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Objective: This study sought to investigate the association between metabolic 
syndrome (MetS) and Composite Dietary Antioxidant Index (CDAI) in females, 
with the goal of informing evidence-based prevention and clinical management 
strategies for MetS.

Methods: The 2011–2016 National Health and Nutrition Examination Survey 
(NHANES) recruited a total of 2,790 female participants and screened 1,562 
participants for estrogen non-deficiency. The diagnosis of MetS was based on 
criteria set by the National Cholesterol Education Program-Adult Treatment 
Panel III. The CDAI was calculated according to the intake of 10 dietary 
antioxidants. Multivariable logistic regression was performed to investigate 
the relationship between the CDAI and MetS in females. We  also performed 
restricted cubic splines, two-piecewise linear regression, and subgroup analysis 
in further analysis.

Results: Our analyses demonstrated a significant inverse association between 
the Composite Dietary Antioxidant Index (CDAI) and metabolic syndrome 
(MetS) prevalence in females. Restricted cubic spline analysis indicated a linear 
dose–response relationship (p for linearity = 0.029), with two-piecewise 
linear regression analysis revealed an inflection point at 1.99. Below 1.99, each 
unit increase in the CDAI was associated with a 2% reduction in the risk of 
MetS in females; above 1.99, the risk reduction was 1%. Participants without 
MetS were significantly younger than those with MetS (43.49 ± 16.04 vs. 
54.77 ± 15.52 years, p < 0.001). Notably, estrogen levels also were negatively 
correlated with the prevalence of MetS. Subgroup analysis revealed that 
the relationship between the CDAI and MetS remained consistent across all 
subgroups.

Conclusion: In the female population, CDAI levels exhibited an inverse 
relationship with the prevalence of metabolic syndrome, and estrogen levels 
demonstrated a negative correlation with its incidence.
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1 Introduction

Metabolic syndrome (MetS) is a condition characterized by a 
clustering of metabolic risk factors. It is defined by the World 
Health Organization as a pathological condition characterized by 
abdominal obesity, insulin resistance, hypertension, and 
hyperlipidemia (1). Given its high prevalence and severe 
consequences, MetS has become a global problem, placing a huge 
economic burden on societies and health systems in the 
future (2–5).

However, women with MetS bear a greater health burden. Studies 
show that females have a higher prevalence of MetS than men (5), and 
female patients tend to experience more severe symptoms than males 
(6, 7). Previous research suggests that MetS in middle-aged females 
may contribute to or exacerbate pain, sleep disturbances, sexual 
dysfunction, and mood alterations, likely due to aging and chronic 
inflammation (8). A systematic review and meta-analysis further 
revealed that MetS in females is associated with an increased risk of 
several malignancies, including endometrial, pancreatic, and breast 
cancers. The strongest associations were seen in sex-specific cancers 
like endometrial cancer and postmenopausal breast cancer (6). 
Remarkably, postmenopausal females with MetS have a twofold 
higher risk of developing breast cancer than those without MetS (8).

Evidence indicates that females with MetS experience more severe 
symptoms than men, possibly due to sex-related hormonal factors. 
Estrogen plays a crucial role in modulating inflammation and 
metabolic homeostasis in females (9, 10). It regulates insulin resistance 
(11), energy metabolism (12), and lipid metabolism (13, 14). The 
hormone exhibits dual functionality in oxidative stress regulation, 
providing antioxidant protection through receptor-mediated 
mechanisms (15), while also orchestrating cellular defense systems 
against oxidative damage (16). Pathologically, the chronic 
inflammation and oxidative stress characteristic of MetS are well-
established contributors to carcinogenesis (8, 15). Recent studies 
suggest that ERα-mediated mitochondrial energy regulation 
represents a key pathway underlying estrogen’s metabolic protective 
effects (16). However, the postmenopausal decline in estrogen levels 
promotes macrophage infiltration in adipose tissue, worsening insulin 
resistance via TNF-α/IL-6-JNK pathway activation (17).

