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Objectives: This study aimed to assess the relationship between body roundness

index (BRI) and obstructive sleep apnea (OSA) risk and the di�erence in the ability

of BRI and body mass index (BMI) to identify people at high risk for OSA in

di�erent conditions.

Methods: This studywas based on theNational Health andNutrition Examination

Survey (NHANES) from 2005 to 2008 and 2015 to 2018. Participants were

categorized intoOSA high-risk andOSA low-risk groups via questionnaires about

sleep. The potential relationship between BRI and high risk for OSA was explored

using several statistical methods, including weighted logistic regression models,

receiver operating characteristic curves (ROC), restricted cubic spline curves

(RCS), interaction tests, and subgroup analyses.

Results: A total of 9,495 participants were included in this study, including 3,155

in the high-risk group and 6,340 in the low-risk group. In the crude model, BRI

was positively associated with a high risk for OSA (OR = 1.23; 95% CI: 1.20–

1.27). After adjusting for all covariates, higher BRI quartiles (Q4) were positively

associated with high risk for OSA (OR = 3.22; 95% CI: 2.57–4.04). The RCS

demonstrated that BRI was non-linearly associated with OSA risk. ROC analyses

showed that BRI was better at identifying those at high risk for OSA in the normal-

weight population than BMI. Subgroup analyses revealed stronger correlations in

non-hypertensive and non-smoking populations.

Conclusions: There is a non-linear positive correlation between BRI and OSA

risk, and early monitoring and managing BRI can help to identify people at high

risk for OSA as early as possible and reduce the risk.

KEYWORDS

obstructive sleep apnea, body roundness index, body mass index, central obesity,

visceral fat accumulation

1 Introduction

Obstructive sleep apnea (OSA) is a common clinical sleep disorder caused by recurrent

narrowing or collapse of the airway during sleep and characterized by snoring, apnea,

and excessive daytime sleepiness (1, 2). The prevalence of moderate to severe OSA is

estimated to be approximately 13% in men and 6% in women among adults aged 30–

70 years in the United States (3). OSA can lead to a variety of complications, including

hypertension, metabolic syndrome, stroke, and diabetes. In addition, the 5-year mortality

rate for untreated OSA can be as high as 11%−13% (4).
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It is now widely recognized that obesity is strongly linked to

OSA (5). Obesity not only significantly raises the incidence and

severity of OSA (6) but also increases the risk of cardiovascular

diseases (CVD) among patients suffering from OSA (7). The

official clinical practice guidelines of the American Thoracic Society

indicate that weight loss intervention is an effective measure to

improve the severity of OSA and cardiometabolic comorbidities

(8). Body mass index (BMI) has long been the primary indicator for

assessing obesity due to its convenient measurement (9). However,

it has been shown that OSA is associated with abdominal fat

accumulation rather than subcutaneous fat area (10). Therefore,

the accuracy of BMI has been questioned because of its inability to

differentiate between muscle and fat nor to assess fat distribution

(11). Although waist circumference can be used as a reference

for quantifying central obesity, it is unreliable because it cannot

be adjusted for differences due to height. In order to more

accurately assess fat distribution, Thomas et al. developed the Body

Rounds Index (BRI), which assesses the roundness of the body

through an elliptical model that reflects the shape of the human

body (12). The BRI incorporates height and waist circumference

variables into its calculation, which can help to more accurately

assess the degree of central obesity or the accumulation of

visceral adipose tissue. Numerous studies have shown a significant

correlation between BRI levels and the incidence of cardiovascular

disease, depression, metabolic syndrome, and type 2 diabetes (13–

16).

Recent studies have shown that BRI is significantly associated

with CVD risk in patients with OSA (17). Although two

previous studies have evaluated the relationship between BRI

and OSA (18, 19), the previous studies primarily treated BRI

as one of multiple metrics and did not compare the specific

differences between BRI and BMI in screening for those at

high risk for OSA. Therefore, by analyzing data from the

National Health and Nutrition Examination Survey (NHANES)

database, this study aims to explore the potential relationship

between BRI and OSA risk, investigate the differences in the

ability of BRI and BMI to identify high-risk OSA populations

under different circumstances, and observe the performance

differences of BRI in different population subgroups. Early

identification of people at high risk for OSA can help develop

appropriate treatment plans to improve patient’s quality of life and

reduce complications.

