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Over the years, the global disease burden of neurological disorders (NDs) and 
mental disorders (MDs) has significantly increased, making them one of the most 
critical concerns and challenges to human health. In pursuit of novel therapies 
against MD and ND, there has been a growing focus on nutrition and health. 
Dietary sulfur, primarily derived from various natural sources, plays a crucial role in 
numerous physiological processes, including brain function. This review offers an 
overview of the chemical composition of several natural sources of the sulfur-rich 
substances such as isothiocyanates, sulforaphane, glutathione, taurine, sulfated 
polysaccharides, allyl sulfides, and sulfur-containing amino acids, all of which 
have neuroprotective properties. A multitude of studies have documented that 
consuming foods that are high in sulfur enhances brain function by improving 
cognitive parameters and reduces the severity of neuropathology by exhibiting 
antioxidant and anti-inflammatory properties at the molecular level. In addition, 
the growing role of natural sulfur compounds in repairing endothelial dysfunction, 
compromising blood–brain barrier and improving cerebral blood flow, are documented 
here. Furthermore, this review covers the encouraging results of supplementing 
sulfur-rich diets in many animal models and clinical investigations, along with 
their molecular targets in MD, such as schizophrenia, depression, anxiety, bipolar 
disorder, and autism spectrum disorder, and ND, such as Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Multiple 
Sclerosis (MS). The prospects of natural sulfur compounds show great promise as 
they have potential applications in nutraceuticals, medicines, and functional foods 
to enhance brain function and prevent diseases. However, additional research is 
required to clarify the mechanisms by which it works, enhance its bioavailability, 
and evaluate its long-term safety for broad use.
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1 Introduction

Sulfur is an indispensable element necessary for our body’s 
metabolism and preventing diseases. Sulfur compounds can exist in 
various forms due to the wide range of oxidation states of sulfur, 
which can vary from −2 to +6 (1). Sulfides, thiols, disulfides, 
thioesters, thioketones, thioureas (−2), sulfoxides and sulfonates (+4), 
and sulfones and sulfonamides (+6) exhibit various oxidation states, 
highlighting the versatile role of sulfur in biochemistry (2). Many 
biological applications extensively use sulfur-containing compounds; 
for example, organosulfur compounds form some vitamins (biotin 
and thiamine) and amino acids (cysteine, cystine, and methionine) 
(3). Numerous sulfur-containing bioactive substances, such as taurine, 
hydrogen sulfide, and glutathione (GSH), contribute significantly to 
the health of living things by preserving cellular redox equilibrium. 
The sulfur-containing amino acids, cysteine and methionine, essential 
for the synthesis of proteins, hormones, coenzymes, and enzymes, 
fulfill our nutritional requirements for sulfur. In nature, there are 
many different kinds of sulfur: free sulfur, inorganic sulfurides and 
sulfates, sulfur oxides, sulfurous gases, and organosulfur compounds 
found in plant tissues and living things (4). One of the central 
metabolic pathways linked to sulfur, GSH, oxidative stress, and 
hydrogen sulfide production is the transsulfuration pathway (TSP) 
(5). It plays a critical role in regulating sulfur equilibrium and ensuring 
optimal cellular processes, including the formation of GSH (6). 
Perturbation of these pathways is critical to many neurological 
disorders (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), 
and Cerebral ischemia, indicating their involvement in the 
pathogenesis and advancement of these conditions (7). Moreover, 
there is a growing interest in sulfur metabolism and mental disorders 
(MDs) such as schizophrenia, depression, anxiety, bipolar disorder, 
and autism spectrum disorder. It has drawn the interest of the 
scientific community in supplementation with transsulfuration 
intermediates to alleviate neurological conditions. Several studies have 
shown that natural sulfur interventions can improve the integrity of 
cell membranes, make neurons less vulnerable to damage, lower 
oxidative stress, reduce neuroinflammation caused by different 
pro-inflammatory cytokines, and protect cells against excitotoxicity 
caused by abnormal neurotransmitter release from neurons and 
astrocytes (8). In this context, understanding the mechanistic role of 
supplementation of natural sulfur compounds in various ND is of 
utmost interest.

Despite this, sulfur-rich compounds, such as Glutathione (GSH), 
sulforaphane (SFN), taurine, sulfated polysaccharides, allyl sulfides, and 
cysteine and methionine in the form of sulfur-containing secondary 
metabolites, provide an important yet often overlooked source of sulfur. 
Natural sulfur compounds are widely present in multiple plant- and 
animal-based foods. Some of the main plant sources of natural sulfur 
compounds include cauliflower, Brussels sprouts, and cabbage, while 
animal sources include meat, fish, chicken, and eggs (8). Because of their 
multiple pharmacological benefits, natural sulfur compounds are often 

taken as a supplement. However, their role in ND has recently drawn 
attention. Numerous health benefits are associated with high 
consumption of sulfur-rich compounds, including glycemic, 
neuroprotective, anti-inflammatory, and antioxidant effects (9). There 
are various natural sources of sulfur-rich compounds that have shown 
encouraging outcomes in various NDs in different animal model 
systems and clinical studies. This review sheds light on the importance 
of natural sulfur-containing compounds, their sources, and their impact 
on mental disorders and neurological illnesses. This article presents a 
comprehensive analysis of the physiological functions of sulfur and its 
compounds in the brain. Understanding the molecular mechanisms of 
sulfur dysregulation and its role in the development of neurodegenerative 
and neuropsychiatric illnesses could accelerate future research.

2 Search strategy

We performed an extensive literature review utilizing sources such 
as PubMed, Google Scholar, Scopus, and Web of Science to collect 
relevant articles on natural sulfur compounds and their significance 
in MD and ND. We searched keywords terminology such as: “Sulfur 
compounds” OR “Sulfur compounds and neurological disorders” OR 
“neuroprotection” OR “neurodegenerative diseases” OR “Alzheimer’s” 
OR “Parkinson’s” OR “glutathione” OR “taurine” OR “sulforaphane” 
OR “dietary sulfur” OR “mental disorder” AND “antioxidant 
properties.” We  ensured that the search included peer-reviewed 
articles published within the last 20 years; however, significant earlier 
studies were considered if they had historical relevance. Both in vivo 
(animal models) and in vitro investigations, together with clinical 
trials, were taken into account. We emphasized research related to the 
neuroprotective, antioxidant, and anti-inflammatory properties of 
these substances. We  excluded works of literature that do not 
specifically pertain to the molecular mechanisms or therapeutic 
advantages of sulfur compounds in neurological situations or that 
concentrate on unrelated disorder mechanisms.

3 Dietary requirements of sulfur

Sulfur is used by our body for a number of critical processes; for 
instance, it works as an antioxidant and anti-inflammatory agent, 
aids in the neutralization of free radicals, and assists in preventing 
injury to the cells due to oxidative stress and various related issues 
(3). So, it is essential that the diet must contain enough items that are 
high in sulfur. At this time, there is no recommended daily 
consumption of sulfur; the only exception is for amino acids that 
contain sulfur. Humans require 13–15 mg/kg of sulfur-containing 
amino acids per day (and up to 89% of this can be supplied as cystine, 
the oxidized disulfide form of cysteine) (10). The determination of 
dietary sulfur requirements mostly relies on the assessment of the 
sulfur-containing amino acids, namely cysteine and methionine. 
Mammals can only get methionine through their diets (nuts, soy, and 
other beans); however, via the TSP, methionine can be converted into 
cysteine. The TSP is a crucial component of cellular sulfur 
metabolism and redox control (11). In mammals, the mechanism 
facilitates the transfer of sulfur from homocysteine to cysteine 
through cystathionine (Figure  1). This pathway is the exclusive 
means of biosynthesizing cysteine. Cystathionine synthase (CBS) 

Abbreviations: BBB, Blood–Brain Barrier; DADS, Diallyl disulfide; DATS, Diallyl 

trisulfide; MD, Mental disorder; NAC, N-acetylcysteine; ND, Neurological disorder; 