Estrogen fluctuations, mediated through cyclic variations in 
nuclear receptor ERRα-regulated mitochondrial biogenesis (18), 
constitute an inherent physiological characteristic in females. 
Targeting the menopausal decline in estrogen through dual 
strategies—suppressing NADPH oxidase activity to mitigate oxidative 
stress while enhancing endogenous antioxidant defenses (e.g., 
superoxide dismutase (SOD) and catalase)—may effectively reduce 
the risk of MetS (19). Therefore, antioxidant protection may yield 
significant benefits for females with MetS, offering greater preventive 
value than treatment alone. Mechanistically, oxidative stress drives 
MetS pathogenesis via NF-κB-mediated inflammation (20), insulin 
signaling disruption, and adipocyte dysfunction (21). Several studies 
have confirmed the role of dietary antioxidants in counteracting 
oxidative stress (22–25). For instance, serum levels of carotenoids, 
particularly α and β-carotene, as well as retinyl esters, exhibit an 
inversely association with MetS (26). Additionally, abnormal vitamin 
A metabolism contributes to damage and plays a key role in MetS in 
a gut microbiota-dependent manner (27) while dietary vitamin E 
levels are inversely correlated with MetS (28, 29).

Therefore, mitigating oxidative stress may represent a viable 
preventive and therapeutic approach for managing metabolic 
syndrome (MetS) in female populations. Notably, while previous 
investigations predominantly focused on isolated antioxidant 
components, emerging evidence underscores the critical role of 
holistic dietary patterns in modulating oxidative-inflammatory 
pathways (30). The Comprehensive Dietary Antioxidant Index 
(CDAI), a validated metric reflecting synergistic antioxidant capacity, 
was developed based on its cumulative inhibitory effects on 
pro-inflammatory mediators, including tumor necrosis factor-alpha 
(TNF-α) and interleukin-1 beta (IL-1β). Its integrates quantitative 
assessments of multiple dietary antioxidants—vitamins A, C, and E, 
alongside manganese (Mn), selenium (Se), and zinc (Zn), etc., 
thereby providing a comprehensive characterization of individual 
antioxidant profiles (31), and has been applied in several studies 
(32–34).

Despite emerging evidence suggesting a non-linear association 
between MetS and the CDAI, critical knowledge gaps remain (35). 
Existing studies only found sex-specific differences in association 
between MetS and CDAI (36), and the stratified regression analyses 
indicate CDAI-MetS associations may be unique to female populations. 
However, the biological mechanisms underlying this sexual 
dimorphism, particularly the potential mediating role of estrogen in 
modulating antioxidant-metabolic interactions, remain inadequately 
explored. Since antioxidant supplements have shown no effect on MetS 
prevention, this study focused on dietary antioxidants (excluding 
supplements) to better reflect real-world nutritional exposures. In 
summary, this study aimed to quantify the CDAI-MetS association in 
females and investigate the role of estrogen in this relationship.

2 Materials and methods

2.1 Data source

All participant information and relevant data for this study were 
obtained from the National Health and Nutrition Examination Survey 
(NHANES) database, which is conducted by the National Center for 
Health Statistics, a division of the Centers for Disease Control and 
Prevention. For this study, we downloaded consecutive datasets from 
2011 to 2016 (Figure 1), which were analyzed to accurately assess the 
relationship between a healthy CDAI index and MetS.