2 Methods

2.1 Study population and design

The NHANES survey is a national cross-sectional survey of

physical health and nutritional status conducted by the National

Center for Health Statistics (NCHS). Data are collected biennially

through a multi-stage, stratified sampling method, including

demographic data, dietary information, physical examination data,

laboratory test results, and questionnaires. The NHANES study was

approved by the Research Ethics Review Board of the NCHS, and

all participants signed a written informed consent form. Detailed

information about NHANES can be obtained from the official

website at http://www.cdc.gov/nchs/nhanes.

FIGURE 1

The flow chart of population selection.

The purpose of this study was to explore the relationship

between BRI and the risk of OSA in adults aged 20 years or older in

the United States. First, we determined the study period as 2005–

2008 and 2015–2018 based on the period of questionnaires about

sleep (20). During these periods, a total of 39,722 individuals were

enrolled. Of these, 17,671 participants without completed sleep

questionnaires were excluded. Additionally, individuals missing the

BRI (2,106), younger than 20 years of age (2,533), and without a

complete covariate (7,917) were excluded. As shown in Figure 1,

there were 9,495 individuals included in this study.

2.2 High-risk for obstructive sleep apnea
syndrome and its symptoms

Referring to previous studies, participants who answered “yes”

to any of the following three questions were categorized as high-

risk for OSA (21, 22). Conversely, participants who did not meet

the criteria were considered low-risk for OSA.

(1) “In the past 12 months, did you snore 3 or more nights a

week while you were sleeping?”

(2) “In the past 12 months, did you snort, gasp, or stop

breathing 3 or more nights a week while you were asleep?”

(3) “In the past month, did you feel excessively or overly sleepy

16-30 times a month during the day?”
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2.3 Body roundness index

The BRI is a new index for assessing central obesity and

visceral fat accumulation, calculated from height (cm) and waist

circumference (cm) (12). To ensure accuracy, the standing height

and waist circumference of the participants were measured by

professional health technicians at a mobile examination center.

In this study, the BRI was divided into 4 groups by quartiles to

investigate its correlation with the risk of OSA. The BRI calculation

formula is as follows:

BRI = 364.2− 365.5×

√

1−

(

WC
2π

)2

(0.5Height)
2

2.4 Other covariates

Appropriate covariates were selected based on previous

researches, including age, sex, race and ethnicity, marital status,

poverty-income ratio (PIR), educational level, smoking status,

drinking status, CVD, hypertension, diabetes mellitus (DM),

triglycerides (TG), total cholesterol (TC), and high-density

lipoprotein (HDL). Questionnaire information was collected by

professional staff using standardized questionnaires during home

interviews. Smoking status was classified according to whether

the participant had ever smoked 100 or more cigarettes. Drinking

status was defined as consuming 2 (female)/3 (male) drinks or

more per day. Criteria for the diagnosis of diabetes include (1) self-

reported diagnosis by a physician, (2) HbA1c 6.5 % or fasting blood

glucose≥7.0mmol/L, (3) random blood glucose≥11.1mmol/L, (4)

2-h plasma glucose after oral glucose tolerance test ≥11.1 mmol/L,

and (5) use of diabetes medications or insulin. Diagnostic criteria

for hypertension include (1) self-reported diagnosis by a physician,

(2) taking antihypertensive drugs, and (3) having a systolic blood

pressure >140 mmHg and a diastolic blood pressure >90 mmHg.

Cardiovascular diseases include coronary artery disease, heart

failure, heart attack, stroke, and angina. BMI was calculated based

on weight (kg) and height (m). BMI groups were defined as normal

(BMI < 25 kg/m2), overweight (BMI 25 to < 30 kg/m2) and

obese (BMI ≥ 30 kg/m2). TG, TC, and HDL levels were measured

from blood samples. Detailed data collection procedures and

measurements for all variables are available through the NHANES

website (http://www.cdc.gov/nchs/nhanes).

