
TYPE Review

PUBLISHED 11 April 2025

DOI 10.3389/fnut.2025.1525408

OPEN ACCESS

EDITED BY

Xiaopeng Li,

Michigan State University, United States

REVIEWED BY

Hee Joon Yoo,

Duke University, United States

Ricardo Adrian Nugraha,

Faculty of Medicine Universitas Airlangga - Dr.

Soetomo General Hospital, Indonesia

Pengxiu Cao,

Hebei Normal University, China

*CORRESPONDENCE

Yaqian Qu

quyaqian@hactcm.edu.cn

RECEIVED 11 November 2024

ACCEPTED 25 March 2025

PUBLISHED 11 April 2025

CITATION

Qu Y and Zhao Y (2025) Nutritional insights

into pulmonary fibrosis: a comprehensive

review on the impact of vitamins.

Front. Nutr. 12:1525408.

doi: 10.3389/fnut.2025.1525408

COPYRIGHT

© 2025 Qu and Zhao. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Nutritional insights into
pulmonary fibrosis: a
comprehensive review on the
impact of vitamins

Yaqian Qu1* and Youliang Zhao2

1Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China, 2Department of

Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou,

Henan, China

Pulmonary fibrosis is a fatal interstitial disease characterized by di�use alveolitis,

abnormal fibroblast proliferation, and extracellular matrix (ECM) accumulation,

resulting in structural lung destruction and impaired lung function. Numerous

studies have demonstrated that vitamins appear to play a crucial role in regulating

inflammatory responses, cell di�erentiation, redox homeostasis, and collagen

synthesis. Beyond their conventional nutritional functions, specific vitamins

have recently been found to modulate various biological processes involved

in pulmonary fibrosis. This study aims to provide a comprehensive overview

of the current understanding regarding the impact of vitamins on pulmonary

fibrotic disease.
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1 Introduction

Pulmonary fibrosis is a chronic pulmonary disease characterized by the progressive

accumulation of extracellular matrix (ECM) proteins, resulting in the formation of

scar tissue and thickening of connective tissue, and the pathological process is often

accompanied by persistent tissue inflammation (1). This refractory pulmonary disorder is

characterized by progressive and irreversible destruction of lung structure caused by scar,

ultimately leading to lung dysfunction, gas exchange obstruction, and respiratory failure

(1). Currently, there are no effective therapeutic interventions available for pulmonary

fibrosis apart from lung transplantation.

In recent years, emerging research of healthy diet and nutrition interventions in

preventing or alleviating various chronic diseases leading to substantial pharmaceutical

investments. Numerous studies have been devoted to demonstrating the intricate

relationship between nutrients and diverse chronic diseases. For instance, dietary

interventions play a pivotal role in effectively managing metabolic disorders such as

diabetes mellitus (2); and dietary modifications hold substantial value in ameliorating

renal failure (3); additionally, a well-established association exists between malnutrition

and immune system dysregulation (4); furthermore, the association between nutrition

and cancer has also garnered considerable interest (5). New evidence suggests that

there may be a substantial link between dietary nutrient intake and lung health, as

supported by epidemiological studies demonstrating that the consumption of antioxidant-

rich foods can mitigate the risk of developing chronic lung disease (6–8). Additionally,

the incorporation of fresh fruits and vegetables into one’s diet appears to confer protection

against lung disease.
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Multivitamins, widely used as nutritional supplements, have

garnered significant attention in the scientific community due

to their potential for preventive or ameliorative effects on

various chronic diseases. Many chronic diseases share common

pathogenesis that can be modulated by vitamins, such as folic acid

regulates DNA methylation (9), vitamin D governs bone mineral

density (10), and both vitamin A and vitamin D regulate cell

proliferation and differentiation (11, 12). In pulmonary fibrosis, a

case-control study in Japan investigated the association between

vegetable, fruit, grain, and fiber intake and the risk of idiopathic

pulmonary fibrosis (IPF), it was observed that there is a beneficial

association between higher fruit intake and IPF, although larger

studies with more details information are warranted to confirm

it (13). Moreover, numerous studies have found an association

between hypovitaminosis and pulmonary fibrosis and attempted

to explore the content characteristics of specific micronutrients

(including vitamins) and the possibility of alleviation or treatment

for pulmonary fibrosis (14, 15).

Despite numerous studies have investigated the roles of

different vitamins in various pulmonary diseases over the past

decades, there has been a limited coverage or even neglect of their

specific protective activities in relation to pulmonary fibrosis within

otherwise comprehensive reviews. This review aims to elucidate the

pathophysiology of pulmonary fibrosis and provide a summary of

the involvement of vitamins in the development and progression

of this condition, thereby offering valuable insights into potential

vitamin targets for pulmonary fibrosis.

2 Pathogenesis of pulmonary fibrosis

Tissue repair following injury is an inherent biological

mechanism that restores tissue integrity through the organized

replacement of damaged or deceased cells (16). However,

dysregulation of this reparative process leads to excessive

proliferation of myofibroblasts and aberrant secretion of ECM,

resulting in permanent fibrous scarring at the site of tissue injury.

Consequently, pulmonary fibrosis represents an uncontrolled

hyper-reparative response to tissue wounds. The pathological

process of pulmonary fibrosis can be roughly divided into four

phases, as illustrated in Figure 1: the initial sustained injury

phase, the inflammatory cell migration phase, the fibroblast

migration/proliferation/activation phase and finally, the excessive

deposition of ECM and fibrosis phase. The immediate pathological

manifestations of pulmonary fibrosis involve injury to alveolar

epithelial cells accompanied by secretion of inflammatory factors

(17). There is efficient recruitment of inflammatory cells to the site

of injury for clearance, concomitant with production of various

cytokines and chemokines such as TGF-β, IL-1β, IL-13, TNF-

α, etc., which stimulate proliferation and recruitment of lung

fibroblasts. Myofibroblasts predominantly arise from three distinct

pathways: (1) activation of interstitial fibroblasts; (2) epithelial

mesenchymal transition (EMT); and (3) migration of bone marrow

fibroblasts. Myofibroblasts secrete ECM, thereby facilitating wound

contraction. While an appropriate ECM quantity aids in tissue

damage repair, persistent injury leads to dysregulated excessive

ECM deposition, resulting in the replacement of normal lung tissue

with fibrous scars (18).