2.2 Exposure and outcomes

The NHANES database collects participants’ food intake over two 
consecutive days using 24-h dietary recall interviews. The first interview 
was conducted face to face, and the second was done over the phone 
3–10 days later. The CDAI for all participants was calculated using the 
method recommended by Wright (Equation 1), incorporating 10 
vitamins and minerals from food sources (vitamins A, C, E, selenium, 
zinc, alpha-carotene, beta-carotene, lycopene, lutein, and zeaxanthin, 
with lutein and zeaxanthin counting as a single metric). The intake of 
each antioxidant was standardized by subtracting the mean intake and 
then dividing by the standard deviation (where x represents the intake 
of individual dietary antioxidants and x  represents the average intake 
of each component; SD is the standard deviation of the mean).
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In this study, we  used the National Cholesterol Education 
Program-Adult Treatment Panel III (NCEP-ATP III) for the diagnosis 
of MetS. The NCEP-ATP III criteria are based on five measures: 
abdominal obesity, elevated triglycerides, lowered high-density 
lipoprotein (HDL) cholesterol, elevated blood pressure, and elevated 
fasting blood glucose. MetS is diagnosed when three or more of the 
following five criteria are met: (1) waist circumference ≥102 cm in 
men or ≥88 cm in females; (2) serum triglyceride ≥150 mg/dL; (3) 
serum HDL cholesterol <40 mg/dL in men or <50 mg/dL in females; 
(4) fasting blood glucose ≥100 mg/dL or use of hypoglycemic drugs; 
(5) blood pressure ≥130/85 mmHg or receiving relevant medication.

2.3 Covariates

To assess the impact of potential confounders, several important 
covariates were selected, including age, race and ethnicity, education 
level, marital status, drinking, smoking, body mass index (BMI), 
diabetes, and hypertension. Categorical variables included race and 
ethnicity (Non-Hispanic White people, Non-Hispanic Black people, 
Mexican American, and Other), education level (High school, Above 
high school, and Other), marital status (Married, Unmarried, and 
Other), drinking (No/Unknown, Yes), smoking (No/Unknown, Yes), 
diabetes (No/Unknown, Yes/Borderline), and hypertension (No/
Unknown, Yes).

2.4 Statistical analysis

Demographic and clinical characteristics of participants were 
collected, with continuous variables described as (mean ± SD) and 
categorical variables expressed as number and percentage. 
Chi-squared tests were used to compare baseline characteristics of 
categorical variables. Logistic regression models were applied to 

investigate the relationship between CDAI and MetS in females. 
Model 1 was a rough model without no adjustment for any covariates. 
Model 2 was further adjusted for age, race and ethnicity, and education 
level. Model 3 was a fully adjusted model, further adjusting for alcohol 
consumption, smoking status, BMI, diabetes, and hypertension. To 
verify the robustness of the study results, a sensitivity analysis (Model 
4) was conducted by excluding diabetes and hypertension to assess the 
impact of adjusting for these variables on the association between 
CDAI and MetS. A restricted cubic spline was then performed to 
explore the nonlinear relationship between the CDAI and MetS in 
females, and two-piecewise linear regression was used to calculate the 
inflection point. Finally, subgroup analysis was conducted to confirm 
the consistency and stability of the study results in each subgroup. All 
statistical analyses were conducted using R software version 4.2.3.1 
Two-sided p < 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics

In total, 2,790 female participants were included in this study and 
grouped according to the quartile distribution of CDAI. Significant 
trends were observed in race and ethnicity, education level, marital 
status, smoking status, and BMI with changes in CDAI quartiles. 
Additionally, the prevalence of MetS exhibited a significant downward 
trend with increased the CDAI quartiles (p < 0.001) (Table 1).

3.2 Multivariate adjusted logistic regression

Multivariate logistic regression models were established to 
examine the relationship between the CDAI and MetS. Three models 
were constructed. Model 1 was not adjusted for any covariates. Model 

1 https://www.R-project.org

FIGURE 1

Flowchart of study population selection, NHANES 2011–2016.
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2 was adjusted for age, race and ethnicity, and education level. Model 
3 was further adjusted for alcohol consumption, smoking status, BMI, 
diabetes, and hypertension. In both Models 1 and 2, the CDAI was 
associated with a reduced prevalence of MetS, whether treated as a 
continuous or categorical variable. Even after adjusting for all 
confounding variables in Model 3, the protective effect of the CDAI 
(continuous) on MetS remained significant (odds ratio [OR] [95% 
confidence interval CI] = 0.96 [0.94, 0.99], p = 0.009). Compared with 
Q1, the CDAI in Q4 was associated with a 28% reduction in the 
prevalence of MetS (p = 0.017; Table 2). In the sensitivity analysis 
(Model 4, excluding diabetes and hypertension), the negative 
association between CDAI and MetS remained statistically significant 
(OR [95% CI] = 0.97 [0.94, 0.99], p = 0.009). The effect estimates for 
CDAI quartiles were comparable to those in Model 3, indicating that 
the association between CDAI and MetS remains robust regardless of 
whether diabetes and hypertension are adjusted for. In sum, the higher 
CDAI was a protective factor in MetS.

