking 
studies can reveal how bioactive compounds such as CUR or PPR 
interact with key inflammatory mediators (e.g., NF-κB, COX-2) or 
metabolic regulators (e.g., PPAR-γ, AMPK) (21, 120), offering 
mechanistic insights into their synergistic or antagonistic effects 
when combined with pharmaceuticals. These analyses not only 
complement experimental findings but also enhance our 
understanding by identifying potential binding affinities, binding 
sites, and conformational changes, thereby validating hypothesized 
mechanisms of action and guiding the development of more 
effective therapeutic strategies.

6 Limitations

While this study provides critical insights into the mechanisms 
and protective potential of RSV, CUR, PPR, and QUE nutraceuticals, 
several limitations warrant acknowledgment. First, our findings derive 
primarily from short-term trials and preclinical models, which may 
not fully recapitulate human physiological complexity, long-term 
safety outcomes, or inter-individual variability in clinical populations. 
Second, variability in nutraceutical formulations and dosing protocols 
across studies complicates direct comparisons and standardization. 
Furthermore, bioavailability challenges inherent to natural 
compounds like CUR and RSV-such as poor solubility and rapid 
metabolism-were not systematically addressed, which may limit 
therapeutic extrapolation. Finally, the scope of this study was 
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restricted to four well-characterized nutraceuticals, precluding 
evaluation of other candidates. The lack of harmonized global 
regulatory standards for purity, dosage, and health claims further 
complicates translational applicability. Future studies incorporating 
longitudinal human trials, bioavailability-optimized formulations, and 
regulatory alignment are urgently needed to address these gaps.

7 Future research directions and 
regulatory considerations

While this review underscores the therapeutic promise of 
nutraceuticals, significant gaps remain in translating preclinical 
findings into safe, evidence-based clinical practice. To enhance the 
robustness of future research, large-scale, longitudinal randomized 
controlled trials (RCTs) should be  conducted to systematically 
evaluate the long-term safety and dose–response relationships of key 
nutraceuticals. Special emphasis should be placed on studying these 
compounds in vulnerable populations, including the elderly and 
individuals undergoing polypharmacy.

Additionally, there is a critical need to prioritize clinical trials that 
investigate nutraceutical-drug interactions, particularly combinations 
like QUE with chemotherapeutic agents or RSV with anticoagulants. 
Such studies would facilitate the development of risk-stratified 
guidelines, enabling clinicians to better predict and manage potential 
interactions in real-world settings.

Establishing centralized databases, similar to the 
WHO-Adverse Drug Reaction (ADR) database, for reporting 
nutraceutical-related adverse events could significantly improve 
real-world risk monitoring. These systems would facilitate the 
collection and analysis of post-market data, enabling researchers 
and regulators to better understand the safety profiles of 
commonly used nutraceuticals and guide evidence-based 
decision-making.

Advance research on nanotechnology-driven delivery systems, 
such as nanoemulsions and lipid-based carriers, to optimize the 
bioavailability of nutraceuticals and pharmaceuticals while mitigating 
potential toxicity risks. Exploring these innovative approaches can 
lead to more efficient and safer therapeutic interventions in the future.

8 Conclusion

Nutraceuticals, such as RSV, CUR, PPR, and QUE, hold significant 
promise for improving health and preventing disease due to their 
antioxidant, anti-inflammatory, and therapeutic properties. However, 
their “double-edged sword” nature-characterized by both protective 
benefits and potential risks-underscores the need for a cautious and 
balanced approach to their use. While these bioactive compounds 
offer numerous health benefits at low doses, high doses or prolonged 
use can lead to adverse effects, including organ-specific toxicity, 
pro-oxidant activity, and drug interactions. To ensure the safe and 
effective use of nutraceuticals, comprehensive toxicological 
assessments, including studies on toxicodynamics, genotoxicity, and 
drug interactions, are essential. Furthermore, advancements in 
delivery systems, such as nanotechnology-based formulations, offer 

promising solutions to enhance bioavailability while 
minimizing toxicity.

In summary, while nutraceuticals represent a valuable tool in 
promoting health and preventing disease, their full potential can only 
be realized through rigorous scientific research, personalized dosing 
strategies, and a comprehensive understanding of both their benefits 
and potential risks. The integration of nanotechnology and smart 
materials has emerged as a transformative approach to enhance the 
efficacy and safety of nutraceuticals. These innovations enable 
controlled release, improved bioavailability, and targeted delivery, 
thereby optimizing therapeutic outcomes while minimizing adverse 
effects. For instance, nanoemulsions and emulsomes have been shown 
to significantly enhance the absorption and stability of compounds 
like CUR and PPR, making them more effective for applications 
ranging from anti-inflammatory treatments to cancer therapy.
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