NF-κB, Nuclear factor kappa B; Nrf2, Nuclear factor erythroid 2 related factor 2; 

PD, Parkinson’s disease; SP, Sulfated polysaccharides; SFN, Sulforaphane.
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converts homocysteine from dietary methionine to cystathionine, 
and cystathionine lyase (CSE) further processes this to produce 
cysteine (12). Besides sulfur amino acids, there are natural sulfur-
containing compounds, e.g., GSH, SFN, taurine, sulfated 
polysaccharides, and allyl sulfides. The range and abundance of these 
sulfur-containing compounds are vast, and their impact on the 
human brain is significant. Some meals include the thiol-rich 
substance GSH, which promotes antioxidant defenses, principally 
through raising GSH levels and enzymes associated with glutathione’s 
action. Cysteine, glycine, and glutamic acid combine to form the 
tripeptide GSH (13). It is present in significant amounts in various 
body tissues. It has a crucial function in decreasing oxidative stress, 
preserving redox equilibrium, and improving metabolic 
detoxification. Researchers have linked age-related illnesses, such as 
neurodegeneration and mitochondrial dysfunction, to inadequate or 
insufficient amounts of GSH (14). The daily consumption of GSH 
varied between 13.0 and 109.9 mg, with an average of 34.8 mg (15). 
More than 50% of the typical dietary intake of GSH comes from 
fruits and vegetables, while less than 25% comes from meats (16). 
Cysteine, synthesized from homocysteine through the 
transsulfuration process, controls the production of GSH, the most 
prevalent antioxidant in mammals. Cruciferous vegetables naturally 
contain SFN, an isothiocyanate, as glucoraphanin. For a long time, 
people have recognized the medicinal characteristics of vegetables 
that contain high levels of sulfur-containing glucosinolates, which 
give rise to isothiocyanates. SFN, at a daily dosage ranging from 10 
to 50 mg/kg, effectively avoided memory deterioration commonly 
associated with NDs (17). Nutritional and functional dietary 
isothiocyanates disrupt the molecular pathways involved in MD and 

ND development. Studies have demonstrated that the treatment of 
SFN may boost endogenous antioxidant enzymes and inflammatory 
indicators (18). An investigation was conducted to assess the intake 
of broccoli and the availability of SFN from various sources (19). 
Food provides a plentiful supply of taurine, a non-protein amino acid 
that the cysteine oxidation pathway also produces. Taurine, an 
endogenous amino acid that contains sulfur, has garnered much 
interest in recent times because of its potential advantages in 
promoting brain well-being (20). Dietary intake is necessary to 
obtain taurine, a crucial element for brain growth. Taurine levels in 
the human brain are typically reported to be approximately 1–2 mM, 
while in the mouse brain, they are approximately 5–10 times greater 
(21). It is present in various foods and is commonly utilized in energy 
drinks and supplements. Taurine is a significant byproduct of 
methionine metabolism in mammals. Cysteine, which can be derived 
from the sulfur of methionine through the TSP, seems to undergo 
conversion into taurine via the cysteine sulfinate pathway and serves 
as an osmolyte, a neuromodulator, an immunomodulator, and an 
antioxidant (22). Other natural compounds also modulate sulfur 
metabolism such as pterostilbene. Pan et al. performed transcriptomic 
profiling which demonstrated that Pterostilbene influenced the 
expression of genes related to sulfur metabolism by downregulating 
six genes (ECM17, MET3, MET14, MET16, MET10, and MET6) that 
encode enzyme regulating methionine biosynthesis (23). Recent 
studies have linked taurine to the stabilization of mitochondrial 
activity and intracellular pH buffering (24). Multiple pieces of 
evidence indicate the necessity of sulfur in our diet for numerous 
physiological functions that are crucial to human health. Therefore, 
it is imperative to evaluate guidelines for daily sulfur consumption.

FIGURE 1

Schematic diagram showing transsulfuration pathway. SAM: S-Adenosyl- methionine, SAH: S-Adenosyl-homocysteine, CBS: Cystathionine β-Synthase, 
CSE/CγL: Cystathionine γ-Lyase, CDO: Cysteine Dioxygenase, CSD: cysteine sulfinic acid decarboxylase, GCL: γ-glutamylcysteine synthetase, GS: 
glutathione synthetase, GR: glutathione reductase, GPO: Glutathione peroxidase, HPD: hypotaurine dehydrogenase.
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4 Natural sources of sulfur-containing 
compounds

Sulfur is a vital component of all living organisms; it is present in 
two of the typical 20 amino acids found in proteins and can also 
be obtained primarily from diets. Abundant sources of natural sulfur 
compounds having physiological role include vitamins and amino 
acids containing sulfur compounds, such as methionine, cysteine, 
homocysteine, cystine, and taurine. Methionine is an essential amino 
acid that must be  obtained from external sources as it cannot 
be synthesized physiologically. Cysteine is endogenously synthesized 
and can be  supplemented as per the physiological requirement. 
Methionine and cysteine are linked to the transulfuration pathway, 
which includes significant intermediates such as taurine, 
homocysteine, and cystine (25). Methionine and cysteine are not 
stored by the body in their pure forms, but cysteine can be stored as 
GSH, another natural sulfur compound (26). GSH is present in a wide 
array of plant species, with its level varying across different plant 
species reported in Table  1. Eating fruits and vegetables high in 
polyphenols can increase the body’s production of GSH (16). Green 
peppers, apples, bananas, carrots, spinach, and cauliflower are among 
the fruits and vegetables that have a high concentration of GSH (27). 
Numerous herbs and roots, such as milk thistle, rosemary, turmeric/
curcumin, and ginkgo biloba, may affect GSH levels, according to a 
number of animal studies (28). SFN is a member of the isothiocyanate 
family of compounds with antioxidant and anti-inflammatory 
properties. Plants in the genus Brassica are rich in glucoraphanin, 
which is hydrolyzed by the enzyme myrosinase to yield SFN, a 
secondary metabolite (29). Many cruciferous and Brassicaceae family 

plants, notably broccoli, brussel sprouts, and cabbage, contain high 
levels of sulfur-containing glucosinolates, specifically glucoraphanin, 
a precursor to SFN (30). SFN is enhanced in broccoli sprouts, which 
have a value of 1.153 mg/100 g, which is 20–50 times more 
concentrated than mature broccoli, and broccoli sprout extract 
contained 16.6 μmol of glucoraphanin per gram of fresh weight (31). 
Other dietary sources of SFN, along with their content values, are 
reported in Table 1.

Garlic, onions, shallots, leeks, and chives are all members of the 
Allium genus and contain a variety of sulfur compounds; the sulfur 
content of onion is as high as 0.5–1% of dry weight (34). The Allium 
genus is also a rich source of allyl sulfides, which have recently gained 
attention as they are H2S donors with various physiological roles.

Taurine is a sulfonic amino acid that can be synthesized by other 
sulfonic amino acids, such as cysteine and methionine. However, the 
body cannot produce enough taurine on its own; food must 
be  consumed to meet this need (35). It is estimated that adult 
non-vegetarians consume between 40 and 400 mg of taurine on a daily 
basis. Meat, fish, and dairy products from animals are good sources of 
taurine. It can be found in many animal products and byproducts, 
such as dairy, beef, dark meat poultry, and shellfish (36). Taurine is a 
popular ingredient in many energy drinks, and seafoods such as tuna, 
octopus, scallops, squid, white fish, small and medium prawns, 
mussels, oysters, cod, and clams are also high in taurine (37). Another 
natural source of sulfur compounds belongs to sulfated 
polysaccharides, which are complex carbohydrates having sulfate 
groups (-SO4) linked to their sugar molecules. These substances are 
predominantly found in marine species, such as algae, seaweed, and 
certain marine mammals, but they can also be found in terrestrial 

TABLE 1 Concentration of sulfur compounds in different vegetables and fruits.

