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Purpose: To investigate the associations between urinary enterolignans 
concentration and oral probiotic ingestion using nationally representative data 
from the United States population.

Methods: We analyzed dietary recall data and urinary enterolignans 
concentrations from 12,358 eligible participants in the National Health 
and Nutrition Examination Survey (NHANES) 1999–2010. Linear regression 
models with comprehensive covariate adjustments were employed to assess 
associations, accounting for demographic, socioeconomic, health status, and 
lifestyle factors.

Results: Participants with dietary probiotic ingestion had higher urinary 
concentrations of enterolignans, and probiotic ingestion showed robust and 
profound positive correlations with enterolignans after fully adjusted with 
multiple confounders (all p values<0.05). Frequent probiotic consumption 
exerts a more profound and positive impact on enterolignans concentrations 
than Infrequent probiotic consumption, according to correlation coefficient 
values in both univariate and multivariate analyses.

Conclusion: Dietary probiotic consumption was significantly associated with 
elevated urinary enterolignans concentrations in the U.S. population, with 
high-frequency intake demonstrating a stronger dose–response relationship 
compared to low-frequency consumption.
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Introduction

Lignans, diphenolic compounds abundantly present in whole-
grain cereals, seeds, and vegetables, represent the predominant 
phytoestrogens in traditional Western diets (1). Both ingested lignans 
and their microbial metabolites, enterolignans (including 
enterolactone [ENL] and enterodiol [END]), have been associated 
with diverse health benefits. Epidemiological evidence suggests these 
compounds may reduce risks of hormone-related cancers, 
cardiovascular mortality, type 2 diabetes, and all-cause mortality (2, 
3). Their biological effects are primarily attributed to structural 
similarities with endogenous estrogens, enabling interactions with 
estrogen receptors (4).

Notably, the bioavailability of dietary lignans in their native 
form is remarkably low. The conversion to bioactive enterolignans 
requires sequential metabolic transformations mediated by 
specific gut microbial communities (5) (Figure  1). Emerging 
evidence indicates that subdominant bacterial species within the 
gut microbiota play pivotal roles in this bioconversion process (6, 
7). Importantly, circulating enterolignan levels  - rather than 
dietary lignan intake per se - demonstrate more direct correlations 
with observed health benefits (8). This underscores the critical 
need to investigate factors modulating enterolignan production 
and interindividual variability in their systemic concentrations 
(9, 10).

Current research identifies multiple determinants of 
enterolignan levels, including age, gender, dietary patterns 
(particularly lignan-rich food consumption), antibiotic exposure, 
gut microbiota composition, body mass index (BMI), and smoking 
status (9). Notably, recent findings suggest a positive association 
between high enterolignan excretion and gut microbial diversity 
(11). Given the microbiota-dependent nature of enterolignan 
biosynthesis, dietary probiotic supplementation may represent a 
modifiable factor influencing their production and subsequent 
health effects. However, despite two decades of research on 
probiotics and gut microbiota modulation, the specific relationship 
between probiotic consumption and enterolignan concentrations 
remains underexplored.

To address this knowledge gap, we conducted a population-
based study utilizing data from the National Health and Nutrition 
Examination Survey (NHANES) 1999–2010. This investigation 
represents the first large-scale epidemiological analysis examining 
the association between dietary probiotic intake and urinary 
enterolignan levels in a nationally representative U.S. cohort. Our 
findings provide novel insights into the potential of probiotic 
interventions to enhance enterolignan production, with implications 
for dietary strategies aimed at chronic disease prevention.

Materials and methods

Survey design and population

We obtained public datasets of the National Health and Nutrition 
Examination Survey (NHANES) from 1999 to 2010. Conducted by the 
National Center for Health Statistics (NCHS), the NHANES is a 
program of continuous and cross-sectional surveys on the health and 
nutritional status of noninstitutionalized U.S. adults. NHANES accepts 
a multistage, stratified sample design to represent the U.S. population 
according to demographic and geographic strata (12), and this 
sampling methodology ensures an accurate and diverse representation 
of the population. Therefore, secondary analytic findings from the 
NHANES datasets could be generalized to the broader U.S. population 
within certain statistical margins. NHANES datasets (1999–2010) 
were retrieved from the CDC’s public repository.1 Data extraction 
focused on variables including urinary enterolignans, dietary probiotic 
intake, and covariates (demographics, BMI, fiber intake). Keywords 
for variable selection included ‘probiotics,’ ‘yogurt,’ ‘enterolactone,’ and 
‘enterodiol.’ The time range (1999–2010) was selected because urinary 
enterolignans were only measured during these survey cycles. The 
NCHS Research Ethics Review Board approved the study protocol of 
NHANES, and all respondents gave informed consent, which is 
publicly available online (See text footnote 1).