3 Discovery of vitamins

Vitamins are a group of organic substances that play an

essential role as micronutrients in cellular metabolism and the

overall maintenance of organismal health. In 1906, Frederick

Hopkins first proposed the importance of vitamins through

experiments. He demonstrated that rats fed only proteins, fats,

carbohydrates, and minerals failed to grow properly, but exhibited

improved growth when supplemented with a small amount of milk.

This led him to suggest the existence of “accessory factors” in

food that were crucial for life processes, in addition to the known

major nutrients. These “accessory factors” were later identified

as vitamins. In 1912, Casimir Funk coined the term “vitamine”

(meaning “vital amine”) for these substances. When scientists

subsequently discovered that not all vitamins contained amine

structures, the final “e” was dropped, resulting in the modern

term “vitamin” (19, 20). Vitamins can be classified into water-

soluble types, such as vitamin B and C, and fat-soluble types,

including vitamin A, D, E, and K. Each vitamin has distinct optimal

food sources, and their deficiencies can cause a variety of diseases

(Table 1).

4 Vitamins and pulmonary fibrosis

4.1 Vitamin A

Vitamin A, derived from carotenoid pigments in nature

(known as provitamin A), belongs to the class of fat-soluble

micronutrients and undergoes two consecutive oxidation reactions

to convert into its primary biologically active derivatives, retinal

and retinoic acid (RA). Vitamin A serves multiple crucial functions

within the human body, encompassing cell proliferation and

differentiation, vision, immunity, and embryological development

(21–25). Moreover, it has been proved to be intricately associated

with numerous respiratory defense mechanisms and assumes a

pivotal role in upholding the structural integrity of respiratory

mucosa (26, 27). Vitamin A is also necessary for maintaining

alveolar structure and tissue regeneration, and trophic vitamin A

deficiency (VAD) leads to detrimental histological alterations in

lung parenchymawhich predispose to severe tissue dysfunction and

respiratory diseases, even increasing the incidence andmorbidity of

patients, suggesting that vitamin A plays an important role in adult

lungs (28–30).

The excessive deposition of ECM is widely recognized as

the primary characteristic of pulmonary interstitial fibrosis.

Pathological changes in lung tissue induced by VAD encompass

alterations in both the content and distribution of ECM proteins

(31–33). Retinoid signaling directly or indirectly modulates gene

promoters, thereby participating in the regulation of ECM protein

expression and influencing the expression of ECM receptor

proteins on cell membranes (34). Guillermo et al. observed elevated

levels of collagen I and collagen IV in vitamin A-deficient rat lungs,

accompanied by a nearly twofold increase in alveolar basement

membrane thickness and ectopic deposition of collagen I protein,

while treatment with retinoic acid reversed these alterations (35).

The mechanism underlying the alteration of ECM by VAD remains

elusive, but there is some evidence. Dysregulation of transforming
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FIGURE 1

Schematic diagram of pulmonary fibrosis. Four phases of pathological process of pulmonary fibrosis: ① Initial sustained injury phase. ② Inflammatory

cell migration phase. ③ Fibroblast migration/proliferation/activation phase. ④ Excessive deposition of ECM and fibrosis phage. When lungs are

continuously stimulated by the external environment, epithelial cells release inflammatory mediators. Next, various inflammatory cells (including

macrophages, granulocytes, T cells and dendritic cells, etc.) are recruited to the damaged tissue to remove foreign substances and secrete multiple

fibrogenic factors, including TGF-β, IL-β1, IL-13, TNF-α. Circulating fibroblasts and interstitial fibroblasts subsequently proliferate and di�erentiate

into myofibroblasts. Epithelial cells can also be transformed into myofibroblasts by EMT. Sustained injury causes the disorder of myofibroblasts

secreting ECM to promote the wound repair process, resulting in excessive deposition of ECM and ultimate pulmonary fibrosis.

growth factor-β1 (TGF-β1)/Smad3 signaling pathway is considered

to play a central role and is associated with bleomycin-induced

pulmonary fibrosis (36). Additionally, Chiharu et al. reported

all-trans retinoic acid (ATRA) inhibits both proliferation and

transdifferentiation of lung fibroblasts through downregulating

TGF-β expression and suppressing the IL-6/IL-6R system (IL-

6 stimulates lung fibroblast proliferation in a dose-dependent

manner), thereby preventing radiation- and bleomycin-induced

pulmonary fibrosis in mice (37). Inhibition of IL-6 and TGF-β

production by ATRA was achieved by blocking the PKC-δ/NF-κB

and p38MAPK/NF-κB pathways (38) and shifting the regulatory

T/T helper 17 ratio and reducing the secretion of IL-17A (39).

Vitamin A also affects the EMT process of lung epithelial cells,

the effect of retinoic acid in inhibiting this process has been

demonstrated (40, 41). In lungs of VAD rats, there is an increased

level of N-cadherin protein accompanying decreased levels of

E-cadherin and β-catenin (42). Supplementation with ATRA

improves alveolar septal defect at the tissue level and promotes

alveolar epithelial recovery (43). All these findings collectively

suggest a potential association between vitamin A and EMT process

in lung fibrosis.

Patients with lung fibrosis exhibit an elevated oxidative

burden and heightened levels of reactive oxygen species (ROS)

generated by inflammatory cells in lungs (44, 45). ROS have

been demonstrated to activate transcription factors, such as AP-

1, thereby inducing the synthesis of fibrogenic factor TGF-β,

various ECM proteins, as well as type I and type IV collagens

(46–48). Early research on the antioxidant properties of vitamin

A came from Monaghan & Schmitt, who found that dissolving

fresh vitamin A in linoleic acid hindered the absorption of oxygen

by linoleic acid, and this effect faded away as vitamin A was

oxidized (49). Burton and Ingold proposed that beta-carotene

(which is converted into vitamin A in body) and other carotenoids

may play an important role in protecting tissue lipids against

peroxidation in vivo (50). Both carotenoids with provitamin A

activity and non-vitamin A carotenoids exert antioxidant functions

in lipid phases by quenching free radicals or O2 (51). Vitamin

A and its metabolites have been frequently recognized as notable

antioxidants in various tissues, including the lung, liver, and

heart (52). Levels of retinol, one of the forms of vitamin A,

are elevated in the bronchoalveolar lavage fluid of patients with

IPF, and this increase may be part of an adaptive response to

oxidative stress (14). Another study proved that VAD can disrupt

the balance between ROS production and antioxidant defense

mechanisms in lungs (31, 53). The above information suggests a

potential association between vitamin A and pulmonary fibrosis

through the redox pathway. However, experimental confirmation

is required to determine whether vitamin A supplementation can

effectively ameliorate pulmonary fibrosis via modulation of the

redox pathway. It is worth noting that long-term excessive intake of

vitamin Amay disrupt the immune balance of the body (24, 54, 55).