Vegetables and Fruits Glutathione (μg/g) Cysteine (μg/g) Sulforaphane (μg/g) Total polysulfide 
content (μg/g)

Arugula NE NE 110 NE

Asparagus 0.349 0.122 69.8 27.4

Avocado 0.339 0.004 NE NE

Broccoli 0.004 NE 260 473.2

Carrot 0.004 NE NE 51.4

Cabbage NE NE 10.1 101.8

Cauliflower 0.006 0.007 NE NE

Cucumber 0.123 0.011 NE 111.4

Garlic NE NE NE 314.1

Green beans 0.23 0.067 NE NE

Green squash 0.047 0.006 NE NE

Lettuce NE NE NE 9.5

Mango 5.9 1 NE NE

Onion NE NE NE 782.8

Orange 0.5 4.1 NE NE

Parsley 0.017 0.008 NE NE

Spinach 0.313 0.084 NE NE

Strawberry 3.9 5.9 NE NE

Tomato 0.064 0.055 NE 5.04

NE: not evaluated. Concentrations are given in μg/g (micrograms per gram). References: Demirkol et al. (32), Minich et al. (28), and Kasamatsu et al. (33).
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organisms. Agar, a kind of sulfated galactan, is an important sulfated 
polysaccharide (SP) utilized in the food processing sector (38). 
Seaweeds are plentiful sources of polysaccharides containing sulfate, 
which have several commercial applications in the culinary, cosmetic, 
and medicinal sectors (39). Seaweeds include sulfated polysaccharides 
with concentrations ranging from 4 to 76%. Majority of them consists 
of green (ulvans), red (carrageenan), and brown algae (fucoidan) (39). 
In subsequent sections, the molecular structure of natural sulfur 
compounds (e.g., GSH, SFN, taurine, sulfated polysaccharides, and 
allyl sulfides), their medicinal properties, and mechanistic insights in 
various ND are discussed.

5 Glutathione

GSH is a non-protein thiol crucial for maintaining the balance of 
cellular redox reactions. It is present in mammalian cells in varying 
amounts, typically ranging from 0.5 to 10 mM, depending on the 
specific tissues (40). GSH is a compound made up of three amino 
acids: gamma-glutamyl-cysteinyl-glycine. Gamma-glutamyl-cysteine 
is produced when the amino acids L-glutamate combine with 
L-cysteine in the presence of the enzyme glutamate-cysteine ligase, 
and this rate-limiting step is ATP-dependent. Subsequently, glycine is 
attached to γ-glutamyl cysteine, which is catalyzed by GSH synthase 
to synthesize GSH (41). GSH is synthesized solely in the cytosol and 
actively transported into mitochondria. It is present in cells in two 
forms: reduced, known as GSH, and oxidized as GSSG (glutathione 
disulfide) (42). Oxidized GSH consists of two reduced glutathione that 
are chemically linked together at the sulfur atoms. The ratio of GSH 
to GSSG is determined by the cellular redox state (42).

5.1 Applications of GSH in animal models 
of mental and neurological disorders

MD and ND have been closely associated with elevated oxidative 
stress and decreased GSH levels (43–48) (Table 2). Research indicates 
that GSH levels were found to be reduced in regions, i.e., hippocampus, 
substantia nigra, and frontal cortex, which are susceptible to AD and 
PD and contribute to neuronal cell death in ALS (49). A study has 
been conducted on the GCLM knockout mice (GCLM-KO) model of 
schizophrenia to investigate the impact of brain GSH level on 
myelination in the prefrontal cortex, which suggests that its deficiency 
affects oligodendrocyte maturation and myelination (50). Neuronal-
astrocyte metabolic association is essential for GSH synthesis, and it 
has been conducted on co-cultured astrocytes and neurons in which 
the presence of astrocytes leads to elevated GSH levels in neurons. 
This increase is most probably due to the transport of cysteine 
precursor from astrocytes to neurons, which in turn enhances the 
formation of GSH in the recipient neurons (51).

GSH functions as a neurotransmitter and neuromodulator as it 
contains binding sites for putative receptors, most likely glutamate 
receptors (52). Although pure GSH consumption does not raise GSH 
levels, Jia et al. have shown that feeding curcumin (found in turmeric) 
to Wistar rats can boost GSH levels in the brain, and adding alpha 
lipoic acid (found in different vegetables) to SH-SY5Y cells can 
enhance intracellular GSH (53, 54). Similarly, Bruno et al. conducted 
an in vitro study on a human neuroblastoma SK-N-BE cell line and 

concluded that pterostilbene, a natural stilbene found in blueberries, 
may modulate the cell division cycle by producing advantageous 
alterations in DNA methylation and holds potential as a therapeutic 
agent for prolonging the start or further development of ND (55). Shih 
et al. showed the effective role of GSH produced and released by active 
astrocytes in maintaining the balance of synaptic redox in neurons 
(56). Vargas et al. demonstrated that enhanced GSH production in 
spinal cord astrocytes in ALS model rats suppressed the apoptosis of 
motor neurons (47). Another study by Kimura et al., on HT22 cells 
derived from the mouse hippocampus, provides evidence of the 
neuroprotective role of H2S against oxidative stress by enhancing the 
synthesis of GSH (57). Huang et al. showed that GSH transport from 
astrocytes to endothelial cells is greatly enhanced under injury 
conditions, and inhibiting this transport notably diminishes the 
protective influence of astrocytes while causing barrier dysfunction. 
Treatment with exogenous GSH also maintained barrier integrity 
without astrocytes, indicating that increasing GSH levels during 
disease may enhance BBB functionality (58). In addition, Song et al. 
demonstrated the beneficial effect of protecting motor neurons from 
injury by stimulating the production of GSH, decreasing the volume 
of brain infarcts in Sprague–Dawley rat brain following middle artery 
carotid occlusion. GSH may aid in improving ischemic stroke 
pathogenesis by reducing cerebral infarction and preventing cell death 
(59). Patients with depression and bipolar disorder both showed 
decreased levels of GSH and GPx (46). Oxidative stress and 
diminished antioxidant levels are prevalent in various psychiatric 
disorders, including schizophrenia, depression, and bipolar disorder. 
Enhancing glutathione synthesis aids in restoring redox imbalance in 
these circumstances (48). Similarly, a cross-sectional double-blind 
magnetic resonance spectroscopy (MRS) study using 7-Tesla magnetic 
resonance spectroscopy (MRS) was conducted with 57 psychosis 
patients and 30 healthy controls. A positive correlation was established 
for glutathione in the anterior cingulate cortex and social/occupational 
functioning. This points out that glutathione may be useful in early 
psychosis as a prognosis indicator (60). In a similar way, another study 
was conducted with 45 healthy individuals and 28 patients with 
schizophrenia. Using 7 T proton MRS, glutathione level was 
determined which was found to be  lower in patients with 
schizophrenia than in normal healthy individuals. This observation 
supports the postulation of the fact that oxidative stress may well 
be one of the driving forces behind the disease progression (61).

5.2 Mechanism and molecular target of 
glutathione

GSH contains a free thiol group, which plays an important role in 
basal neurological regulation and cellular redox state. GSH maintains 
the balance of redox reactions within the cells by removing reactive 
nitrogen and oxygen species and also restores GSH reductase, which 
catalyzes the conversion of GSSG back into two GSH molecules 
(Figure 2). In normal settings, the intracellular ratio of reduced GSH 
to GSSG is more than or equal to 100. However, during oxidative 
stress, this ratio decreases to ≤10 (62). Excitatory amino acid carrier 
1 (EAAC1) is a key protein responsible for the absorption of cysteine 
into neurons in rats, while in humans, this role is fulfilled by EAAT3. 
Furthermore, EAAC1-deficient mice exhibit age-related cognitive 
decline, increased oxidative stress in the hippocampus, and decreased 
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TABLE 2 Overview of sulfur-containing compounds, their sources, and observed effects in experimental models of mental and neurological disorders.