The relationship between components of the CDAI and MetS was 
also examined. After adjusting for all confounders, no components 
(vitamins A, C, E, selenium, zinc, and carotenoids: α-carotene, 
β-carotene, lycopene, lutein, and zeaxanthin) were independently 
associated with the presence of MetS (p > 0.05; Table 3).

3.3 Nonlinear relationship

A restricted cubic spline was used to analyze whether there was a 
nonlinear correlation between the CDAI and MetS. After adjusting for 
age, race and ethnicity, education level, alcohol consumption, smoking 
status, BMI, diabetes, and hypertension, the results showed that the 
relationship between the CDAI and MetS was linear (p for 
linearity = 0.0292, p nonlinearity = 0.569) (Figure 2).

The threshold effect of the CDAI on MetS in females was further 
analyzed using two-piecewise linear regression. The results showed 

TABLE 1 Baseline analyses based on CDAI quartiles for general female adult population, NHANES 2011–2016.

n Q1 Q2 Q3 Q4 p

698 697 697 698

Age (y), mean (SD) 49.90 (17.34) 49.15 (17.54) 49.05 (17.02) 48.73 (16.96) 0.632

Race and ethnicity (%) 0.015

  Non-Hispanic Black 175 (25.1) 155 (22.2) 137 (19.7) 136 (19.5)

  Mexican American 77 (11.0) 98 (14.1) 97 (13.9) 87 (12.5)

  Other 170 (24.4) 157 (22.5) 162 (23.2) 206 (29.5)

Non-Hispanic White 276 (39.5) 287 (41.2) 301 (43.2) 269 (38.5)

Education level (%) <0.001

  Above high school 323 (46.3) 408 (58.5) 466 (66.9) 487 (69.8)

  Other 80 (11.5) 67 (9.6) 43 (6.2) 39 (5.6)

  High school 295 (42.3) 222 (31.9) 188 (27.0) 172 (24.6)

Marital status (%) 0.003

  Married 310 (44.4) 319 (45.8) 357 (51.2) 347 (49.7)

  Other 272 (39.0) 245 (35.2) 205 (29.4) 211 (30.2)

  Unmarried 116 (16.6) 133 (19.1) 135 (19.4) 140 (20.1)

Drinking (%) 0.416

  No/Unknown 305 (43.7) 294 (42.2) 274 (39.3) 292 (41.8)

  Yes 393 (56.3) 403 (57.8) 423 (60.7) 406 (58.2)

Smoking (%) <0.001

  No/Unknown 401 (57.4) 465 (66.7) 477 (68.4) 485 (69.5)

  Yes 297 (42.6) 232 (33.3) 220 (31.6) 213 (30.5)

BMI (kg/m2), mean (SD) 30.01 (7.49) 30.07 (7.63) 29.39 (7.55) 28.95 (7.64) 0.016

Diabetes (%) 0.228

  No/Unknown 589 (84.4) 584 (83.8) 601 (86.2) 609 (87.2)

  Yes/Borderline 109 (15.6) 113 (16.2) 96 (13.8) 89 (12.8)

Hypertension (%) 0.050

  No/Unknown 417 (59.7) 431 (61.8) 464 (66.6) 448 (64.2)

  Yes 281 (40.3) 266 (38.2) 233 (33.4) 250 (35.8)

MetS (%) <0.001

  No 427 (61.2) 431 (61.8) 463 (66.4) 502 (71.9)

  Yes 271 (38.8) 266 (38.2) 234 (33.6) 196 (28.1)
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that the inflection point of two-piecewise linear regression was 1.99, 
with a significant correlation between the CDAI and MetS in females 
(p < 0.05). When the CDAI was below 1.99, the risk of MetS in females 
decreased by 2% for each unit increase; with CDAI scores above 1.99, 
the risk reduction was 1% (Figure 3 and Table 4).