In the occurrence and development of pulmonary fibrosis, the

imbalance of the immune system is an important factor (56). It

is speculated from this that excessive intake of vitamin A may

alter the functions and activities of immune cells, which indirectly

aggravates pulmonary fibrosis.

4.2 Vitamin B

Vitamin B refers to a group of eight water-soluble vitamins

that play crucial roles in cellular metabolism. Except for vitamin

B3 (niacin), which can be partially synthesized in the human

body from tryptophan, the other vitamins in this group cannot

be synthesized by the body and must be obtained through

dietary sources. All eight components: vitamin B1 (thiamine),

vitamin B2 (riboflavin), vitamin B3 (niacin or niacinamide),

vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine, pyridoxal,

or pyridoxamine, or pyridoxine hydrochloride), vitamin B7

(biotin), vitamin B9 (folic acid) and vitamin B12. Each individual

component of vitamin B possesses its own distinct structure and

exerts unique physiological functions within the human body.
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TABLE 1 The main information about vitamins mentioned in this review.

Classification Vitamins Main food sources Recommend daily
dose∗

Upper daily
intake

Water-soluble

vitamins

Vitamin B1 (Thiamine) whole grains; legumes; nuts; lean meats; yeast; fortified

cereals

M: 1.2 mg

F: 1.1 mg

ND

Vitamin B2 (Riboflavin) milk; dairy products; eggs; lean meat; green leafy

vegetables; fortified cereals

M: 1.3 mg

F: 1.1 mg

ND

Vitamin B3 (Niacin) Poultry; egg; fish; peas; mushroom; asparagus; peanut M: 16 mg

F: 14 mg

ND

Vitamin B5 (Pantothenic

acid)

meats; whole grains; legumes; eggs; milk 5mg ND

Vitamin B6 (Pyridoxine) Fish; poultry; legumes; potatoes; bananas; fortified

cereals

Adults (19–50 years old): 1.3 mg

Men over 50 years old: 1.7 mg

Women over 50 years old: 1.5 mg

100 mg

Vitamin B7 (Biotin) Egg yolks; liver; yeast; nuts, legumes; whole grains 30 µg ND

Vitamin B9 (Folic acid) Liver; kidney; egg; beans; yeast; nut; green vegetable;

fruit

400 µg ND

Vitamin B12

(Cobalamin)

Meats; fish; dairy products; eggs; fortified cereals 2.4 µg ND

Vitamin C (Ascorbic

acid)

Fruits; green vegetable; tomato; potato M: 90 mg

F: 75 mg

2,000 mg

Fat-soluble vitamins Vitamin A (Retinol) Carrots; green vegetable; yelk; liver; milk; coriander;

grape

M: 1.2 mg

F: 1.3 mg

3,000 mcg

Vitamin D (Calciferol) Cod liver oil; dairy products; egg 15 µg 100 mcg

Vitamin E (Tocopherol) Vegetable oil; germ of grain; beans; gingili; peanut;

vegetable; milk

15mg 1,000 mg

Vitamin K

(Phylloquinone)

green vegetable; fruits; liver; meat; milk; yelk M: 120 µg

F: 90 µg

ND

∗Adults in non-special period; M, Male; F, Female; ND, Not determinable.

4.2.1 Niacin
Research on vitamin B and pulmonary fibrosis has mainly

focused on niacin at the end of the last century. Niacin serves

as a precursor for nicotinamide adenine dinucleotide (NAD, a

substrate for poly (ADPribose) polymerase) and nicotinamide

adenine dinucleotide phosphate (NADP) and participates in DNA

repair. In 1989, Wang et al. reported its potential anti-fibrosis

function by attenuating bleomycin-induced thickened alveolar

septa, accumulation of inflammatory cells and foci of fibrotic

consolidation (57). DNA damage is one of the mechanisms of

bleomycin-induced lung injury. One plausible mechanism involves

the conversion of niacin into NAD in animals, thereby creating

an environment with ample NAD supply that enhances the

DNA repair capacity of poly (ADP-ribose) polymerase (a key

enzyme regulating cell proliferation and repair in injured lungs)

upon stimulation by bleomycin (57, 58). Calcium can activate

phospholipase A2 (PLA2) to exacerbate pulmonary inflammatory

events. Niacin, on the other hand, may inhibit bleomycin-induced

pulmonary fibrosis by suppressing PLA2 activity through the

prevention of calcium influx (59). Despite reports of fatty liver

disease and growth inhibition in rats with long-term niacin

administration, this compound is generally considered non-toxic

because it is easily metabolized and excreted (60). In fact, niacin has

been clinically utilized at supraphysiological doses as a vasodilator

and cholesterol-lowering drug for lipid management (61, 62).

Subsequently, numerous studies have analyzed the protective effect

of niacin in combination with taurine on pulmonary fibrosis, and

the possible mechanisms are as follows: 1) Niacin and taurine

treatment suppressed bleomycin-induced transcriptional nuclear

factor-NF-κB by preserving IκBα (63) to inhibit the increased

levels of inflammatory cell-derived fibrocytokines such as IL-1α,

IL-6, TNF-α and TGF-β (64). 2) Niacin and taurine treatment

suppressed the expression of procollagen I and procollagen III at

a transcription level (65), this may be related to the reduction of

lung prolyl hydroxylase activity since the increased activity of this

enzyme is positively correlated with and preferentially expressed in

the accumulation of collagen in lungs (66). Additionally, niacin and

taurine exhibited inhibition of nitric oxide production induced by

iNOS in lungs (67).

4.2.2 Folic acid
Folic acid donates a carbon unit during DNA biosynthesis and

is important for the regulation of gene expression, transcription,

chromatin structure, genomic repair and genomic stability (68).