2.5 Statistical analyses

Because NHANES is a complex multi-stage probability

sampling study, weights were recalculated after combining the

2005–2008 and 2015–2018 datasets (WTMEC2YR/4). The BRI

was categorized into quartiles (Q1 to Q4) from low to high in

descriptive analyses. Categorical variables are shown as counts

(N) and weighted percentages (%), while continuous variables

are reported as means and standard deviations (SD). Weighted

t-tests were used for continuous variables, and weighted chi-

square tests were used for categorical variables to assess differences

between low-risk and high-risk groups. To assess the diagnostic

performance of the BRI for OSA risk and related symptoms,

receiver operating characteristic curves (ROC) were plotted, and

the area under the curves (AUC) was calculated. Multivariate

logistic regression models were utilized to examine the odds ratios

(OR) and 95% confidence intervals (95% CI) for the correlation

between BRI and OSA risk. Variables with P < 0.1 in the univariate

regression analysis were stepwise included in the adjusted model 1

and 2 (Supplementary Table 1). The crude model was not adjusted

for any variables; model 1 was adjusted only for age, sex, marital

status, PIR, and educational level; model 2 was adjusted for age,

sex, marital status, PIR, educational level, DM, Hypertension CVD,

TG, TC, HDL, and smoking status; and model 3 adjusted for age,

sex, race, marital status, PIR, educational level, DM, Hypertension,

CVD, TG, TC, HDL, smoking status, and drinking status. The

generalized variance inflation factor (GVIF) in the regression

models was <2, indicating no high degree of multicollinearity

among the covariates (Supplementary Table 2). Trends analyses

were used to explore trends between BRI groups. Restricted cubic

spline curves (RCS) were used to explore the non-linear association

of BRI with OSA. Subgroup analyses and interaction tests were

performed in Model 3 stratified by age, sex, race, marital status,

PIR, education level, DM, hypertension, CVD, smoking status,

and drinking status to investigate possible differences between

populations. The study was statistically analyzed using R software

(version 4.4.1), and P < 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics

A total of 9,495 participants were included in this analysis,

representing 119.5 million United States residents. Based on

the risk of OSA, all participants were categorized into a low-

risk group (N = 6,340) and a high-risk group (N = 3,155),

and the weighted baseline characteristics of the participants are

shown in Table 1. The mean age of the participants was 45.18

(0.39) years, and 51.95% were male. Compared to the low-risk

group, participants in the high-risk group were more likely to be

male, high school or general educational development (GED)/less

than high school, married/living with a partner, smoking, older,

and had higher TG, BMI, and BRI but lower HDL (P <

0.05). Similarly, these participants had a higher likelihood of

comorbid DM, hypertension, and CVD (P < 0.05). As shown in

Supplementary Table 3, the higher quartiles of the BRI had older

participants, had a higher proportion of males, high school or

GED/less than high school, married/living with a partner; higher

TG, TC, and BMI; a higher prevalence of smoking, hypertension,

DM, CVD; and a higher risk of OSA, snore, stop breathing

and daytime sleepiness, but lower rates of TC and drinking (P

< 0.05).

3.2 ROC curve analysis

Figure 2A shows the ROC curves for high-risk for OSA and

associated symptoms. The AUC values for the BRI were as follows:

0.64 for OSA, 0.65 for snoring, 0.63 for apnea, and 0.59 for daytime

sleepiness. There are no statistically significant comparisons

between groups. Similarly, the diagnostic power of the BRI and BMI
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TABLE 1 Weighted baseline characteristics of participants.