Sulfur-containing 
compound

Source Model/system Disorders Significant findings References

Glutathione Meat, dairy products, 

fruits and vegetables 

(asparagus, avocado, 

Spinach)

Adult male Sprague–

Dawley rats and C57Bl/6 

mice

Alzheimer’s Improved cognitive decline and 

depressive-like behavior

(44)

SOD1G93A Amyotrophic Lateral 

Sclerosis

Nrf2 decreases toxicity in motor 

neurons

(47)

Male Sprague–Dawley 

(SD) rats

Cerebral ischemia Antioxidant effects (45)

Animal models, 

psychiatric patients

Schizophrenia, Bipolar 

Disorder, Depression

Restores redox balance, 

compensates for glutamate cycle 

dysfunction in astrocytes

(48)

1RB3AN27 (N27) 

dopaminergic neuronal 

cell line

Parkinson’s Slightly improved motor scores, 

oxidative stress, and mitochondrial 

dysfunction

(43)

Human patients Depression, Bipolar 

Disorder

Restore redox imbalance (46)

Sulforaphane Arugula, Asparagus, 

Broccoli, Cabbage

Male C57BL/6 mice Parkinson’s Neuronal protective effects via 

activating Nrf2 and mTOR

(73)

C57BL/6 mice Alzheimer’s Reduced inflammation, oxidative 

stress; modulated Nrf2/ARE 

pathway

(74)

C57BL/6 mice Multiple sclerosis Anti-inflammatory and anti-

oxidative effects

(75)

Male BTBR T + Itpr3tf/J 

(BTBR) and C57BL/6 

(C57) mice

Autism Spectrum 

Disorder

Anti-inflammatory and 

antioxidant effects

(76)

Male Sprague–Dawley rats Vascular dementia Suppresses neuronal loss, increases 

cerebral blood flow

(77)

Chronic mild stress animal 

model

Depression restores HPA axis dysfunction and 

anti-inflammatory

(80)

Schizophrenia patients Schizophrenia Enhanced cognitive function (One 

Card Learning Task)

(81)

3 × Tg-AD mouse model Psychiatric disorder SFN enhances the acetylation of 

the H3 and H4 regions of the 

BDNF promoter

(103)

Taurine Shellfish (Scallops, 

Mussels, Clams)

Adult APP/PS1 Mouse 

Model

Alzheimer’s Improvement in cognitive 

impairment

(113)

Paraquat and Maneb 

induced PD model

Parkinson’s Reduced inflammatory response (108)

Sprague–Dawley rats Cerebral ischemia Improves neurological function (109)

Male C57BL/6 J mice 

(Chronic Social Defeat 

Stress)

Depression Reduced social avoidance, 

moderately improved abnormal 

behaviors

(111)

Wistar rats, 

streptozotocin-induced 

diabetic model

Depression, Diabetes antidepressant (110)

South Korean women (41 

patients)

Major Depressive 

Disorder (MDD)

Concentration in hippocampus 

linked to MDD modulates 

neurotransmitter production

(112)

(Continued)
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TABLE 2 (Continued)

Sulfur-containing 
compound

Source Model/system Disorders Significant findings References

Sulfated Polysaccharide Brown, Red, and 

Green Algae, 

Fucoidan

App/Ps1 transgenic mice Alzheimer’s Enhanced memory and cognitive 

abilities

(141)

Male C57/BL6 mice Parkinson’s Improved mitochondrial respiratory 

activity, eased motor deficits

(142)

Adult male C57BL/6 J 

mice (6–8 weeks)—LPS 

and CRS models

Depression Antidepressant, prevent 

downregulation of BDNF-

dependent synaptic plasticity. 

Improved behavioral deficits.

(143)

Adult male Sprague–

Dawley rats (260–280 g)

Depression, Stress Antidepressant properties, reduced 

BDNF mRNA expression in the 

hippocampus

(144)

Allyl Sulfides Garlic, Onion, 

Scallion, Chive, 

Shallot, Leek

Male BALB/c mice (FST) Depression SAC exhibits antidepressant-like 

effects, reduces hippocampus 

oxidative damage

(160)

Wistar rats Depression Reduced malondialdehyde levels, 

increased SOD and GPx activity in 

the brain, indicating anti-depressive 

effects

(163)

CSDS mice model (Male 

C57BL/6 J)

Depression reduce neuroinflammation, 

balance oxidative stress, and 

decrease neuronal death in the 

hippocampus through NLRP3 

inflammasome inhibition

(164)

Diallyl disulfide APP-Tg mouse model Alzheimer’s Antioxidant, anti-inflammatory 

effects

(162)

Diallyl trisulfide Transgenic human SOD1-

G93A mice

Amyotrophic Lateral 

Sclerosis

Reduced astrocytic activation; 

potential toxic role in ALS

(161)

Cysteine and methionine Egg yolks, Red bell 

pepper, Wheat germ, 

Yeast, Beans, Nuts, 

Cheese

5xFAD transgenic mouse 

model

Alzheimer’s Antioxidant and anti-

inflammatory effects

(191)

Male Sprague–Dawley rats Stroke model Decreased infarct volume (180)

Male adult CF1 or BALB/c 

mice

Anxiety reduce anxiety levels in mice 

during social interaction tests

(182)

Bipolar disorder patients 

(Clinical Trial)

Bipolar Disorder Reduced depressive symptoms (183)

Schizophrenia patients 

(Clinical Trial)

Schizophrenia Reduced positive symptoms and 

enhanced functioning

(184)

Cell line study Psychiatric Disorders potential in reducing 

neurotransmitter dysfunction, 

improving neuronal viability

(181)

Healthy youth (age 4 to 

12 years)

Autism Spectrum 

Disorder (ASD)

no notable effect on social 

impairment in adolescents with 

ASD

(179)

Schizophrenia patients 

(n = 65)

Schizophrenia improved cognition (185)

Schizophrenia patients 

(n = 84)

Schizophrenia Enhance psychopathological 

symptoms along with improved 

cognitive functions

(186)

Forty-two PD patients Parkinson’s Increased mitochondrial activity, 

reduced oxidative damage

(181)

(Continued)
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levels of brain GSH. EAAC1-deficient rats exhibited age-related 
deterioration of dopaminergic neurons and elevated levels of oxidative 
stress (63). Another study shows that urate administration elevated its 
levels in the SOD1G85R-expressing Drosophila model of familial 
amyotrophic lateral sclerosis (fALS) by activating the Akt signaling 
pathway and the catalytic subunit of glutamate-cysteine ligase (64). 
Mitochondria are the primary source of ROS (reactive oxygen species) 
and RNS (reactive nitrogen species) production and contain 
approximately 10 to 20% of the total GSH in brain cells and most other 
organs (65). Because it has a similar structure to L-glutamate, which 

is a natural receptor agonist, and it can change its shape, it can bind to 
many types of glutamate receptors through its glutamyl residue (51). 
At low doses, GSH has a neuroprotective effect. However, at high 
concentrations (millimolar; mM), due to the presence of a free thiol 
group, the redox state of glutamate receptors can be altered (66). In 
context with MD, chronic social defeat stress (CSDS) is linked to a 
compromised glutamine-glutamate cycle in astrocytes, and studies 
indicate that GSH functions as a glutamate precursor when the 
transfer of glutamine from astrocytes to neurons is compromised. 
GSH depletion under stress may result from either the neutralization 

TABLE 2 (Continued)

Sulfur-containing 
compound

Source Model/system Disorders Significant findings References

D-galactose-induced aging 

model

Aging improved cognitive function, 

reduced oxidative stress and 

inflammation, and upregulated the 

transsulfuration pathway

(187)

60 AD patients Alzheimer’s improvement in cognitive 

functions

(188)

80 depressed 

postmenopausal women

Depression improved depressive symptoms (189)

15 depressed patients Major depressive 

disorder

effective antidepressant, 

improvement and recovery in 

depression

(190, 209)

FIGURE 2

Overview of chemical structure and primary processes underlying the neuroprotective effects of natural sulfur compounds, i.e., glutathione, 
sulforaphane, taurine, allyl sulfides (allicin, diallyl disulfide (DADS), diallyl trisulfide (DATS), and sulfated polysaccharides), and they are recognized for 
their ability to activate Nrf2 (nuclear factor erythroid 2-related factor 2) and induce antioxidant benefits by upregulating ARE (antioxidant response 
element)-driven genes. Additionally, they have been found to reduce the inflammatory response by modulating the NFκB (nuclear factor kappa B) 
pathway.
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of ROS or an elevated requirement for glutamate precursors (67). In 
addition, GSH plays a role in regulating the concentration of glutamate 
because it can convert excessive amounts of glutamate to GSH, which 
would prevent excitotoxicity, a mechanism involved in diseases such 
as schizophrenia and ASD (46, 68).