No previous studies have considered the possible relationship

between folic acid and pulmonary fibrosis even though DNA

damage is involved in this disease. In recent years, studies have

revealed an upregulation of folate receptor-β expression in alveolar

macrophages of patients with IPF compared to normal alveolar
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macrophages, which mediates the unidirectional transport of

folates into cells (69). Some high-risk factors for IPF disease, such as

smoking, can lead to abnormal epithelial barrier and impede folate

absorption in patients (40, 70). Furthermore, folate is required for

the proliferation of fibroblasts and activated macrophages during

pulmonary fibrosis. These facts seem to establish a link between

folic acid and pulmonary fibrosis. Although inhibition of fibroblast

proliferation is a way to reduce pulmonary fibrosis and it seems

necessary to block folic acid absorption, cortisone-based drugs that

block folic acid absorption have yielded unsatisfactory outcomes.

Conversely, considering that oxidative stress plays a crucial role

in the development of pulmonary fibrosis, folic acid as a highly

reductive vitamin may have a favorable impact on its prevention

or treatment. Our study showed that folic acid supplementation

can promote the expression of SLC25A32 and MTHFD2, which

are key enzymes in mitochondrial folate metabolism. It can

enhance the mitochondrial folate metabolic pathway and reduce

the production of mitochondrial ROS, thereby inhibiting the

progression of pulmonary fibrosis (71). Another strategy worth

considering is the conjugation of folic acid to the drug, enabling

cellular entry and exertion of its effect through binding with

folate receptors on activated macrophages (72). Of course, further

experimental validation is necessary to elucidate the role of folic

acid in pulmonary fibrosis.

B-group vitamins are water-soluble, the excessive amount is

generally excreted out of the body through urine. This means that

they are generally safe even at doses higher than the Recommended

Dietary Allowance (RDA). Only three of the B-vitamins have been

set an upper limit for daily intake, while the remaining ones are

considered safe regardless of the intake dosage (73, 74). The first

one is folic acid. Its Recommended Dietary Allowance (RDA)

per day is typically between 200 and 400 micrograms, and the

upper limit of its intake is generally set at 1,000 micrograms

per day. This is simply because an increase in folic acid intake

may mask the symptoms of vitamin B12 deficiency, allowing

permanent damage related to the latter vitamin to accumulate

unknowingly (75). It should also be noted that there is evidence

suggesting that the intake of high doses of folic acid, and the

resulting increase in the levels of unmetabolized folic acid, may

have potential adverse effects on normal folic acid metabolism and

immune function. However, up to now, there is no consensus on

the blood concentration of folic acid that might cause harm (76).

The second one is niacin, and its upper limit of intake is set at 35

milligrams (in the United States/Canada). This is simply because

when the dosage exceeds 100 milligrams, it will cause temporary

skin flushing. However, after long-term intake of a dosage of 1

gram or more, symptoms such as nausea, vomiting, and diarrhea

have been observed, and in extremely rare cases, liver damage may

also occur (77). The last B-vitamin with a set upper intake limit is

vitamin B6. In the United States, its upper limit is set at 100mg

per day (roughly 75 times the Recommended Dietary Allowance),

which is based on case reports showing that reversible sensory

neuropathy occurs after long-term use of doses exceeding 1,000mg

(78). Currently, there are relatively few studies on the direct impact

of an excess of B-group vitamins on pulmonary fibrosis. Overall,

there is no conclusive evidence indicating that an excess of B-group

vitamins can directly lead to pulmonary fibrosis or have a definite

and severe adverse effect on it.

4.3 Vitamin C

Vitamin C, scientifically referred to as ascorbic acid, is an

indispensable micronutrient and a coenzyme that potentiates the

activity of diverse enzymes, contributing to the immune response

and the development of nervous system in humans (79, 80).

Severe deficiency of vitamin C can lead to the occurrence of

many serious diseases. Due to the limited ability of organisms to

preserve this essential nutrient, continuous intake is necessary to

prevent deficiencies. Study has shown that silicosis patients exhibit

reduced serum levels of vitamin C compared to individuals not

exposed to silica (81). In studies investigating the efficacy of vitamin

C treatment for pulmonary fibrosis, Vildan et al. demonstrated

that vitamin C did not yield significant improvements in IPF

symptoms in a rat model (82). However, other studies showed

that administration of vitamins C and E both alleviate fibrotic

damage in lung tissue, and with a more pronounced effect

observed when these two vitamins are combined in rat models

(83). Furthermore, the administration of vitamin C has been

shown to protect against collagen I and α-SMA deposition (84). In

general, the anti-pulmonary fibrosis effect of vitamin C is primarily

manifested in three aspects: anti-oxidation, anti-cell death and anti-

inflammation.

4.3.1 Anti-oxidation function
Oxidative stress caused by high concentration of oxygen

in the lungs can lead to the dysfunction of alveolar epithelial

cells, thereby causing certain damage to the lung tissue. Among

small antioxidants, glutathione has garnered significant attention,

however, as one of the main cellular antioxidants, vitamin C

surpasses glutathione by directly detoxifying ROS. Vitamin C

acts as a natural antioxidant by readily donating electrons to

safeguard crucial biomolecules (proteins, lipids, carbohydrates,

and nucleic acids) against oxidative damage arising from cellular

metabolism (85). Furthermore, it reduces the content of ROS

and reactive nitrogen species (RNS) by giving electrons to

them and preventing the oxidation of other compounds (86).

Vitamin C also regenerates other antioxidant molecules such

as glutathione (GSH), beta-carotene, urate, alpha-tocopherol and

membrane antioxidants glutathione and vitamin E (87–89). Despite

being highly hydrophilic in nature, vitamin C effectively inhibits

lipid oxidation by reducing tocopherol free radicals and thus

maintaining optimal levels of vitamin E, a major fat-soluble

antioxidant (90).

While these molecular mechanisms highlight vitamin C’s

antioxidative potential in pulmonary systems, emerging clinical

evidence further explores its therapeutic implications for fibrotic

lung diseases. Vitamin C supplementation for a duration of

12 weeks demonstrates significant reduction in serum protein

carbonyl levels, which serves as a reliable marker for evaluating

the antioxidant status in patients with IPF (91). However,

whether vitamin C can definitively alleviate pulmonary fibrosis by

lowering serum protein carbonyl levels still lacks concrete evidence.

Additionally, it actively participates in collagen biosynthesis, acts

as a cofactor for hydroxylases, and regulates gene expression (92,

93). In cystic fibrosis, vitamin C serves as a crucial source of

glutathione and aids in maintaining the delicate balance between
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oxidative stress and antioxidant defense mechanisms within the

lungs (94). Moreover, through its modulation of Nrf2/Nox4

redox equilibrium and TGF-β1/Smad3 signaling pathways, vitamin

C exerts a protective effect against PQ-induced pulmonary

fibrosis (95).