Primary outcome: urinary enterolignans: 
enterodiol and enterolactone

The NHANES survey included a health examination at a mobile 
examination clinic/centre (MEC), which collected participants’ spot 
blood and urinary samples. The NHANES cycles from 1999 to 2010 
were selected because urinary enterolignans (END and ENL) were 
exclusively measured during this period. Subsequent NHANES cycles 
discontinued these biomarker assessments, limiting data availability 
beyond 2010. This timeframe also ensures consistency in measurement 
protocols across survey years. According to NHANES 1999–2010, 
62,160 participants were enrolled in the household interview, of 
which, 59,367 participants visited the MEC and a random one-third 
subset of participants was selected to provide biological specimens for 
biomarker measurement, including urinary ENL and END 
concentrations. Detailed protocols for collecting, processing, storing, 
shipping, and quantitative analysis of urinary specimens have been 
described previously (13–15). For the current study, 15,651 individuals 
with complete data on urinary enterolignans were included (Figure 2).

Definition and classification of probiotic 
exposure

To sufficiently identify probiotic exposure, there has been a 
consensus that both dietary intake and daily supplements shall 
take into account (16–18), which requires both the Food 
Frequency Questionnaire (FFQ) and Dietary Supplement Use 

1 https://www.cdc.gov/nchs/nhanes/

Abbreviations: ENL, enterolactone; END, enterodiol; NHANES, National Health 

and Nutrition Examination Survey; NCHS, the National Center for Health Statistics; 

MEC, mobile examination clinic/centre; FFQ, the Food Frequency Questionnaire; 

DSQ, Dietary Supplement Use 30-Day Questionnaire; PIR, household poverty-

to-income ratio; BMI, body mass index.
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30-Day Questionnaire (DSQ), to evaluate the yogurt and probiotic 
tablet consumption for a comprehensive picture of probiotic 
consumption. We analyzed the Dietary Supplement Use 30-day 
Study to assess the consumption of dietary supplements, including 
pre-and probiotics, during the 30 days before the NHANES 
interview. Detailed nonfood pre- or probiotic information has 
been described elsewhere (19) and could be verified through the 
public NHANES datasets.

Along with identifying yogurt consumers, we  extracted the 
frequency of yogurt consumption from the FFQ. We classified yogurt 
consumers based on their weekly consumption into “High dose 
Yogurt,” defined as one time or more per week, and “Low dose Yogurt,” 
defined as yogurt consumption less than once a week. By this point, 
we classified ‘probiotic exposure’ into two groups: ‘High dose probiotic 
supplement’, which refers to ‘High dose Yogurt’ and/or ‘High dose 
probiotic tablet’, and ‘Low dose probiotic supplement’, which refers to 
‘Low dose Yogurt’ and/or ‘Low dose probiotic tablet’.

Study covariates

NHANES collects a wide range of demographic, socioeconomic, 
health condition and lifestyle-related data. Most factors contribute to 
the interpersonal variation of enterolactone concentrations reported 
by previous literature have been enrolled accordingly for the statistical 
analysis of the present study (9), which included age (years), gender 
(binary variable, male and female), race/ethnicity (non-Hispanic 
White, non-Hispanic Black, Hispanic, other race/multiracial), 
household poverty-to-income ratio (PIR, ≤1.85 as low; 1.85–3.5 as a 
medium; >3.5 as high), total energy (kcal/day) and fibre intake (g/
day), and the adiposity indicator body mass index (BMI). After 
filtering participants with missing data from any covariate, 1,770 
individuals were excluded from the analysis, which eventually led to 
a final statistical sample size of 12,358 (Figure 2).