The results of subgroup analysis showed that the relationship 
between the CDAI and MetS was consistent and stable across all 
subgroups (Figure 4). None of the factors significantly affected the 
association (p > 0.05). Moreover, this association was found in all 
subgroups except for non-Hispanic Black people, participants with 
more than a high school education, unmarried participants, those with 
borderline or diagnosed diabetes, and participants with hypertension.

3.4 Relationship between estrogen and 
MetS

In total, 1,562 participants (mean age: 47.23 years) with data for 
estrogen levels were screened from the 2,790 included participants. 
We explored whether there was a relationship between estrogen and 
MetS. In total, 559 participants were diagnosed with MetS, resulting 

in a prevalence rate of 35.79% (Table 5). The results indicated that 
females without MetS were younger (43.49 ± 16.04 years) and had 
lower BMI (28.29 ± 7.23 kg/m2) than those who had MetS (age: 
54.77 ± 15.52 years, BMI: 34.37 ± 7.57 kg/m2). Additionally, females 
without MetS had higher CDAI scores. When estrogen was divided 
into tertiles, there was a significant downward trend in the prevalence 
of MetS with increasing estrogen tertiles (p < 0.001; Figure 5).

To investigate the role of estrogen in the association between 
CDAI and the risk of MetS in females, we performed further logistic 
regression analyses. Model 1 showed that both high levels of CDAI 
and high levels of estrogen were protective against MetS (OR [95% CI] 
0.58 [0.42, 0.78], p < 0.001; OR [95% CI] = 0.30 [0.22, 0.38], p < 0.001, 
respectively) (Figure 6A). After adjusting for all covariates in Model 
2, the protective effect of estrogen remained significant (OR [95% CI] 
0.63 [0.43, 0.93], p = 0.021) (Figure 6B).

4 Discussion

Global epidemiological data reveal a striking female 
preponderance in MetS, affecting over 500 million females worldwide 

TABLE 2 Multivariable-adjusted logistic regression analysis of the relationship between CDAI and prevalence of MetS in American adult women, 
NHANES 2011–2016.

Model 1 Model 2 Model 3 Model 4 (Sensitivity 
Analysis)

OR [95% 
CI]

p OR [95% 
CI]

p OR [95% 
CI]

p OR [95% 
CI]

p

Q1 Ref – Ref – Ref – Ref –

Q2 0.97 [0.78, 1.21] 0.800 1.05 [0.83, 1.33] 0.652 1.06 [0.82, 1.38] 0.645 1.08 [0.84, 1.39] 0.533

Q3 0.80 [0.64, 0.99] 0.041 0.90 [0.71, 1.14] 0.378 0.97 [0.75, 1.26] 0.831 0.97 [0.75, 1.25] 0.784

Q4 0.62 [0.49, 0.77] <0.001 0.70 [0.55, 0.98] 0.004 0.72 [0.54, 0.94] 0.017 0.73 [0.56, 0.95] 0.017

CDAI 0.95 [0.93, 0.97] <0.001 0.96 [0.94, 0.98] 0.001 0.96 [0.94, 0.99] 0.009 0.97 [0.94, 0.99] 0.009

Model 1 was not adjusted.
Model 2 was adjusted for age, race and ethnicity, and education.
Model 3 was adjusted for age, race and ethnicity, education, marital status, smoking, drinking, diabetes, and hypertension.
Model 4 (Sensitivity Analysis): Adjusted for Age, Race, Education, Marital Status, Smoking, and Drinking (excluding Diabetes and Hypertension).

TABLE 3 Relationship between individual dietary antioxidants and prevalence of MetS in American adult women, NHANES 2011–2016.