6 Sulforaphane

SFN is an aliphatic isothiocyanate derived from sulfur-containing 
glucosinolates, which are widely recognized secondary metabolites 
found in plants (69). Isothiocyanates contain an isocyanate group 
where a sulfur atom replaces the oxygen atom, resulting in a functional 
group of –N=C=S (70). SFN is produced when the enzyme myrosinase 
acts on glucoraphanin, a glucosinolate precursor that is abundant in 
cruciferous vegetables such as broccoli, brussels sprouts, and cabbage 
(71). Sulfur-containing glucosinolates are synthesized from glucose 
and amino acids, which consists of the β-D-thioglucoside group and 
an N-hydroxyiminosulfate ester, leading to the formation of SFN, 
whereas myrosinase, an enzyme present in plants, catalyzes a 
hydrolysis reaction that results in the formation of SFN by joining it 
with the protein epithiospecifier (ESP) (inactive form). On the other 
hand, the active form of ESP, together with myrosinase, is responsible 
for the formation of SFN nitrile (72).

6.1 Applications of sulforaphane in animal 
models of mental and neurological 
disorders

SFN offers neuroprotection in several neurodegenerative 
disorders through its anti-inflammatory and antioxidant functions, as 
reported in Table  2 (73–82) (Table  2). SFN treatment effectively 
reduced memory and comprehension impairments in the 3 × Tg-AD 
(triple transgenic model of AD) mouse model (83). The cytoprotective 
role of SFN is demonstrated by a study using Aβ25–35 (25 μM) 
cytotoxicity and its interaction with Nrf2 in SH-SY5Y cell lines (84). 
A study was conducted in the AD model of Sprague–Dawley male rats 
to determine cognitive parameters post-SFN treatment, and it was 
found that depressive behavior and spatial learning were improved 
after 7 days of intraperitoneal treatment with 5 mg/kg of SFN. SFN 
attenuated depressive behavior through modulation of the serotonin 
transporter within the serotonergic system. Following a similar 
approach, it was demonstrated that a decreased level of SFN results in 
neuroinflammation and oxidative stress, as indicated by lower 
concentrations of malondialdehyde, TNF-α, and IL-1β, respectively 
(85). Additionally, Zhang et al. demonstrated that SFN (25 mg/kg 
orally) administered to C57BL/6 mice of the AD model had an 
improvement in both cognitive and locomotor impairments (82). 
Another study showed that a 90-day gavage of SFN with a combination 
of aluminum and D-galactose (25 mg/kg) alleviated cognitive 
impairments and reduced cholinergic neuron loss in MS (86). 
Furthermore, the authors show that SFN administration can enhance 
the capacity of microglial cells to engulf and remove Aβ aggregates by 
reducing oxidative stress (84). Various experimental studies have 
illustrated that SFN can modify oxidative stress and 
neuroinflammation in animal models of MS (87). SFN is also shown 

to reduce proteolytic stress by decreasing MMP-9 expression and 
preserving BBB, and it also elevates the concentration of anti-
inflammatory cytokine IL-10  in experimental autoimmune 
encephalomyelitis in C57BL/6 mice (88). Dash et al. demonstrated 
that SFN has a notable positive effect on spatial learning and working 
memory post-traumatic brain injury by reducing oxidative stress (89). 
In addition, a study conducted in BV2 murine microglia cells, which 
served as a representative cell specimen for brain microglia, showed 
that the upregulation of antioxidant/detoxification proteins by SFN 
was associated with enhanced resistance of microglial cells to heat-
induced toxicity and removal of ROS during microglial cell activation 
(90). One interesting finding indicates that SFN administration 
successfully reduced endothelial cell death and eliminated TJ proteins, 
facilitating its role in preserving the BBB (91). Another study was 
conducted in a streptozotocin-induced vascular dementia model in 
which SFN attenuates the endothelial and behavioral impairments 
(77). Clinical laboratory trials have shown that SFN is very well 
tolerated, and no serious adverse effect was observed except in rare 
cases of insomnia, irritability, and impaired tolerance to taste and 
smell (92).

Regarding MD, Yao et al. demonstrated the anti-inflammatory 
and antidepressant effects of SFN in a lipopolysaccharide model of 
depression, where a dietary intake of 0.1% glucoraphanin during 
juvenile and adolescent stages inhibited the development of 
depression-like phenotypes and alterations in synaptogenesis in adult 
brain regions (78). Another study indicated that C57BL/6 mice with 
neuropathic pain, treated intraperitoneally with repeated doses of 
10 mg/kg SFN, exhibited reduced anxiety- and depressive-like 
behaviors associated with chronic neuropathic pain (79). A clinical 
trial was undertaken involving seven individuals with schizophrenia 
who received an oral dosage of SFN at 30 mg per day for a duration of 
8 weeks. Results demonstrate that administration of SFN-rich broccoli 
sprout extract may improve cognitive deficits in persons with 
schizophrenia (81). A randomized, double-blind clinical trial was 
conducted with two groups: a placebo group involving 30 patients and 
an SFN-treated group with an equal number of participants. 
Compared to placebo, persons treated with SFN have exhibited 
superior improvements in Hamilton Rating Scale for Depression 
scores and increased treatment response rates (80). Furthermore, in a 
recent symptom-specific, placebo-controlled, double-blind, 
randomized trial of 172 patients with first-episode schizophrenia, the 
effect of sulforaphane on cognitive impairments was examined. Even 
though they did not demonstrate an improvement in the MATRICS 
Composite score, other tests concluded that spatial working memory 
and verbal learning have improved (p = 0.004 and p = 0.031). Indeed, 
the obtained results indicate that sulforaphane may have a positive 
impact on specific aspects of cognition in schizophrenia (93).