Statistical analyses

According to the NHANES dataset, the distributions of urinary 
enterolignans were highly right-skewed; therefore, we performed 
log transformation to adjust before parametric tests were performed. 
Such pre-processing of urinary enterolignans data has been widely 
accepted in related studies (13, 20). The dependent variable was the 
natural log transformation of END/ENL concentration. Chi-square 
tests were used to explore the distribution of categorical variables 
(sex, age, race, PIR) between groups with or without probiotic 
supplementation and between subgroups supplemented with 
probiotics. The p-value of χ2 tests was used to reflect the statistical 
significance between groups. We used the Satterthwaite-adjusted 
results in the Student t-test or the Wilcoxon rank-sum test to 
explore differences in the distribution of continuous variables (Total 
Energy Intake (kcal), Fiber Intake, BMI) between probiotic groups 
or subgroups. Simple linear regression was used to correlate each 
urine phytoestrogens, probiotic subgroups, or other covariates, 
reflecting the relationship between independent and dependent 
variables by estimated regression coefficients and 95% confidence 
intervals. In linear models, certain covariates have been 
log-transformed if needed to adjust non-normal distribution, and 
where both dependent and independent variables have been 
log-transformed, the dependent variable can be  interpreted as 
percentage changes for a one-percent increase in the 
independent variable.

Multiple linear regressions were adjusted for demographic factors 
including age (<50 yrs., ≥50 yrs), gender and race (non-Hispanic 
White, non-Hispanic Black, Hispanic/Mexican American, other) as 
Model 1, plus a social-economic factor, PIR (≤1.85low, >1.85- ≤ 3.5 
medium, >3.5 high) as Model 2; plus nutritional and dietary factors, 
including total energy and fiber intake, and the body mass index 
(BMI) which also represent metabolic and adiposity condition as 
Model 3. All models retained variables for uniform presentation and 
comparison of results across urinary phytoestrogens. Results were 

FIGURE 1

Biochemical pathway of dietary lignan metabolism to enterolignans (END/ENL) and the modulatory role of probiotic intake. Biochemical pathway of 
dietary lignan metabolism to enterolignans (enterodiol [END] and enterolactone [ENL]) mediated by gut microbiota. Key steps include deglycosylation, 
demethylation, dehydroxylation, and oxidation/reduction, catalyzed by specific bacterial taxa (labeled below each step). Probiotics (e.g., Lactobacillus 
and Bifidobacterium) may enhance metabolic flux by modulating microbiota composition or activity. Enterolignans are absorbed into systemic 
circulation, exerting health-promoting effects (Created with MedPeer.cn).
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exhibited by the predicted regression coefficient and its 95% 
confidence interval in multiple linear regression, holding all other 
remaining covariates constant.

Results

In total, 12,358 participants from NHANES 1999–2010 were 
deemed eligible for statistical analysis in the current study (Figure 2). 
A description of the characteristics distribution of the study sample 
according to dietary probiotic exposure is shown in Table 1. Compared 
to No probiotic supplement, participants with probiotic supplements 
had relatively higher END/ENL. There were no significant differences 
in END/ENL concentrations between the High-dose and Low-dose 
probiotic supplement groups (END, p = 0.0986; ENL, p = 0.1042).

Bivariate methods were used to describe individual demographic, 
socioeconomic, dietary, and lifestyle variables’ associations with 

urinary enterolignan concentrations (Figure 3). Age, gender, and race-
ethnicity had significant and differential associations with END or 
ENL. Participants with higher incomes appeared to have higher 
concentrations of both END and ENL (all p values < 0.05). Dietary 
factors, especially dietary fiber intake, had a profound and positive 
association with urinary enterolignans. The adiposity indicator, BMI, 
on the other hand, had a negative association with both urinary 
enterolignans (END: OR = 0.89, 95% CI: [0.80, 0.99], p = 0.0282; ENL: 
OR = 0.5058, 95% CI: [0.4527, 0.5649], p < 0.0001). Probiotic 
ingestion had significant and positive associations with both END and 
ENL (all p values < 0.0001). Higher-dose probiotic supplements 
exhibited a more substantial positive impact on enterolignans than 
low-dose probiotic supplements, according to comparisons of OR 
values (Figure 3).