4.3.2 Anti-cell death function
The potential role of vitamin C in cell death has long been

proposed (96), and significant advancements have been made

across various types of cell death. Herein, we aim to concisely

summarize these findings and elucidate the regulatory mechanisms

by which vitamin C modulates cell death in pulmonary fibrosis.

4.3.2.1 Anti-apoptosis function

The prevailing perspective suggests that the development of

pulmonary fibrosis necessitates repetitive damage to epithelial

cells and subsequent apoptosis, with documented instances of

alveolar epithelial cell (AEC) apoptosis in lung fibrotic lesions (97).

Apoptosis of alveolar type II epithelial cells was also observed in

bleomycin- or thoracic irradiation-treated mice (98, 99). Similarly,

a study demonstrated that pro-apoptotic markers (p53, p21, Bax,

and caspase-3) stained positive in type II AECs from IPF subjects,

while anti-apoptotic markers (Bcl-2) exhibited reduced expression

compared to control subjects (100). Moreover, the increased

apoptosis of type II AECs in IPF patients can directly cause

alveolar collapse, thus accelerating the progression of pulmonary

interstitial fibrosis (101). In animal models, it has been reported

that the activation of apoptosis in type II AEC promotes a fibrotic

phenotype, for example, apoptotic cells may release cytokines and

growth factors that recruit and activate fibroblasts, prompting

them to secrete ECM, whereas inhibiting apoptosis helps to

alleviate pulmonary fibrosis (102–104). Although the impact of

vitamin C on type II AEC in the pathogenesis of pulmonary

fibrosis remains limited, evidence suggests that vitamin C can

enhance epithelial barrier function through diverse mechanisms.

The administration of vitamin C can significantly alleviate the pro-

inflammatory response and the aggregation of polymorphonuclear

neutrophils in the lungs of infected mice, and effectively restore

the function of the lung epithelial barrier that has been damaged

by severe infections (105). Another, in an animal experiment on

N-Nitrosodimethylamine (NDMA)-induced pulmonary fibrosis,

ascorbic acid was observed to significantly reduce P53, caspase-

3, Bax (which inhibits the anti-apoptotic effect of Bcl-2) and

Bax/Bcl-2 ratio in lung tissue, while increasing Bcl-2 and mdm2

levels, thereby exerting anti-apoptotic properties (84). Heleen M

et al. have also demonstrated the enhancement of vitamin C on

the anti-apoptotic ability of Bcl-2 and its inhibitory effect on the

expression of Bax protein, thereby impeding mitochondrial release

of cytochrome C to the cytoplasm, ultimately reducing caspase-

3 activity and suppressing cell apoptosis (106). However, further

investigations are warranted to elucidate the mechanism by which

vitamin C counteracts apoptosis in alveolar type II epithelial cells

as well as its impact on apoptosis in other lung cell types.

4.3.2.2 Anti-ferroptosis

Ferroptosis, a newly discovered type of programmed cell death,

occurs in an iron-dependent manner. As an indispensable trace

element in the human body, the imbalance of iron homeostasis

may lead to a variety of physiological disorders, including lung

fibrotic disease (107). Histological samples from patients with

IPF showed accumulation of extracellular iron and hemosiderin

within macrophages, and this phenomenon is closely associated

with reduced total lung capacity and lung compliance (107–

110). In addition, iron overload was found to significantly

increase lung inflammation and oxidative stress in mice, which

are also crucial mechanisms underlying pulmonary fibrosis (111).

In vitro, high iron level have been shown to directly stimulate

the proliferation of human lung fibroblasts and enhance the

secretion of ECM and pro-inflammatory factors (107). These

findings suggest that there may be a close underlying association

between iron overload and the development of pulmonary fibrosis.

Ferroptosis will be triggered when iron overload surpasses the

self-regulatory capacity of cells. Furthermore, ferroptosis can

be inhibited by glutathione (a water-soluble antioxidant) or α-

tocopherol (a lipid-soluble antioxidant), indicating that ferroptosis

is not solely dependent on iron but is also closely associated with

oxidative stress (112). Ferrostatin-1 and Liproxstatin-1, specific

inhibitors of ferroptosis, work by inhibiting the accumulation

of lipid hydroperoxides, which emphasizes the key role of lipid

peroxidation in ferroptosis (113). Studies have demonstrated that

enhancement of ROS and lipid peroxidation is one of the culprits

in the elevation of α-SMA andCOL1A1, indicative ofmyofibroblast

formation. The effect of vitamin C on ferroptosis is concentration-

dependent. At physiological concentrations, vitamin C behaves

as a suppressant of ferroptosis induced by erastin or RSL3

(114). In contrast, at high concentrations, the cytotoxic effects of

vitamin C outweigh its protective properties. Specific ferroptosis

inhibitors were not effective for tumor cells (HT-1080/MCF-

7) treated with ascorbic acid at pharmacologic concentration

(114). However, the presence of pyruvate can effectively improve

the inhibitory function of high concentration of ascorbic acid

on ferroptosis (114). Ferroptosis agonists directly or indirectly

affect glutathione peroxidase (GPXs) through various pathways,

leading to a reduction in antioxidant capacity, accumulation

of ROS, and ultimately oxidative cell death (115, 116). Based

on this, it can be inferred that the anti-ferroptosis function of

vitamin C at physiological concentrations may stem from its

antioxidant property.

4.3.3 Anti-inflammation
The development of lung fibrosis is mostly the result

of the development of prior chronic lung inflammation.

Alveolar macrophages serve as the first cells to encounter

external pathogens and irritants, initiating and subsequently

resolving the lung immune response. In response to lung

injury, macrophages activated by LPS and IFNγ undergo

a transition to the pro-inflammatory M1 phenotype and

begin to secrete pro-inflammatory cytokines and chemokines,

resulting in enhanced chemotaxis of monocytes and neutrophils

(117, 118). Simultaneously, neutrophils also release a plethora

of inflammatory mediators. During chronic inflammation,

myofibroblasts evade apoptosis and contribute to aberrant

wound healing processes characterized by excessive extracellular

matrix (ECM) production, ultimately culminating in pulmonary
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fibrosis. Therefore, reducing lung inflammation seems to

be a feasible way to prevent lung tissue fibrosis and has

been substantiated through scientific investigations. For

example, Cabozantinib ameliorates lipopolysaccharide-induced

lung inflammation in mice and inhibited bleomycin-

induced early pulmonary fibrosis (119); Thymosin β4

suppresses LPS-induced murine lung fibrosis by alleviating

inflammation (120).