6.2 Mechanism and molecular target of 
sulforaphane

The mechanism and molecular target of SFN have been extensively 
studied in various MDs and NDs. It has been observed that SFN 
undergoes rapid metabolism in mammals by a process mediated by 
glutathione S-transferase. This mechanism creates a gradient of 
concentration that enables the ongoing consumption of SFN while 
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maintaining a balance in its export (94). The Nrf2 pathway of SFN is 
essential for providing the neuroprotective advantages against several 
brain illnesses through multiple pathways and by activating results in 
enhanced expression of multiple downstream molecules, i.e., NAD(P)
H quinone oxidoreductase-1 (NQO1), Heme oxygenase-1 (HO-1), 
Glutathione peroxidase-1 (GPx-1), and Gamma-glutamylcysteine 
synthetase (γ-GCS), that provide defense against oxidative stress (95). 
SFN functions by inhibiting and enhancing phase I  enzymes 
interacting with cytochrome P450 and phase II enzymes by activating 
Nrf2 (Nuclear factor E2-factor related factor) (96) (Figure 2). Phase 
I  enzymes perform several types of reactions, namely, oxidation, 
reduction, or hydrolysis, that lead to detoxification. On the other 
hand, phase II enzymes provide antioxidative effects and detoxifying 
actions by providing defense against central nervous system diseases 
(96). Nrf2 also regulates the expression of proteins participating in 
phase II detoxification processes carried out by glutathione-S-
transferase and involves the association of glutathione (GSH) with 
xenobiotics and/or toxic materials (97). GSH is also essential for the 
glyoxalase system, which contributes to the detoxification of reactive 
dialdehydes and is utilized during protein glutathionylation, which is 
a crucial step in the post-translational regulation of protein 
metabolism (97). However, during stress, the mechanism of Nrf2 
ubiquitination is hindered, and SFN can mitigate oxidative stress by 
stimulating the Keap1/Nrf2/ARE pathway, namely by enhancing Nrf2 
activation (98). As a result, molecules including GPx1, NQO-1, HO-1, 
and γ-GCS are excessively produced, and they control the production 
of GSH (97, 99). Asimakopoulou et al. evaluated the role of internally 
produced H2S in the vasodilator responses triggered by SFN by using 
CSB/CSE inhibitors (100). These inhibitors, when administered either 
topically or orally, not only inhibited the cerebral vasodilatory 
responses but also inhibited or significantly decreased H2S elevations 
in the brain caused by both topical and oral SFN (101). Moreover, SFN 
is considered to possess negligible toxic effects and effectively traverses 
the blood–brain barrier in mice after intraperitoneal administration, 
potentially increasing brain-derived neurotrophic factor (BDNF) 
levels and enhancing dendritic spine density due to its direct impact 
on neurons, while also providing protection against oxidative stress 
via the Keap1-Nrf2 pathway (102). BDNF, a key modulator of mood 
and psychiatry disorders, is increased by SFN treatment in the 
3 × Tg-AD mouse model. Kim et al. showed an interesting epigenetic 
insight into the SFN mechanism of action by enhancing the acetylation 
of the H3 and H4 regions of the BDNF promoter (103). Similarly, 
Zhao et  al. experimentally showed that SFN diminishes DNA 
methylation at the Nrf2 promoter by enhancing Nrf2 expression (104). 
In addition, SFN has been found to inhibit the expression of 
pro-inflammatory cytokines and pathways such the TNF-α (tumor 
necrosis factor-alpha) and NF-κB (nuclear factor kappa B). These 
protective effects reduce inflammation of neurons in the brains of 
patients with conditions such as AD or PD (17, 74).

7 Taurine

Taurine is chemically recognized as 2-aminoethanesulfonic acid 
and is predominantly found in nerve and muscle tissues (105). It is a 
final product that can be  synthesized from both methionine and 
cysteine, which are intermediate compounds in the transsulfuration 
process (106). It is produced endogenously by the enzymatic activity 

of cysteine dioxygenase, cysteine sulfinate decarboxylase, and 
hypotaurine dehydrogenase. Cysteine dioxygenase catalyzes the 
oxidation of cysteine, which results in cysteine sulfonic acid and 
subsequently hypotaurine. Hypotaurine dehydrogenase catalyzes the 
further oxidation of the hypotaurine produced, resulting in the 
formation of taurine (106, 107).

7.1 Applications of taurine in animal models 
of mental and neurological disorders

Neuroprotective effects of taurine are beneficial in several 
psychiatric conditions and neurodegenerative models (108–113) 
(Table 2). Research suggests that taurine treatments significantly 
improve the restoration of normal function after ischemic stroke or 
traumatic brain injury (114). Taurine can protect rat hippocampus 
and cortical neurons against the detrimental effects of Aβ in a 
controlled laboratory environment. Supplementation with taurine 
can rescue neuronal cells from glutamate-mediated excitotoxicity 
induced by an increased level of glutamate (109). Santa-Maria et al. 
showed that the majority of senile plaques in AD are composed of 
β-amyloid, and taurine could prevent its aggregation (115). Taurine 
can reduce the deterioration of dopaminergic neurons associated 
with neurodegenerative processes in PD, and it possesses anti-
inflammatory properties that specifically target microglia. 
Moreover, it was shown to protect dopaminergic neurons in PD 
models in mice and rats by preventing microgliosis and 
neuroinflammation (116). Che et  al. showed that the motor 
functions of mice were improved when taurine was administered 
because it reduced dopaminergic neurodegeneration and 
α-synuclein oligomerization (117). Menzie et al. have shown that 
by shielding brain tissue from inflammatory reactions, taurine 
reduced brain damage during cerebral ischemia (118). Taurine can 
decrease brain swelling and enhance brain function while 
simultaneously inhibiting nerve activity and maintaining control. 
It also plays a role in the growth of neurites, synapse formation, and 
signal transmission between neurons in the early stages of brain 
development (119). Furthermore, it has been demonstrated that 
neurons possess a fully functional taurine production pathway 
capable of responding to hypertonic conditions, suggesting its role 
in osmoregulation. As a person ages, the level of taurine in the 
bloodstream declines. Studies have shown that giving mice high 
doses of taurine (1 g/kg per day) can increase their lives by 
approximately 10% and enhance their overall wellbeing. This 
suggests that taurine may have a role in the process of aging (120). 
Moreover, taurine is a widely present compound, and its high 
concentration in the developing brain strongly indicates its vital 
role in neurological development (121). Wang et al. showed that 
taurine treatment on Sprague–Dawley rats can lead to a notable 
increase in cerebral blood flow of damaged ipsilateral and 
contralateral brain cortex at 30 min after traumatic brain injury 
(114). Controlled clinical trials with 24 healthy controls between 55 
and 70 years of age were conducted where individuals were 
allocated to a control group (n = 11), a placebo receiving 1.5 g of 
starch, and a taurine group (n = 13), receiving 1.5 g of taurine for 
16 weeks. This has shown the protective effect of taurine, indicating 
that it may be a potential approach for managing oxidative damage 
during aging as it averted the reduction of the antioxidant enzyme 
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superoxide dismutase (122). Taurine’s role is also evident in multiple 
mental disease models and clinical studies: supplementation 
improves behavior deficits and significantly reduces social 
avoidance in CSDS-induced depression in C57BL/6 J mice (123). 
Pre-supplementation of taurine also demonstrated anti-depressant-
like effects and prevented the dysregulation of neurotransmitters in 
a chronic unpredictable mild stress (CUMS)-induced depressive rat 
model (124). A streptozotocin-induced diabetic rat has low taurine 
in the plasma, cerebrospinal fluid, and brain, which is accompanied 
by depression-like behavior that was rescued by taurine 
supplementation (110). Clinical studies of taurine have reaffirmed 
its anti-depressant and anxiolytic potential. A study was conducted 
in South Korea with 41 young women with mild depressive disorder 
and 43 healthy controls. It is found that the concentration of taurine 
in the hippocampus may serve as a potential signal for the growth 
and beginning of major depressive disorder (MDD) (112). In phase 
II, a double-blind clinical study was conducted between 121 
patients with first-episode psychosis, aged between 18 and 25 years. 
They were randomly assigned to consume either a placebo or 4 
grams of taurine once daily for a period of 12 weeks and 
demonstrated improvement in the Calgary Depression Scale for 
Schizophrenia. The final evaluation involved 86 patients, where 47 
patients received taurine while 37 received a placebo. When 
compared with a placebo, taurine reduces symptoms, as shown by 
the psychotic subscale and the BPRS (Brief Psychiatric Rating Scale) 
overall score. Patients with first-episode psychosis seem to benefit 
from adjunctive taurine in terms of psychopathology (125). 
Furthermore, Ohsawa et  al., conducted a multicenter, phase III 
research that includes 10 patients with recurring stroke-like events. 
The dosage of taurine was based on the body weight categories of 
the subjects: 12 g for patients weighing 40 kg or more and 9 g for 
patients between 25 and 39 kg. The research indicates that taurine 
intake can significantly reduce the incidence of stroke-like events, 
and five individuals exhibited a notable enhancement by alteration 
of mitochondrial tRNLeu (UUR) derived from peripheral blood 
leukocytes (126).