Multiple regression models were used to verify further the 
independent correlations between dietary probiotic ingestion and 
urinary enterolignans. After adjusting for various covariates, the 

FIGURE 2

Flowchart of screening qualified participants for the observational study in NHANES 1999–2010.
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associations between dietary probiotic supplements and enterolignans 
maintained their significance (all p values <0.05, Table 2). Consistent 
with the univariate results, High dose probiotic supplements had more 
significant beta coefficients than Low dose probiotic supplements 
(fully adjusted model: END, β values: 0.1793 versus 0.2432; END, β 
values: 0.2334 versus 0.2700, Table 2).

Subgroup analyses were further performed on antimicrobial users 
to investigate the role of homeostasis and disturbance of the intestinal 
environment and microbiota. To our surprise, in antimicrobial users, 
dietary probiotic ingestion remained significantly correlated to END 
and ENL, even after adjustments of various covariates (all p values 
<0.05, Table 3).

Discussion

The current literature is insufficient to reach definitive 
recommendations for dietary live microbe intake for beneficial  
health outcomes, lacking objective and bio-molecular evidence. 

Phytoestrogens such as lignans and their in vivo metabolites, including 
enterolignans (e.g., enterodiol [END] and enterolactone [ENL]), have 
been widely recognized for their health benefits. Therefore, the current 
study provides the first Epidemiology evidence of a positive correlation 
between probiotic supplements and health-beneficial metabolites 
derived from dietary intake and gut microbiota.

Lignans are the predominant class of phytoestrogens in the 
Western diet (5), therefore, the health-beneficial effects of 
enterolignans are largely dependent on their in vivo concentrations, 
which are primarily determined by the conversion of dietary lignans 
to enterolignans. The composition and activity of the gut microbiota 
appear to be the most critical factors governing inter-individual 
variability in circulating enterolignan concentrations (9).

In vitro studies have demonstrated that the conversion of lignans 
to enterolignans requires abundant and viable bacteria (21). The 
metabolism of dietary lignans, including secoisolariciresinol 
diglycoside, lariciresinol, matairesinol, and pinoresinol, to END 
involves multiple biochemical processes, such as deglycosylation, 
demethylation, and dehydroxylation (5). Several strains of Bacteroides 
and Clostridium have been identified to catalyze the deglycosylation 

TABLE 1 Characteristics of participants in the present study according to dietary probiotic exposure from NHANES 1999–2010.

Variables Total No 
supplement

Probiotic 
supplement

p value Low dose 
probiotic 

supplement

High dose 
probiotic 

supplement

p value

Gender <0.0001 0.0106

  Male 5,974 (48.34) 5,018 (49.89) 956 (41.58) 637 (43.57) 319 (38.11)

  Female 6,384 (51.66) 5,041 (50.11) 1,343 (58.42) 825 (56.43) 518 (61.89)

Age <0.0001 0.8959

  <50 8,668 (70.14) 6,934 (68.93) 1734 (75.42) 1,104 (75.51) 630 (75.27)

  ≥50 3,690 (29.86) 3,125 (31.07) 565 (24.58) 358 (24.49) 207 (24.73)

Race 0.8569 0.0144

  Mexican 

American
2,956 (23.92) 2,372 (23.58) 584 (25.40) 360 (24.62) 224 (26.76)

  Other Hispanic 759 (6.14) 677 (6.73) 82 (3.57) 49 (3.35) 33 (3.94)

  Non-Hispanic 

White
5,284 (42.76) 4,258 (42.33) 1,026 (44.63) 627 (42.89) 399 (47.67)

  Non-Hispanic 

Black
2,847 (23.04) 2,353 (23.39) 494 (21.49) 353 (24.15) 141 (16.85)

  Other Race - 

Including 

Multi-Racial

512 (4.14) 399 (3.97) 113 (4.92) 73 (4.99) 40 (4.78)

PIR <0.0001 0.0374

  Low 5,759 (46.60) 4,787 (47.59) 972 (42.28) 625 (42.75) 347 (41.46)