The elasticity of the lung tissue in IPF patients is irreversibly

reduced, which seriously affects the respiratory function (121).

Masha et al. demonstrated although vitamin C, D, and E

supplementation had no effect on exhaled parameters, it

successfully improved inhaled parameters, especially total

lung capacity (TLC) and residual volume (RV), which are the

most critical indicators of lung function (122, 123). This implies

that vitamins C, D, and E have the potential to enhance maximal

oxygen uptake and inspiratory muscle strength in IPF patients.

Previous studies have also demonstrated that vitamin C exerts

anti-inflammatory effects through modulation of both adaptive

and innate immunity (124, 125). Neutrophils are short-lived cells

that continuously produced by the bone marrow and delivered

to blood, and rapidly migrate into the inflamed tissue during

an innate inflammation. Lymphocytes are long-lived cells that

infiltrate tissue during an acquired inflammation. Studies have

shown that vitamin C treatment reduces leukocyte recruitment

in mice with pulmonary fibrosis by paraquat (126), which may

indicate a direct relationship between vitamin C and immune

cells. Nevertheless, data also showed that neutrophils accumulate a

large amount of vitamin C, similarly, lymphocytes also accumulate

vitamin C to regulate cell proliferation and the function of B

cells and T cells (79), which help protect cells from oxidative

stress damage during inflammation. IL-17, which has a variable

inflammatory effect that promotes the migration of inflammatory

cells to inflammatory tissues, levels of IL-17 were found to decrease

in lung homogenates of fibrotic mice treated with vitamin C

(126). Therefore, the therapeutic efficacy of vitamin C in treating

pulmonary fibrosis appears to be attributed, at least in part, to the

attenuation of pro-inflammatory factors secreted by resident or

migratory cells.

It is noteworthy that in certain cases, vitamin C may reduce the

body’s immune response. High doses of vitamin C can inhibit the

proliferation of natural killer cells as well as T and B lymphocytes

responsible for the secretion of interleukin-2 (IL-2). Additionally,

vitamin C can block the activation of T lymphocytes, which are

forced into an immature state after stimulation by dendritic cells

(127). However, there has been no research on whether excessive

intake of vitamin C has an adverse impact on patients with

pulmonary fibrosis.

4.4 Vitamin D

Vitamin D is widely distributed throughout the body, not only

in the liver but also in various tissues. Numerous hydroxylases

have been discovered in these tissues, facilitating the conversion

of vitamin D to 1,25-dihydroxyvitamin D. This active form

is believed to exert its primary function by binding to the

ligand-dependent transcription factor known as the vitamin D

receptor (VDR) (128–131). Vitamin D deficiency is a prominent

characteristic of physiological aging, with its concentration

declining as individuals age (132). Emerging research indicates that

vitamin D insufficiency exacerbates cellular aging across various

cell types. Supplementation with vitamin D has conventionally

been postulated to mitigate the aging process in bone and

muscle cells, thereby preserving or even enhancing their overall

health (133–135). Vitamin D deficiency is strongly associated with

various lung diseases, including asthma and chronic obstructive

pulmonary disease (COPD). Low levels of 25-hydroxyvitamin

D may contribute to the development or exacerbation of these

conditions (136). Furthermore, there is evidence supporting a

link between vitamin D deficiency and pulmonary fibrosis. For

instance, Zhou et al. found that lung Sirt1 and serum vitamin

D levels declined during physiological aging, thus activating the

TIME signaling pathway, and promoting senescence-associated

pulmonary fibrosis (137). Li et al. discovered that vitamin

D deficiency aggravated bleomycin-induced pulmonary fibrosis

(138). Notably, in this study, vitamin D appears to influence the

development of pulmonary fibrosis through multiple biological

pathways: vitamin D deficiency not only exacerbates the lung

inflammation caused by bleomycin (similar to the effect observed

in the case of vitamin C deficiency), but also increases the

likelihood of the occurrence of EMT in the lungs, and these

are all crucial steps in the pathogenesis of pulmonary fibrosis.

Additionally, it exacerbates pulmonary fibrosis by activating the

TGF-β/smad3 pathway (138). Furthermore, several small-scale

prospective studies have consistently demonstrated a prevalent

insufficiency or deficiency of plasma vitamin D levels in patients

with IPF, which is strongly correlated with acute exacerbations

of the disease (139, 140). However, it should be noted that

there remains a dearth of large-scale randomized controlled trials

investigating the potential role of vitamin D supplementation in

improving IPF outcomes.

Conversely, vitamin D supplementation has demonstrated the

potential to enhance pulmonary function and impede fibrosis

progression. Studies have indicated that the inhibitory effect

of vitamin D on pulmonary fibrosis manifests across various

stages of disease advancement. (1) In the early stage, vitamin

D plays an anticoagulant role. Epithelial cells undergo damage

and subsequently release inflammatory mediators that activate

the anti-fibrinolytic coagulation cascade. Furthermore, studies

have revealed that the overactivation of the clotting cascade

permeates the entire process of pulmonary fibrosis (141, 142).

Coagulation factors are mainly mediated by protease activating

receptors (PARs) (141). PARs mediate tissue factor TF, which

then works with activating factor VIIa (FVIIa) to form the

TF/FVIIa complex (the main promoter of the clotting cascade),

and this pathway can be blocked by TFPI, a protease inhibitor

(143, 144). Studies have shown that vitamin D may interfere

with the above clotting response in two ways: ① Vitamin D

inhibits TF expression through TNF-α (145–147); ② Vitamin D

is potentially involved in the regulation of TFPI expression, as

several studies have demonstrated a positive correlation between

their levels (146). (2) Excessive inflammatory mediators trigger the

infiltration of inflammatory cells, which then release a multitude
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of cytokines, such as transforming growth factors and fibroblast