Characteristics Total (N = 9,495) Low-risk (N = 6,340) High-risk (N =

3,155)
P-value

Continuous variables, mean (SD)

Age (years) 45.18 (0.39) 44.39 (0.41) 46.82 (0.48) <0.0001

PIR 3.30 (0.04) 3.33 (0.04) 3.23 (0.06) 0.07

TG (mmol/L) 1.71 (0.03) 1.61 (0.03) 1.93 (0.05) <0.0001

TC (mmol/L) 5.03 (0.02) 5.01 (0.02) 5.07 (0.03) 0.1

HDL (mmol/L) 1.41 (0.01) 1.46 (0.01) 1.32 (0.01) <0.0001

BMI (kg/m2) 28.90 (0.13) 27.83 (0.16) 31.12 (0.18) <0.0001

BRI 5.23 (0.05) 4.87 (0.05) 5.97 (0.06) <0.0001

Categorical variables, n (%)

BRI quartile <0.0001

Q1 2,373 (27.68) 1,927 (33.56) 446 (15.50)

Q2 2,372 (25.22) 1,660 (26.23) 712 (23.13)

Q3 2,375 (23.64) 1,521 (21.86) 854 (27.31)

Q4 2,375 (23.46) 1,232 (18.35) 1,143 (34.05)

Sex <0.0001

Female 4,319 (48.05) 3,016 (51.16) 1,303 (41.59)

Male 5,176 (51.95) 3,324 (48.84) 1,852 (58.41)

Educational level 0.01

Above high school 5,560 (65.91) 3,741 (67.25) 1,819 (63.14)

High school or GED 2,173 (22.99) 1,414 (22.08) 759 (24.87)

Less than high school 1,762 (11.10) 1,185 (10.67) 577 (11.99)

Race 0.73

Non-Hispanic Black 1,856 (9.08) 1,218 (8.83) 638 (9.60)

Mexican American 1,519 (7.80) 1,019 (7.79) 500 (7.82)

Other Hispanic 845 (4.78) 562 (4.78) 283 (4.78)

Other Race 916 (6.45) 616 (6.55) 300 (6.26)

Non-Hispanic White 4,359 (71.89) 2,925 (72.05) 1,434 (71.54)

Marital status < 0.001

Living alone 3,389 (32.23) 2,351 (33.88) 1,038 (28.80)

Married/Living with partner 6,106 (67.77) 3,989 (66.12) 2,117 (71.20)

Drinking status 0.42

No 4,946 (51.48) 3,282 (51.06) 1,664 (52.35)

Yes 4,549 (48.52) 3,058 (48.94) 1,491 (47.65)

Smoking status <0.0001

No 4,825 (52.23) 3,360 (54.39) 1,465 (47.77)

Yes 4,670 (47.77) 2,980 (45.61) 1,690 (52.23)

DM <0.0001

No 8,079 (88.78) 5,541 (90.70) 2,538 (84.79)

Yes 1,416 (11.22) 799 (9.30) 617 (15.21)

Hypertension <0.0001

No 5,883 (65.77) 4,194 (70.37) 1,689 (56.23)

(Continued)
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TABLE 1 (Continued)

Characteristics Total (N = 9,495) Low-risk (N = 6,340) High-risk (N =

3,155)
P-value

Yes 3,612 (34.23) 2,146 (29.63) 1,466 (43.77)

CVD <0.0001

No 8,683 (93.81) 5,876 (94.80) 2,807 (91.74)

Yes 812 (6.19) 464 (5.20) 348 (8.26)

Snore <0.0001

No 4,660 (51.49) 4,592 (75.31) 68 (2.09)

Yes 4,835 (48.51) 1,748 (24.69) 3,087 (97.91)

Stop breathing <0.0001

No 8,253 (87.73) 6,292 (99.41) 1,961 (63.51)

Yes 1,242 (12.27) 48 (0.59) 1,194 (36.49)

Daytime sleepiness <0.0001

No 8,867 (93.70) 6,114 (96.35) 2,753 (88.20)

Yes 628 (6.30) 226 (3.65) 402 (11.80)

BRI, Body Roundness Index; BMI, BodyMass Index; PIR, Poverty Income Ratio; GED, general educational development; DM, diabetes mellitus; CVD, Cardiovascular Disease; TG, Triglyceride;

TC, Total Cholesterol; HDL, High-Density Lipoprotein Cholesterol.

did not differ significantly in the overall population (Figure 2B). It

is noteworthy that the diagnostic power of the BRI was superior

to that of BMI in the normal-weight population (P < 0.05),

although it was not statistically significant in the overweight and

obese population (Figures 2C–E). Supplementary Table 4 shows the

specific results of the ROC analyses.