  Medium 3,053 (24.70) 2,480 (24.65) 573 (24.92) 392 (26.81) 181 (21.62)

  High 3,546 (28.69) 2,792 (27.76) 754 (32.80) 445 (30.44) 309 (36.92)

Total Energy 

Intake (kcal)
2081.17 ± 901.61 2083.66 ± 925.62 2070.25 ± 788.10 <0.0001 2100.922 ± 831.53 2016.67 ± 703.13 0.1155

Fiber intake 15.04 ± 8.61 15.00 ± 8.79 15.26 ± 7.80 <0.0001 14.67 ± 7.29 16.27 ± 8.52 <0.0001

BMI 26.29 ± 7.19 26.41 ± 7.20 25.78 ± 7.15 0.0002 26.18 ± 7.17 25.07 ± 7.06 0.0003

Enterodiol1 3.64 ± 2.52 3.46 ± 1.59 3.70 ± 1.55 <0.0001 3.66 ± 1.56 3.77 ± 1.54 0.0986

Enterolactone1 5.84 ± 2.84 5.51 ± 1.70 5.78 ± 1.59 <0.0001 5.74 ± 1.61 5.85 ± 1.56 0.1042

1Logarithmic transformation.
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step (16), while demethylation is catalyzed by Butyribacterium 
methylotrophicum, Eggerthella lenta, Peptostreptococcus productus, 
Eubacterium, and Enterococcus faecalis (17, 18). The dehydroxylation 
process is catalyzed by Clostridium scindens strains and Eggerthella 
lenta (22). END can also be converted to ENL via dehydrogenation 
catalyzed by specific bacteria such as Lactonifactor longoviformis (16). 
A summary of the enhanced abundance of specific intestinal 
enterolignans-converting bacteria mentioned above by ingestive 
probiotics or yogurt consumption in humans has been listed in 
Supplementary Table 1.

A recent epidemiological study reported that lower serum ENL 
concentrations correlate with lower fecal bacterial counts, especially 
those from the Lactobacillus and Enterococcus groups (23). Based on 
the present study, higher-dose probiotic consumption appears to have 
a more profound impact on END/ENL concentrations compared to 
lower-dose consumption, as indicated by the beta coefficient values in 
both univariate and multivariate analyses (Figure  3; Table  2). 
We therefore hypothesize that the elevated END/ENL concentrations 

may be  attributed to the increased abundance of enterolignan-
converting bacteria in the gut due to dietary probiotic intake. Probiotic 
supplements may directly enhance the abundance of beneficial strains 
in the gut or indirectly promote the proliferation of specific bacteria. 
So this study support the integration of probiotic-rich foods such as 
yogurt or evidence-based probiotic supplements into daily dietary 
patterns as a practical strategy to contribute to health benefits. Future 
research should focus on establishing causal relationships between 
probiotic intake and enterolignan levels, while also exploring the 
specific mechanisms and long-term health impacts of this association.

Lignan-rich diets (e.g., whole grains, seeds) provide dietary source 
for enterolignan synthesis, therefore, dietary factors warrant careful 
consideration in this analysis. Lignans predominantly exist in fiber-
rich plant sources such as whole grains, seeds, and vegetables (21). 
This intrinsic association enables epidemiological studies to estimate 
lignan exposure through fiber intake data when direct quantification 
is unavailable. Also, Dietary fibers are crucial for gut microbiota as 
they serve as nutrient sources for gut microorganisms, modulating 

FIGURE 3

Univariate linear regression analyses of dependent variates and enterolignans. OR, odds ratio; 95%CI, 95% confidence interval; 1Enterodiol; 
2Enterolactone; PIR, Poverty Income Ratio; BMI, Body Mass Index. This forest plot illustrates the univariate linear regression analyses of urinary 
enterolignans (enterodiol [END] and enterolactone [ENL]) concentrations across various demographic, socioeconomic, and dietary factors. The plot 
presents the regression coefficients (β) and their corresponding 95% confidence intervals (CIs) for each variable.
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TABLE 2 Multivariate linear regression analyses of dietary probiotic ingestion and enterolignans.