Model 1 Model 2 Model 3

OR [95% CI] p OR [95% CI] p OR [95% CI] p

Vitamin A 1.00 [1.00, 1.00] 0.753 1.00 [1.00, 1.00] 0.646 1.00 [1.00, 1.00] 0.163

Vitamin C 1.00 [1.00, 1.00] 0.687 1.00 [1.00, 1.01] 0.408 1.00 [1.00, 1.00] 0.714

Vitamin E 0.99 [0.97, 1.01] 0.220 0.99 [0.97, 1.01] 0.308 0.98 [0.96, 1.01] 0.117

Selenium 1.00 [1.00, 1.00] 0.819 1.00 [1.00, 1.00] 0.079 1.00 [1.00, 1.00] 0.522

Zinc 0.99 [0.97, 1.01] 0.343 0.99 [0.97, 1.01] 0.467 0.99 [0.96, 1.01] 0.186

Alpha-carotene 1.00 [1.00, 1.00] 0.493 1.00 [1.00, 1.00] 0.868 1.00 [1.00, 1.00] 0.397

Beta-carotene 1.00 [1.00, 1.00] 0.135 1.00 [1.00, 1.00] 0.063 1.00 [1.00, 1.00] 0.236

Lycopene 1.00 [1.00, 1.00] 0.195 1.00 [1.00, 1.00] 0.116 1.00 [1.00, 1.00] 0.141

Lutein and 

zeaxanthin

1.00 [1.00, 1.00] 0.118 1.00 [1.00, 1.00] 0.170 1.00 [1.00, 1.00] 0.302

Model 1 was not adjusted.
Model 2 was adjusted for age, race and ethnicity, and education.
Model 3 was adjusted for age, race and ethnicity, education, marital status, smoking, drinking, diabetes, and hypertension.
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(4, 5, 37). This disparity may stem from estrogen’s role in redox 
regulation, as estrogen deficiency elevates oxidative stress and 
inflammation—canonical drivers of metabolic dysregulation (38–40). 
More critically, estrogen deficiency disrupts the estrogen-antioxidant 
crosstalk, a novel mechanism identified in this study. Our investigation 
elucidates a critical interplay between CDAI and estrogenic status in 
modulating MetS risk among females. We identified a robust inverse 
association between CDAI and MetS prevalence, characterized by a 
biphasic dose–response relationship with an inflection point at 
CDAI = 1.99. Crucially, estrogen status significantly modified this 
relationship, with higher estrogen levels enhancing the protective 
capacity of CDAI. These findings underscore the necessity of 
optimizing antioxidant intake during premenopausal phase to 
maximize metabolic protection.

MetS is characterized by a heightened pro-oxidative and 
pro-inflammation (41). Oxidative stress arises owing to an 
imbalance between the synthesis of antioxidants and pro-oxidants, 
causing harm to tissues and organs. It primarily results from 
excessive levels of reactive oxygen species (ROS), which cause 
damage to damage macromolecules such as DNA, lipids, proteins, 
and carbohydrates (42, 43). As an extrinsic factor, diet can affect the 
plasma redox status by reducing ROS and reactive nitrogen species 
(44). The CDAI serves as an integrative measure of dietary 
antioxidant vitamins/minerals, indicating the antioxidant potential 
of individual dietary sources. We  analyzed both the individual 
components of the CDAI and the index as a whole. In separate 

FIGURE 3

Two-piecewise linear regression.