3.3 Associations of BRI with high-risk for
OSA

The results of the regression models showed a significant

positive correlation between both BRI and BMI and OSA risk

(Table 2). However, the correlation between BRI and OSA risk was

more potent than BMI. In the crude model, each unit increase in

BRI was associated with a 23% increase in the risk of OSA (OR

= 1.23; 95% CI: 1.20–1.27; P < 0.0001), and each unit increase

in BMI was associated with an 8% increase in the risk of OSA

(OR = 1.08; 95% CI: 1.06–1.09; P < 0.0001). Compared with

the lowest quartile (Q1) of BRI, participants in Q4 had a 4.02-

fold increased probability of a high risk of OSA (OR = 4.02;

95% CI: 3.30–4.90; P < 0.0001). In the fully adjusted model

(Model 3), each one-unit increase in BRI was associated with a

19% increase in the risk of OSA (OR = 1.19; 95% CI: 1.16–1.23;

P < 0.0001), and each one-unit increase in BMI was associated

with a corresponding 6% increase in the risk of OSA (OR =

1.06; 95% CI: 1.05–1.08; P < 0.0001). In addition, analysis of

quartiles of BRI showed a 3.22-fold increase in the probability of

having a high risk of OSA at Q4 compared with Q1 (OR = 3.22;

95% CI: 2.57–4.04; P < 0.0001). The RCS results demonstrated

a non-linear relationship between BRI and OSA risk (Figure 3).

The RCS curves for the other symptoms were similar to Figure 3

(Supplementary Figure 1).

3.4 Subgroup analyses

In the weighted subgroup analysis based on model 3, a

significant association between higher BRI and high risk of

OSA was observed in all subgroups (Figure 4). However, there

was a significant interaction between hypertension and smoking

status and association (P for interaction < 0.001). Specifically,

the association between BRI and the risk of OSA was more

evident in the subgroups of participants with no hypertension

or non-smoking status. No significant interactions were found in

other subgroups.

4 Discussion

In this large-scale study involving 9,495 representative

American adults aged 20 years and older, we found a significant

positive association between BRI and the risk of OSA. After

adjustment for covariates, the positive association was still

observed. The subgroup analyses further confirmed the stability of

this correlation. Furthermore, RCS analyses showed a non-linear

relationship between BRI levels and OSA risk. The results imply

that early monitoring and control of BRI is beneficial in reducing

the risk of OSA.

Obesity is significantly associated with the incidence of OSA

and influences the severity of OSA (23). It has been shown that in

obese patients, it is abdominal visceral fat deposition, rather than

subcutaneous fat area, that is associated with OSA (10, 24, 25).

Therefore, BMI is limited in its ability to identify people at high risk

of OSA because it does not accurately reflect the true distribution

of body fat in obese patients. Currently, there are multiple indexes

for determining visceral fat accumulation, but their focuses are

not the same. The weight-adjusted waist circumference index
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FIGURE 2

ROC curves for BRI and BMI. (A) BRI for high-risk OSA and related symptoms. (B) BRI and BMI for high-risk OSA in the overall population. (C–E) BRI

and BMI for high-risk OSA in normal, overweight, and obese populations.

TABLE 2 Multivariable logistic regression models for the weighted relationship between BRI and OSA risk.