7.2 The mechanism and molecular target of 
taurine

The main mechanism for the absorption of taurine in tissues is 
through the chloride sodium taurine transporter, and it has been 
found that Gamma-aminobutyric acid (GABA) transporter 2 at BBB 
is capable of transporting hypotaurine and taurine (127). Taurine 
provides potential therapeutic benefits in treating AD stem as it gives 
a neuroprotective role in Aβ excitotoxicity and regulates GABA 
receptor signaling. It improves the activity of acetylcholinesterase and 
acetylcholine transferase enzymes and decreases neuroinflammation 
induced by microglia, therefore safeguarding dopaminergic neurons 
(128). Hypotaurine can cross the BBB, which sets it apart from most 
hydrophilic molecules including GABA. The evidence that 
hypotaurine, through its binding to soluble Aβ, reduces the production 
and aggregation of oligomers, as well as its ability to lessen the toxicity 
of β-amyloid (Aβ) in primary cultured neurons and amyloid plaques 
in a mouse model, provides support for this assertion (129).

Taurine plays an important role in protecting neurons from 
NMDA (N-methyl-D aspartate)-induced injury by simultaneously 

suppressing the generation of superoxide anions. Due to its 
anticonvulsant properties, it reduces glutaminergic system activity 
while simultaneously enhancing GABAergic system activity (109). 
Taurine triggers the secretion of proinflammatory cytokines and 
stimulates the polarization of microglia towards the M1 state. In the 
context of AD, the inflammatory responses of M1 microglia, which 
are predominantly localized around the amyloid plaques, are initiated 
and sustained by P47 phagocyte oxidase and NF-κB (nuclear factor 
kappa B) (130). In the hippocampus, taurine acts as an inhibitory 
neurotransmitter, supplementing GABA, whose levels are known to 
decrease in individuals with severe MDD. Taurine plays a role in 
regulating the production of other neurotransmitters, such as GABA, 
which in turn influences mood regulation. It also possesses antioxidant 
and neurogenic properties (110, 131). Furthermore, taurine increases 
the protein level of TREM2, a receptor for Aβ and tau proteins 
phagocytosis by microglia. Higher levels of TREM2 are associated 
with reduced deposition of these neurotoxic proteins (132). Taurine 
functions as a neuromodulator by altering GABAergic activity. This 
action can be  expressed in its weak agonist activity with GABA 
receptors; this means it helps to prevent neuronal hyperexcitability 
and has an anxiolytic and antidepressant effect (126, 133).

8 Sulfated polysaccharides

Sulfated polysaccharides (SP) are found in the cellular structure 
of marine algae, commonly referred to as seaweeds, in high 
concentrations. They are mostly composed of cellulose and 
hemicellulose, with a high carbohydrate content and low levels of 
calories and fat. Marine macroalgae, commonly referred to as seaweed, 
contain high amounts of sulfated polysaccharides. The majority of the 
seaweed cell wall consists of over 40% of SP, which is substantially 
higher than the average found in other sources (134). Red, brown, and 
green algae contain different classes of SP. Red algae include galactans, 
which consist of galactose units, agarans, and carrageenans, which are 
the types of galactans that have 4-linked α-galactose residues of 
L-series and D-series, respectively (135). The cell wall is composed of 
microfibrils, which consist of cellulose, ß-1, and 3-xylans. The 
polysaccharide found in Porphyridium sp. of red algae contains 
smaller amounts of hexuronic acid, glucuronic acid fractions, and 
galacturonic acid fractions, as well as galactose, xylose, glucose, and 
sulfate esters (136).

Marine brown algae enriched with SP are known as fucoidan 
which is principally made up of fucose that has a molecular weight 
between 20 and 200 kDa. Fucoidan mostly consists of α-L-fucose 
units, also known as α-L-fucopyranose (137). Fucus vesiculosus 
yielded the most basic chemical form of fucoidan, which 
predominantly consists of fucose, ash, and sulfate (138). Ulvan is the 
water-soluble polysaccharide found in green seaweed of the Ulva and 
Enteromorpha species and has a molecular weight between 150 and 
2000 kDa (139). Two distinct forms of aldobiouronic acid were 
identified as the primary repeating disaccharide in ulvan samples. The 
first was ulvanobiuronic acid 3-sulfate type A, while the second was 
ulvanobiuronic acid 3-sulfate type B. In type A3s, the disaccharide is 
made up of glucuronic acid and sulfated rhamnose, but in type B3s, 
the major linkages are (1 → 4) glycosidic bonds between iduronic acid 
and sulfated rhamnose. It consists mostly of sulfate, rhamnose, xylose, 
glucose, iduronic acid, and glucuronic acid (140).
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8.1 Applications of sulfated polysaccharides 
in animal models of mental and 
neurological disorders

Multiple experimental models have demonstrated the therapeutic 
properties of fucoidans and laminarans (141–144) (Table 2). Marine 
algae-derived sulfated polysaccharides have been discovered to exhibit 
antioxidant and anti-inflammatory characteristics (145). A study by 
Zhou et  al. proposed that polysaccharides sourced from Lycium 
barbarum could enhance cognitive functions in APP/PS1 transgenic 
mice while decreasing Aβ levels (141). Gelidium pristoides (red alga) 
were exposed to Aβ1–42, resulting in the dissolution of Aβ1–42 fibrils, 
suggesting that the polysaccharides possess the capacity to disassemble 
and hinder the creation of fibrils. The findings indicate that these 
properties of sulfated polysaccharides could be further investigated for 
their use as nutraceuticals in the treatment of ND (146). Fucoidan 
enhanced the functioning of mitochondria and protected the brain by 
actively controlling the Nrf2 pathway. Administering fucoidan isolated 
from L. japonica at a dosage of 2 mL/kg/d to mice with PD induced by 
rotenone showed a protective impact on mitochondrial activity and 
the degeneration of dopaminergic neurons (147). Xing et  al. 
investigated the neuroprotective effect of type II fucoidan from Fucus 
vesiculosus in male C57BL/6 mice by not only safeguarding against 
neurodegeneration but also preserving substantia nigra activity and 
alleviating mitochondrial dysfunction. Moreover, it reduces 
movement impairments in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine-induced PD mouse model by acting on the 
ATP5F1a protein (142). In a recent study, Nambi et al. demonstrated 
that administration of Fucoidan along with cerebrolysin in adult male 
Sprague–Dawley rats in cerebral ischemia model results in substantial 
decrease in neurological impairments and cerebral infarct 
volume (148).

Furthermore, in psychiatric disease models, Li et al. showed that 
fucoidan could help adult male (6–8 weeks) C57BL/6 J mice who were 
depressed: those who were exposed to lipopolysaccharide (LPS) and 
those who were under chronic restraint stress. Acute administration 
of fucoidan did not yield an antidepressant effect, whereas dose-
dependent chronic fucoidan supplementation mitigated stress-
induced depressive-like behaviors. Interestingly, chronic 
supplementation with fucoidan mitigated the downregulation of 
BDNF-dependent synaptic plasticity by reducing caspase-1-mediated 
inflammation and substantially improving behavioral deficits 
associated with caspase-1 overexpression in the hippocampus of mice. 
Moreover, the inhibition of BDNF eliminated the depressive-like 
behavioral effects of fucoidan in mice (143). Researchers conducted a 
study on 260–280-g adult male Sprague–Dawley rats. They gave the 
rats fucoidan intraperitoneally at different doses for 30 min before 
exposing them to repeated restraint stress twice a day for 14 days. 
Fucoidan significantly inhibited depressive-like behavior and reduced 
BDNF mRNA expression in the hippocampus. Overall findings 
indicate that administering fucoidan prior to restraint stress 
significantly decreased helplessness behavior in rats, possibly through 
changes in the central noradrenergic system (144). A randomized, 
placebo-controlled clinical trial was conducted on 86 subjects aged 18 
to 65 years, divided into two groups, one receiving ulva extract and 
the other receiving a placebo. Findings showed a significant reduction 
in depressive symptoms compared to the placebo group and 
improvements in sleep disorders and psychomotor functions. This 

study indicates that Ulva lactuca may provide a natural option for the 
management of depression, potentially evading the negative effects 
linked to traditional antidepressants (149). A separate clinical trial 
investigated the impact of marine algae extracts on depression-
associated behaviors in animal models. The results showed that these 
extracts greatly improved symptoms of depression, supporting the 
idea that metabolites found in marine algae such as ulvans may have 
antidepressant properties (150).