FIGURE 2

Exploration of nonlinear associations between CDAI and MetS.
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analyses, no single dietary component was significantly associated 
with MetS prevalence (p  > 0.05), a finding that contrasts with 
previous studies (45). This may be due to the differences in the 
cohort samples of our study, which was conducted on females only, 
and previous population-wide studies. However, when considering 
the CDAI as a whole, we observed a significant downward trend in 
MetS prevalence across increasing CDAI quartiles (p < 0.001). The 
risk of MetS in females decreased significantly with higher CDAI 
levels, and females in the highest quartile (OR [95% CI] = 0.62[0.49, 
0.77], p < 0.001) of the CDAI had an approximately 28% lower risk 
of MetS than those in the lowest quartile. This is consistent with 
previous population-wide studies, and such an association was also 
present in female patients (35, 36, 44). Our analyses revealed a 

nonlinear association between the CDAI and MetS, with an 
inflection point identified at 1.99 through threshold effect modeling. 
Below this critical threshold, each unit increase in CDAI conferred 
a 2.0% absolute risk reduction (p < 0.001), whereas supra-threshold 
increments attenuated this protective to 1.0% per unit (p = 0.001), 
suggesting a biological ceiling effect of dietary antioxidants. In 
previous studies, a dose–response trend similar to that in our study 
was observed (36). Therefore, we hypothesized that a high intake of 
dietary antioxidants and phytochemicals may reduce the risk of 
developing MetS in females because the combined intake of dietary 
antioxidants reduces oxidative stress. Intake of exogenous 
antioxidants can improve patient quality of life by preventing 
oxidative imbalance and maintaining a stable biochemical redox 

TABLE 4 Threshold effect analysis of CDAI on MetS using two-piecewise linear regression.

Inflection point Adjusted OR (95% CI) p-value

≤1.99 0.98 (0.98, 0.99) <0.001

>1.99 0.99 (0.99, 1.00) 0.001

Log-likelihood ratio 0.001

FIGURE 4

Subgroup analysis.
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TABLE 5 Demographic and clinical characteristics of general female adult population (with estrogen) in the United States.

Without MetS MetS p

n 1,003 559

Age (y), mean (SD) 43.49 (16.04) 54.77 (15.52) <0.001

Race and ethnicity (%) 0.017

  Non-Hispanic Black 217 (21.6) 110 (19.7)

  Mexican American 143 (14.3) 103 (18.4)

  Other 254 (25.3) 111 (19.9)

  Non-Hispanic White 389 (38.8) 235 (42.0)

Education level (%) <0.001

  Above high school 662 (66.0) 272 (48.7)

  Other 56 (5.6) 69 (12.3)

  High school 285 (28.4) 218 (39.0)

Marital status (%) <0.001

  Married 492 (49.1) 280 (50.1)

  Other 280 (27.9) 216 (38.6)

  Unmarried 231 (23.0) 63 (11.3)

Drinking (%) <0.001

  No/Unknown 378 (37.7) 273 (48.8)

  Yes 625 (62.3) 286 (51.2)

Smoking (%) 0.001

  No/Unknown 684 (68.2) 333 (59.6)

  Yes 319 (31.8) 226 (40.4)

BMI (kg/m2), mean (SD) 28.29 (7.23) 34.37 (7.57) <0.001

Diabetes (%) <0.001

  No/Unknown 942 (93.9) 406 (72.6)

  Yes/Borderline 61 (6.1) 153 (27.4)

Hypertension (%) <0.001

  No/Unknown 754 (75.2) 262 (46.9)

  Yes 249 (24.8) 297 (53.1)

CDAI, mean (SD) −0.39 (3.87) −1.10 (3.25) <0.001

Estrogen (pg/mL), mean (SD) <0.001

  Q1 273 (27.2) 249 (44.6)

  Q2 323 (32.2) 197 (35.2)

  Q3 407 (40.6) 113 (20.2)

state (46), thereby avoiding the deleterious effects of chronic 
oxidative stress in the human body (47). According to a previous 
study, daily intake of antioxidants can enhance antioxidant defense 
and mitigate oxidative stress by increasing plasma antioxidant 
levels (48).

Oxidative stress exhibits sex-related differences, with estrogen 
conferring protection against its detrimental effects in females (49, 
50). This hormonal regulation plays a pivotal role in modulating the 
protective association between dietary antioxidants (assessed via 
CDAI) and MetS in females. Estrogen regulates redox homeostasis 
through multiple molecular mechanisms, including: upregulating the 
expression of endogenous antioxidant enzymes (51), binding to 
mitochondrial estrogen receptors to enhance antioxidant defense (52), 

and suppressing reactive oxygen species (ROS) generation by 
inhibiting NADPH oxidase activity (52). Epidemiological studies 
indicate that the prevalence of MetS increases with age (53), a 
phenomenon largely driven by age-related exacerbation of oxidative 
stress driven by either excessive ROS production or impaired 
antioxidant systems (54).