Probiotic 
ingestion

Enterodiol (ln-ng/mg)

Model 1 Model 2 Model 3

β 95%CI β 95%CI β 95%CI

Total probiotic ingestion 0.2347** (0.1628, 0.3067) 0.2197** (0.1479, 0.2916) 0.2023** (0.1307, 0.2740)

No supplement Ref

Low dose probiotic 

supplement
0.1951** (0.1082, 0.2820) 0.1843** (0.0976, 0.2710) 0.1793** (0.0928, 0.2657)

High dose probiotic 

supplement
0.3043** (0.1925, 0.4161) 0.2820** (0.1704, 0.3936) 0.2432** (0.1316, 0.3547)

Enterolactone (ln-ng/mg)

Model 1 Model 2 Model 3

β 95%CI β 95%CI β 95%CI

Total probiotic 

ingestion
0.2893** (0.2129, 0.3657) 0.2765** (0.2002, 0.3528) 0.2466** (0.1711, 0.3221)

No supplement Ref

Low dose probiotic 

supplement
0.2452** (0.1530, 0.3375) 0.2364** (0.1442, 0.3285) 0.2334** (0.1424, 0.3244)

High dose probiotic 

supplement
0.3666** (0.2480, 0.4853) 0.3471** (0.2286, 0.4657) 0.2700** (0.1525, 0.3875)

The results of the multivariable linear regression models were expressed as β and 95% confidence intervals (CI). The analytic sample size was 12,358.
Model 1: adjusted for demorgraphic factors including age, gender and race; Model 2: adjusted for factors in Model 1, as well as social-economic factor, PIR; Model 3: adjusted for factors in 
Model 2, as well as nutritional and dietary factors, including total energy intake and dietary fiber intake, and body mass index (BMI) which also represent metabolic and adiposity condition.
*p < 0.05; **p < 0.005.

TABLE 3 Robust test for multivariate linear regression analyses in antimicrobial users.

Probiotic 
ingestion

Enterodiol (ln-ng/mg)

Model 1 Model 2 Model 3

β 95%CI β 95%CI β 95%CI

Total probiotic ingestion 0.1946** (0.1040, 0.2852) 0.1871** (0.0966, 0.2775) 0.1671* (0.0767, 0.2575)

No supplement Ref

Low dose probiotic 

supplement
0.1563* (0.0464, 0.2662) 0.1503* (0.0405, 0.2600) 0.1405* (0.0309, 0.2500)

High dose probiotic 

supplement
0.2597* (0.1204, 0.3991) 0.2497* (0.1105, 0.3889) 0.2127* (0.0734, 0.3521)

Enterolactone (ln-ng/mg)

Model 1 Model 2 Model 3

β 95%CI β 95%CI β 95%CI

Total probiotic 

ingestion
0.2737** (0.1783, 0.3691) 0.2666** (0.1713, 0.3619) 0.2272** (0.1328, 0.3216)

No supplement Ref

Low dose probiotic 

supplement
0.2490** (0.1332, 0.3648) 0.2443** (0.1286, 0.3600) 0.2306** (0.1162, 0.3449)

High dose probiotic 

supplement
0.3156** (0.1688, 0.4625) 0.3046** (0.1578, 0.4513) 0.2215* (0.0760, 0.3670)

The analytic sample size was 7,321.
Model 1: adjusted for demorgraphic factors including age, gender and race; Model 2: adjusted for factors in Model 1, as well as social-economic factor, PIR; Model 3: adjusted for factors in 
Model 2, as well as nutritional and dietary factors, including total energy intake and dietary fiber intake, and body mass index (BMI) which also represent metabolic and adiposity condition. 
*p < 0.05; **p < 0.005.
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microbial diversity and function (24). As such, nutritional factors like 
dietary pattern, especially the fiber/lignan intake, may confound the 
conclusion of probiotic’s impacts on enterolignan elevation. To address 
this, our analysis further enrolled Total Energy Intake and dietary 
fiber intake (representative as proxies for lignan-containing foods and 
dietary pattern) for adjustment in statistical models. Notably, the 
robust association between probiotic use and elevated enterolignans 
persisted even after these adjustments (Table 2, Model 3). So we can 
say that, the probiotic ingestion in modulating this process might 
be independent of dietary pattern, or specifically, the direct lignan/
fiber in the dietary intake. However, ethnic variations in dietary 
patterns and host genetics may introduce heterogeneity in 
enterolignan metabolism. Future studies should incorporate direct 
lignan quantification and metagenomic profiling to disentangle diet-
microbiome-host interactions in enterolignan biosynthesis.