growth factors. These released factors, in turn, promote both

inflammation and fibrosis (148–150). Previous studies have shown

that inflammatory mediators play an important role in the

occurrence and development of pulmonary fibrosis. Vitamin D

has been shown to reduce serum levels of inflammatory cytokines,

including IL-3 (151), IL-17 (151, 152), IL-1, IL-6, IL-8, and TNF-

α (153), and may directly act on CD4+ T cells to promote the

secretion of the anti-inflammatory cytokine IL-10 by T regulatory

cells (Tregs), controlling the further expansion of the inflammatory

response (151, 152, 154, 155). (3) The activation of the EMT process

by TGF-β plays a pivotal role in the pathogenesis of pulmonary

fibrosis. TGF-β binds to type I and II serine/threonine receptor

kinases on the cell surface, leading to the phosphorylation of

SMAD2 and SMAD3. Subsequently, the phosphorylated receptor

kinases are released into the cytoplasm where they form a complex

with SMAD4 before translocating into the nucleus. Once inside,

this activated Smad complex binds to specific Smad binding

elements within the genome to execute its regulatory function, such

as modulating fibrin expression (156, 157). Studies have shown

that vitamin D can inhibit TGF-β-Smad signaling pathway (156,

158–160) through the specific process of 1,25(OH)2D3 binding

complex with VDR, which directly interacts with SMAD3 to

reduce the binding of SMAD3 to DNA, and ultimately inhibit

TGF-β-Smad signal transduction (161, 162). In fact, it has been

repeatedly demonstrated that 1,25(OH)2D3 interferes with the

pro-fibrotic effects of TGF-β, which could in fact be predicted

because calcitriol itself inhibits collagen synthesis in cells (163, 164).

Moreover, vitamin D can also block the expression of several

matrix metalloproteinases in alveolar macrophages and monocytes

and participate in airway remodeling, which helps to reduce the

excessive degradation and abnormal remodeling of the extracellular

matrix, thus playing a protective role in the airways (165, 166).

Additionally, vitamin D can reduce the proliferation of lung

fibroblasts through the TGF-β pathway, thus playing a role in

inhibiting pulmonary fibrosis (165, 167). Other studies have shown

that vitamin D concentrations were positively associated with

improvements in lung function, including 1FEV1(%), 1FVC(%),

and 1DLCO-SB(%) (166). Additionally, the presence of severe

muscle weakness in individuals with IPF is associated with an

elevated risk of mortality and disease severity due to cachexia

or sarcopenia (168, 169). Previous studies have demonstrated

the efficacy of vitamin D supplementation in enhancing muscle

strength among patients afflicted with pulmonary disorders (170,

171).

The report of the Institute of Medicine (IOM) of the

United States in 2011 not only discussed the upper limits (ULs)

of the intake of high-dose vitamin D preparations during acute

and short-term administration within a limited time period, but

also emphasized the long-term administration of vitamin D. Acute

toxicity may occur when the dose of vitamin D exceeds 10,000

international units per day, which will cause the serum 25(OH)D

concentration exceeding 150 ng/ml (>375 nmol/L). This level is

significantly higher than the upper limit of 4,000 international units

per day recommended by the IOM. Taking a dose of more than

4,000 international units of vitamin D per day for several years may

lead to the serum 25(OH)D concentration being in the range of

50 to 150 ng/ml (125 to 375 nmol/L), which may have potential

chronic toxicity (172). Due to the high prevalence of vitamin D

deficiency secondary to exocrine pancreatic insufficiency, it is a

common practice to supplement vitamin D in the population of

patients with cystic fibrosis. Thomas et al. conducted a retrospective

analysis of themedical records of all cystic fibrosis patients followed

up at the Cliniques universitaires Saint-Luc over the past 10 years.

The results showed that in this high-risk population, the number

of cases of excessive vitamin D intake and toxicity increased due to

dosage errors in the preparation of magistral liposoluble vitamin

preparations. The serum vitamin D levels of 5% of the patients

indicated excessive vitamin D intake, and another 2 patients

developed severe hypercalcemia (173).

4.5 Vitamin E

Vitamin E encompasses a group of antioxidant fat-soluble

vitamins, including α-, β-, γ- and δ-tocopherol as well as α-,

β-, γ- and δ-tocotrienols, of which α-tocopherol stands out as

the most biologically active form of vitamin E (174). The role

of vitamin E in pulmonary fibrosis seems to be controversial,

however, certain reports have suggested its inhibitory effect on

this condition. Similar to vitamin C, vitamin E also has potent

antioxidant properties that directly inhibit ROS formation in

radiation fibrosis patients (82). Dietary supplementation of

vitamin E significantly reduced the extent of TGF-β1, collagen

deposition and histological damage following intratracheal

amiodarone administration (175), and vitamin E reduced

amiodarone-induced cytotoxicity in pulmonary cells, whereas

other antioxidant treatments were ineffective (176). Dietary

vitamin E supplementation enables rapid vitamin accumulation

in lung tissue and mitigates amiodarone-induced elevation of

TGF-β and hydroxyproline levels, thereby preventing lung tissue

damage. Another recent study demonstrated that vitamin E

significantly attenuates bleomycin-induced pulmonary fibrosis by

improving mitochondrial structure and function, modulating iron

metabolism, reducing inflammation (significantly reducing the

transcriptional levels of interleukin-6 (Il-6), interleukin-33 (Il-33),

chemokine ligand 5 (Ccl5) and TNF-α, as well as inhibiting the

fibrotic effects on epithelial cells and fibroblasts (177). However,

Card et al. point out that although dietary supplementation also

significantly increased lung mitochondrial vitamin E content,

it did not ameliorate the mitochondrial respiratory depression

and disruption of mitochondrial membrane potential caused by

amiodarone (178).

The role of vitamin E in cystic fibrosis disease remains a

subject of intense debate within current research. In theory,

vitamin E is involved in protecting the airways from oxidative

stress and inflammation. Previous studies have demonstrated a

decline in serum α-tocopherol levels during lung deterioration,

which subsequently returned to normal following intravenous

antibiotic treatment (179–181). Even within the normal range,

reduced serum levels of vitamin E are associated with an elevated

incidence of lung deterioration in cystic fibrosis (179). It can be

inferred that low serum α-tocopherol levels may be attributed to

pulmonary inflammation rather than dietary vitamin E deficiency.