In our study, the mean age of females without MetS was 
43.49 ± 16.04 years, significantly lower than that of females with MetS 
(54.77 ± 15.52 years; p  < 0.001). This age disparity aligns with 
epidemiological evidence showing a higher prevalence of MetS in 
postmenopausal populations (53, 55). Mechanistically, menopause 
typically occurs between 45 and 55 years (55), and the subsequent 
decline in estrogen levels exacerbates oxidative stress and systemic 
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inflammation (38, 39). Estrogen deficiency disrupts redox 
homeostasis, leading to progressive accumulation of oxidative damage 
markers (56, 57), which in turn promotes endothelial dysfunction—a 
key contributor of insulin resistance, hypertension, and dyslipidemia 
(45, 57). These pathological alterations collectively drive MetS 
development in aging females.

Meanwhile, our study confirmed this finding, demonstrating a 
significant downward trend in MetS prevalence with increasing 
estrogen levels. Regression analysis further revealed that high levels of 
estrogen exerted a protective effect against MetS (OR[95% 
CI] = 0.30[0.22, 0.38], p  < 0.001). This protective role may 
be attributed to the loss of estrogen is associated with a diminished 
defense against oxidative stress (58). The oxidative stress has a pivotal 
role in some components of MetS, including abdominal obesity, 
hypertension, insulin resistance, and dyslipidemia (44, 59–61).

This was the first large-sample study to investigate the association 
between the CDAI and MetS in females, while also considered the role 
of estrogen. Our findings provide epidemiological evidence 
supporting the implementation of preemptive nutritional strategies 

aimed at optimizing composite dietary antioxidant optimization 
during the estrogen depletion phase (specifically the premenopausal 
transition window) as a prophylactic measure against MetS 
development. A public health priority for the prevention of disease is 
consuming an optimal diet that can reduce or suppress inflammation 
owing to its composition and thereby modulate the risk of various 
diseases (62). As a new paradigm in the prevention and treatment of 
MetS, dietary interventions should include advice on antioxidant-rich 
diets given by nutritional professionals as well as increased promotion 
of these diets and specific antioxidant dietary modifications for 
menopausal females. Increased dietary intake of vitamins A, C, and E 
together with selenium, zinc, and carotenoid-rich foods may improve 
the current status of MetS among females globally.

This study benefits from methodological rigor through utilization 
of the nationally representative NHANES sampling framework and 
comprehensive adjustments for established demographic, 
anthropometric, and metabolic covariates, enhancing internal validity. 
Notwithstanding these strengths, several methodological constraints 
warrant consideration: (1) The observational cross-sectional design 

FIGURE 5

Relationship between estrogen and MetS.

https://doi.org/10.3389/fnut.2025.1529332
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Liu et al. 10.3389/fnut.2025.1529332

Frontiers in Nutrition 10 frontiersin.org

FIGURE 6

Role of estrogen in the association between CDAI and risk of MetS in women. (A) Model 1: Logistic regression analysis of CDAI and estrogen. (B) Model 
2: Model 1 with additional covariates, including age, race and ethnicity, education, marital status, smoking, drinking, diabetes, and hypertension.

precludes temporal sequence determination and causal inference; (2) 
Sex-specific analytic focus limits external validity to male populations; 
(3) The moderate sample size relative to population-level 

epidemiological standards constrains statistical power for detecting 
modest effect sizes; (4) Potential residual confounding persists despite 
multivariable adjustments, including unmeasured lifestyle determinants 
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(e.g., chrononutrition patterns, physical activity gradients) and 
epigenetic regulatory mechanisms influencing redox homeostasis.
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