Antibiotic use has been reported to correlate to lower END (13, 
20, 25). The duration of decreased ENL owing to oral antimicrobial 
use may last for up to 12–16 months (25), and the reason for lower 
enterolignans with antimicrobial use is apparently and primarily 
attributed to the disturbed intestinal microbiota (9, 25), which limits 
the production of enterolignans. Therefore, we performed a subgroup 
analysis in which participants reported positive for antimicrobial 
tablet use in the previous 30 days. It is noteworthy that the positive 
associations between ingestive probiotics and enterolignans remained 
robust across multple adjusting models (Table 3). As such, we assume 
that probiotic ingestion elevates enterolignans concentration via its 
positive impacts on the abundance of specific intestinal microbiota 
for enterolignans production even after the disturbance of the 
intestinal environment by antimicrobial use. These findings hold 
significant clinical implications for mitigating antibiotic-induced 
microbiota dysbiosis and accelerating the restoration of enterolignan-
producing microbial consortia during post-antibiotic recovery. 
However, the dual roles of probiotic interventions necessitate cautious 
interpretation. For example, a recent study have demonstrated that 
excessive proliferation of Akkermansia muciniphila—a next-
generation probiotic—can enhance the virulence and infection 
potential of enteric pathogens (26). Given the potential adverse 
effects of probiotics, such as diarrhea and infections, particularly in 
vulnerable populations (27, 28), their use should be  judiciously 
tailored to individual needs. Furthermore, regulatory standardization 
of probiotic formulations is essential to ensure product consistency 
and clinically translatable outcomes.

Strengths and limitations

Our study has several strengths which need to be highlighted. 
First, we  analyzed a large, multi-ethnic, and national survey 
representative of the US population to generate real-world evidence. 
To the best of our knowledge, this is the first study to provide empirical 
and quantified evidence of the positive impacts of dietary probiotic 
ingestion on specific health-beneficial dietary- and gut microbiota-
derived metabolites. Given the high proportion of dietary probiotic 
users in the US population, according to the current study and 
previous literature, our results may support a simple and practical 
approach to enhance the health effects of enterolignans. Multiple 
confounders were further adjusted in the multi-variates linear 
regression to assess the robustness of such positive associations.

On the other hand, several limitations must be acknowledged as 
well. Firstly, the cross-sectional nature of our research may merely 
indicate associations, which was methodologically challenging. 
Secondly, the methods used to estimate microbial content intake was 
evaluated within the last 30 days food recall questionnaire, which may 
not fully represent the long-term nutritional supplement, and the 
questionnaire data may also encounter recall bias. Moreover, the 
NHANES cohort’s U.S.-centric design limits generalizability to other 
ethnicities and regions. Global variations in diet, gut microbiome, and 
genetic polymorphisms affecting lignan metabolism may alter 
observed associations, necessitating future multi-ethnic studies with 
standardized enterolignan measurements for validation. Finally, future 
studies should employ longitudinal designs to establish causality, 
identify specific probiotic strains enhancing enterolignan production, 
investigate gut microbiota-mediated mechanisms, and validate findings 
across diverse populations through randomized controlled trials.

Conclusion

This study demonstrates a significant positive association 
between dietary probiotic intake and elevated urinary enterolignan 
concentrations in a nationally representative U.S. population. 
Notably, high-frequency probiotic consumption exhibited stronger 
associations than low-frequency intake, and robustness persisted 
even among antimicrobial users. The findings provide scientific 
evidence for incorporating probiotic-enriched dietary interventions 
or supplementary regimens to enhance enterolignan biosynthesis 
and optimize its physiological concentrations. Future longitudinal 
and mechanistic studies are warranted to establish causality, 
identify strain-specific effects, and refine microbiota-targeted 
dietary recommendations.
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