OSA OR (95%CI), P-value

Crude model Model 1 Model 2 Model 3

BRI 1.23 (1.20,1.27), <0.0001 1.24 (1.20,1.28), <0.0001 1.19 (1.16,1.23), <0.0001 1.19 (1.16,1.23), <0.0001

BMI 1.08 (1.06,1.09), <0.0001 1.08 (1.06,1.09), <0.0001 1.06 (1.05,1.08), <0.0001 1.06 (1.05,1.08), <0.0001

BRI quartile

Q1 Ref Ref Ref Ref

Q2 1.91 (1.60,2.28), <0.0001 1.80 (1.50,2.15), <0.0001 1.66 (1.38,2.00), <0.0001 1.67 (1.39,2.02), <0.0001

Q3 2.71 (2.18,3.35), <0.0001 2.53 (2.02,3.16), <0.0001 2.19 (1.74,2.75), <0.0001 2.21 (1.75,2.80), <0.0001

Q4 4.02 (3.30,4.90), <0.0001 4.02 (3.26,4.95), <0.0001 3.20 (2.57,3.99), <0.0001 3.22 (2.57,4.04), <0.0001

P for trend <0.0001 <0.0001 <0.0001 <0.0001

Crude model: unadjusted.

Model 1: adjusted for age, sex, marital status, PIR and educational level.

Model 2: adjusted for age, sex, marital status, PIR, educational level, DM, Hypertension, CVD, TG, TC, HDL and smoking status.

Model 3: adjusted for age, sex, race, marital status, PIR, educational level, DM, Hypertension, CVD, TG, TC, HDL, smoking status and drinking status.

OSA, Obstructive Sleep Apnea; BRI, Body Roundness Index; BMI, Body Mass Index.

(WWI) combines weight and waist circumference, focusing on

the relationship between abdominal fat accumulation and body

weight. Zhang et al.’s cross-sectional study based on 2013–

2020 NHANES data found that elevated levels of WWI were

associated with an increased risk of OSA (21). However, WWI

does not reflect the height factor; thus, BRI is more suitable for

comparing the body fat status of individuals of different heights.

Lipid accumulation product (LAP) is calculated from triglycerides

and waist circumference, and visceral adiposity index (VAI) is

calculated from waist circumference, BMI, triglycerides, and high-

density lipoproteins. LAP and VAI primarily assess obesity by

focusing on metabolic health and fat accumulation. Zhou et al.

found that the levels of LAP and VAI were significantly correlated

with the risk of OSA and can be used as a predictor of OSA. LAP
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FIGURE 3

RCS fitting for the association between BRI and OSA risk.

and VAI levels are also associated with an increased risk of OSA

(26). However, since both LAP and VAI require the detection of

TG levels during the calculation process, they are not as simple

and convenient as BRI in screening high-risk OSA populations.

The BRI, as a new obesity assessment index, has the advantage of

visualizing body shape and fat distribution.

In this study, we also performed a detailed comparison between

BRI and BMI, and the risk of OSA was more sensitive to changes in

BRI levels than in BMI levels. This result further confirms the effect

of central obesity on OSA and shows the potential value of BRI in

identifying OSA risk, indicating that BRI can be used as part of a

predictive model for assessing OSA risk. Currently, numerous OSA

risk screening questionnaires include BMI, such as the STOP-Bang

questionnaire and the Berlin Questionnaire (27, 28). Based on the

results of this study, subsequent attempts could be made to use the

BRI as a supplement to, or a substitute for, BMI. The ROC analyses

showed that, although there was no significant difference between

the diagnostic ability of the BRI and BMI in the overall population

for the high-risk group for OSA, the BRI performed better in

the normal-weight population. Compared with BMI, the stronger

recognition ability of BRI also confirms the finding that visceral

fat accumulation is associated with OSA risk (25). These findings

not only emphasize the importance of weight loss interventions in

controlling the risk of OSA but also provide strong support for the

use of BRI in identifying people at high risk of OSA.

OSA is characterized by recurrent upper airway obstruction

during sleep, mainly due to the disruption of the balance between

the negative pressure in the upper airway and the traction

force of the upper airway muscles during inspiratory procedures.

The mechanism between central obesity, indicated by elevated

BRI levels, and OSA is complex, and there are several main

explanations (Figure 5). First, central obesity can lead to the

accumulation of adipose tissue around the pharyngeal cavity,

directly contributing to the narrowing of the upper airway (29). The

narrowed upper airway generates larger negative pressure during

inspiratory breathing, and the pharyngeal muscle traction on the

upper airway is weakened during sleep (30). So, the possibility of

upper airway obstruction increases. Second, central obesity leads

to a decrease in functional residual capacity by decreasing thoracic

compliance on the one hand and by increasing intra-abdominal

pressure and pushing the diaphragm cephalad on the other hand.