Therefore, the degree of chronic pulmonary inflammation should
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be considered when studying the relationship between pulmonary

fibrosis and serum α-tocopherol. However, in a single-walled

carbon nanotube-induced pulmonary fibrosis animal experiment,

the researchers found that dietary vitamin E deficiency increased

lung inflammation and oxidative stress. After feeding mice a

vitamin E-adequate and a vitamin E-deficient diet, the researchers

found that the vitamin E-deficient mice showed a 90-fold decrease

of α-tocopherol in lung tissue, and a significant decrease of

antioxidants and increased inflammatory response (182). However,

Woestenenk et al. found that serum α-tocopherol deficiency was

also rare in a large sample of children and adolescents with

cystic fibrosis, although the actual vitamin intake was lower than

recommended, and the study did not find a protective effect of

higher serum α-tocopherol on lung function in patients with cystic

fibrosis (183). The study further notes that the recommended

amount of vitamin E supplementation for cystic fibrosis patients in

both Europe and North America is higher than needed to prevent

deficiency, and may even lead to abnormal vitamin E levels (183).

Supplementation of vitamin E exceeding 400 mg/day in patients

with cystic fibrosis has demonstrated deleterious effects, including

an elevated risk of mortality in adults (184) and occurrence of

hemorrhagic stroke (185).

4.6 Vitamin K

Acute exacerbations of IPF are characterized by

histopathological features of diffuse alveolar damage (DAD)

or hemorrhage (DAH), and studies have found that vitamin K

deficiency exacerbates DAH symptoms (186–188). In addition,

another study showed approximately 29% of individuals under the

age of 18 with cystic fibrosis exhibit diminished levels of vitamin

K (189). The risk of clinically relevant vitamin K deficiency is

heightened by various factors, such as the use of oral anticoagulants

or antibiotics, as well as reduced intestinal vitamin K uptake for

multiple reasons, such as fat uptake inhibitors (190). Janssen R.

proposed that vitamin K deficiency is one of the potential sources

of pathogenesis of IPF. This proposition builds on Booth and

colleagues’ finding that there is a significant increase in vitamin K-

dependent matrix Gla protein (MGP) expression in the lungs of IPF

patients, indicating potential vitamin K deficiency (191). Vitamin

K plays an important role in preventing tissue degeneration caused

by the hardening or degradation of elastin and collagen (192). The

vitamin K-activated MGP possesses the capability to penetrate the

interior of elastin and collagen fibers, thereby playing a pivotal

role in safeguarding ECM proteins against mineralization (193).

Growth arrest-specific 6 (GAS6) and protein S are also vitamin K-

dependent proteins, which are important regulators of tissue repair

after injury and may be involved in the pathogenesis of pulmonary

fibrosis (194). In addition to anticoagulant effects, protein S

also has a protective effect on lung fibers through anti-apoptotic

properties (195). Therefore, assessing the vitamin K status of

individuals with pulmonary fibrosis and providing tailored

dietary recommendations to enhance their vitamin K levels could

potentially serve as a valuable intervention strategy, particularly for

those who frequently experience infections (requiring antibiotic

treatment) while concurrently using anticoagulant medications.

Since the primary deficiency disease associated with vitamin K

is bleeding due to impaired blood clotting, it is commonly believed

that high intake of vitamin K may increase the risk of thrombosis.

However, in fact, excessive intake of vitamin K does not lead

to more carboxylation of clotting factors. Even when monitored

with the most sensitive technique (endogenous thrombin potential,

ETP), an increased tendency to thrombosis has not been found in

any of the participants (196). At present, there is a lack of evidence

on whether high intake of vitamin K has an adverse effect on

patients with pulmonary fibrosis.

5 The potential value, limitations and
future research directions of vitamins
in the treatment of pulmonary fibrosis

Vitamins exhibit various advantages in the treatment of

pulmonary fibrosis. Their targets of action include oxidative stress,

inflammatory responses, and fibrosis-related signaling pathways.

The possible targets of action for each vitamin are listed in

Table 2. With low toxicity, high cost-effectiveness, and the potential

to synergize with traditional therapies (such as pirfenidone),

vitamins have become promising adjuvant therapeutic agents.

However, several limitations impede the clinical translation of

vitamins. Currently, the evidence mainly comes from preclinical

models or small-scale studies, lacking sufficient data on long-

term efficacy, optimal dosages, or inter-individual variations. There

are also some ambiguities in the mechanisms of action. For

example, folic acid has a dual effect on fibroblast proliferation

and the alleviation of oxidative stress. Moreover, some seemingly

contradictory effects further complicate the application of vitamins.

High doses of vitamin C may act as a pro-oxidant, and excessive

vitamin E can increase the risk of bleeding. Biomarkers for

predicting treatment responses (such as serum 25-hydroxyvitamin

D for detecting vitamin D levels) remain underdeveloped, which

restricts the formulation of personalized treatment regimens.

Future research must prioritize large-scale randomized trials to

verify the clinical efficacy of vitamins and establish standardized

treatment protocols. Combination treatment regimens are worthy

of in-depth exploration. For instance, the combination of vitamins

TABLE 2 The potential targets of various vitamins in pulmonary fibrosis.

Vitamins Potential targets

Vitamin A TGF-β/IL-6/IL-6R; PKC-δ/NF-κB; p38MAPK/NF-κB

Vitamin B

Niacin Calcium/PLA2; IκBα/NF-κB/(IL-1a, IL-6, TNF-α and TGF-β);

iNOS

Folic acid SLC25A32/MTHFD2; mitochondrial ROS

Vitamin C Nrf2/Nox4; TGF-β1/Smad3; P53; caspase-3; Bax/Bcl-2; IL-17

Vitamin D TNF-α/TF; TFPI; IL-3; IL-17; IL-1; IL-6; IL-8; TNF-α; IL-10;

TGF-β/Smad

Vitamin E TGF-β1; ROS; IL-6; IL-33; Ccl5; TNF-α; α-tocopherol

Vitamin K MGP; GAS6; protein S;
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C and E can enhance the antioxidant effect, or the use of

folic acid-conjugated drugs can achieve targeted drug delivery

to macrophages, thereby improving the therapeutic effect. In

addition, safety assessment is essential. It is necessary to clarify

the upper limit of the safe dosage and address the issue

of drug interactions. Filling these research gaps will help to

fully unleash the potential of vitamins in the treatment of

pulmonary fibrosis.

6 Concluding remarks

New roles and uses for known substances are being discovered

all the time, as are substances in our food. In the current era

of escalating healthcare expenditures, cost-effective interventions

hold great appeal. Numerous studies have demonstrated the

significant role of vitamins in decelerating the progression of

pulmonary fibrosis. Given the widespread psychological acceptance

of vitamins as a relatively safe and economical natural compound,

their utilization should be encouraged in regions with positive

clinical data.
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