Reduced functional residual capacity decreases the longitudinal

traction of the trachea on the pharynx, resulting in amore collapsed

upper airway (31, 32). Finally, obesity induces an inflammatory

state. Excessive accumulation of visceral adipose tissue produces

several inflammatory cytokines such as interleukin-6 (IL-6) and

tumor necrosis factor-α (TNF-α) (33). These inflammatory factors

increase the likelihood of airway collapse by inhibiting neural

control of the upper airway muscles, which cannot provide

sufficient dilatory force to maintain airway patency (34).

Subgroup analyses showed a significant interaction effect

of hypertension and smoking status on the association (P for

interaction < 0.001). The association between BRI and OSA risk

was more significant in the non-hypertensive population (HR =

1.21 vs. 1.12 in the hypertensive group). It is well known that

hypertension is strongly associated with OSA, and epidemiologic

surveys have shown that the prevalence of OSA is as high

as 30%−40% in hypertensive groups (35). In hypertension and

OSA, sympathetic nervous system excitation, oxidative stress, and

vascular endothelial dysfunction play important roles (36). The

close association between the two may attenuate the independent

role of BRI. Secondly, the hypertension-related fluid can narrow the

pharyngeal airway by displacing from the legs to the neck during

sleep (37). This transfer may cover the direct association of BRI

with OSA. In addition, the diagnostic criteria for hypertension in

this study included having taken antihypertensive drugs. Several

previous studies have explored the effects of antihypertensive

drugs on OSA, confirming that diuretics may improve apnea

frequency by decreasing fluid levels in patients with OSA and

that the angiotensin converting enzyme inhibitor (ACEI) may also

decrease apnea frequency and apnea index (38–40). It suggests that

antihypertensive drugs may contribute to weakening the effects of

BRI. In the smoking status strata, the correlation between BRI and

the risk of OSA was similarly observed to be more significant in

non-smokers (Hazard Ratio= 1.25 vs. 1.16 in the smoking group),

indicating that OSA may be related to smoking. A recent study

found that smoking in adults was significantly associated with a

higher prevalence of OSA, which is similar to the results of this

survey (41). This result may be due to the airway inflammation and

damage caused by cigarettes, leading to impaired neuromuscular

regulation of the upper airway, increasing its collapsibility and thus

partially hiding the impact of changes in the BRI (42).

In this study, we used large-scale data to explore the detailed

relationship between BRI and OSA risk. On the one hand,

thorough adjustment by confounders improved the credibility of

the findings; on the other hand, a comprehensive subgroup analysis

was conducted to identify the sensitivity of different populations

to changes in BRI levels. Compared to BMI, the advantages of

BRI in identifying high-risk OSA populations were also compared

from multiple perspectives. However, there are some limitations

of this study. First, although the questionnaire information can
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FIGURE 4

Subgroup analyses. After being adjusted for age, sex, race, marital status, PIR, educational level, DM, Hypertension, CVD, TG, TC, HDL, smoking status

and drinking status.

screen people at high risk of OSA without relying on specialized

instruments, there may be data bias caused by memories. Second,

due to data limitations, the effect of severe respiratory diseases

on OSA could not be considered. Finally, this study was a cross-

sectional study, which could not effectively determine causality

and a well-designed prospective cohort study is needed for further

exploration in the future.

5 Conclusion

In summary, this survey confirms that there is a non-linear

correlation between BRI and OSA risk, that OSA risk is more

sensitive to changes in BRI levels compared to BMI, and that BRI

is more effective in identifying those at high risk for OSA within

normal-weight population. This suggests that clinical monitoring
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FIGURE 5

The mechanism between central obesity and OSA.

of BRI can help improve the ability to identify high-risk population

for OSA at an early stage.
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