8.2 The mechanism and molecular target 
of sulfated polysaccharides

By inhibiting inflammatory pathways and reducing the release of 
pro-inflammatory molecules, natural sulfur compounds may help 
alleviate neuroinflammation linked to several NDs. Sulfated 
polysaccharides, including fucoidans from Sargassum fusiform, 
loliolide from Codium tomentosum (green seaweeds), and 
phycoerythrin from Gracilaria gracilis (red seaweeds), exhibit 
antioxidant properties by efficiently counteracting detrimental free 
radicals and preventing lipid oxidation (151). Phenolic compounds 
work as antioxidants and protect neurons from oxidative damage, 
preserving their structural and functional integrity (152). Brown algae 
possess a notable affinity for heavy metals, enabling them to form 
stable metal complexes via transition-metal chelation. Phenolic 
compounds possess strong chelating properties that directly impede 
the generation of reactive OH free radicals from the Fenton process 
by attaching to Fe3+ metal ions (153). These metal chelators possess 
the capability to cross the BBB and so may be appropriate for treating 
NDs. Fucoidan protects the nerve cells against oxidative stress damage 
through the suppression of cytochrome c release from the 
mitochondria to the cytosol and modulates anti-apoptosis gene 
activation. Moreover, fucoidan also increases BDNF and modulates 
synaptic plasticity (154). Furthermore, sulfated polysaccharides have 
shown an ability to inhibit cholinesterase activity, which is useful in 
diseases such as AD. Similar to anti-acetyl cholinesterase compounds, 
sulfated polysaccharides prolong the duration of action of 
acetylcholine, a neurotransmitter important for memory and 
cognition. It assists in enhancing the signal crossing strength and 
information processing abilities in AD models (155).

9 Allyl sulfides

Allyl sulfide is an organosulfur compound with two functional 
groups: an allyl and a sulfide. They are a significant class of organic 
compounds commonly found in members of the Allium family, such 
as garlic and onions. These compounds are responsible for their 
pungent smell and health benefits. Allyl sulfides are compounds that 
contain an allyl group (a three-carbon chain with a double bond, 
CH₂ = CH-CH₂−) bonded to one or more sulfur atoms. The simplest 
form is diallyl sulfide (DAS), which contains one sulfur atom linked 
to two allyl groups and is less reactive than the others. Diallyl disulfide 
(DADS) consists of a disulfide bond that is more reactive than DAS, 
whereas diallyl trisulfide (DATS), a complex structure of three sulfur 
atoms, is more reactive due to the presence of multiple sulfur atoms, 
which increases its capacity to engage in redox reactions (156). Allyl 
sulfides are lipophilic thioesters formed from allicin found in garlic 
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and other Allium vegetables (157). Garlic, when consumed, activates 
the allinase enzyme, which speeds up the conversion of alliin to allicin, 
an unstable metabolite that swiftly disintegrates into four H2S-
releasing compounds due to its instability in aqueous media (158). 
Among them, DATS is the most active inducer of phase II enzyme 
gene expression (152). These organosulfur compounds are responsible 
for biological functions such as antioxidant and anti-inflammatory, 
which can be attributed to their chemical structure and function as 
neuroprotective agents (159).

9.1 Applications of allyl sulfides in animal 
models of mental and neurological 
disorders

Evidence suggests that consuming Allium vegetables such as garlic 
and onions as a functional food and traditional herbs can lead to 
enhanced antioxidant and anti-inflammatory activity (160–164) 
(Table 2). A recent study found that administering DADS at doses of 
either 40 or 80 mg/kg produced therapeutic effects comparable to 
those of imipramine, a prescription antidepressant at a dose of 10 mg/
kg, in treating mice with depression-like behaviors induced by LPS 
(160). Moreover, DADS enhances synaptic plasticity, and this 
improvement could potentially enhance learning and memory in AD 
(165). Guo et al. revealed the importance of heme oxygenase 1 (HO-1) 
where a significant rise in HO-1 synthesis was observed in SOD1-
G93A mice treated with DATS compared to animals that received a 
placebo. These data indicate that the administration of DATS prolongs 
the lifespan of SOD1-G93A transgenic mice and suppresses astrocytic 
activation. Thus, DATS is a very probable neuroprotective agent for 
ALS (161). AGE (aged garlic extract), when given orally, can enhance 
spatial recognition memory in rats with cognitive impairment caused 
by Aβ42 in AD. This extract is devoid of smell and contains powerful 
antioxidant components that efficiently decrease oxidative harm (162). 
In mice subjected to ischemia–reperfusion, the injection of DATS led 
to a reduction in the concentration of MMP-9 and oxidative stress. 
This reduction contributed to a decrease in BBB leakage and vasogenic 
edema (166). In a recent study, it was revealed that in the ischemic 
stroke model in C57 mice, the intervention of allicin has the potential 
to decrease areas of cerebral infarction (167).

Ruiz-Sánchez found that S-allyl cysteine has an antidepressant-
like effect and reduces oxidative damage to the hippocampus in the 
FST model (168). In addition, a study conducted in 56 male Wistar 
rats receiving garlic homogenate at different doses of 0.1, 0.25, and 
0.5 g/kg for 10 days showed improvement in depression-related 
behaviors evaluated by the forced swim test and elevated plus maze 
(163). Another study showed that supplementing garlic at different 
doses improved social interaction in a CSDS mouse model (164).

9.2 The mechanism and molecular target 
of allyl sulfides

Studies indicate that diallyl sulfides can activate drug-metabolizing 
enzymes such as NQO1 and HO-1 in a manner that depends on the 
Nrf2/ARE pathway. This notion is corroborated by the animal 
investigations where DATS was found to stimulate the expression of 
various detoxification enzyme genes in normal mice but not in mice 

lacking the Nrf2 gene (111). A study indicated that the activation of 
both ERK and p38MAPK pathways is crucial in the process of Nrf2 
nuclear translocation and HO-1 gene activation triggered by DAS 
(169). In contrast, a separate investigation discovered that DATS 
stimulated MAPKs while inhibiting MAPKs did not impact the ARE 
activity generated by DATS (111). The study found that the PKC 
pathway was not directly responsible for the activation of ARE by 
DATS. It also suggested that Nrf2 may not be the sole transcription 
factor or signaling molecule involved in the cytoprotective signals 
initiated by DATS. However, the calcium-dependent signaling 
pathway seemed to contribute to the cytoprotective effect induced by 
DATS (111).

A recent study in animals has shown that DADS operates inside 
the H2S/BDNF/Nrf2 pathway, which suppresses neuropathic pain 
(170). Nrf2 was found to suppress the various downstream 
proinflammatory cytokines IL-6 and IL-1β. In mice with normal 
genes, the presence of mutant tau in the hippocampus results in an 
upregulation of HO-1 and GCLC transcripts. However, this effect is 
not observed in animals lacking the Nrf2 gene. This indicates that 
Nrf2 is crucial in diminishing oxidative stress and inflammation (171). 
TAR DNA binding protein 43 (TDP-43) is a marker that has been 
identified as both a pathological and biochemical indicator in ALS 
(172). It has been demonstrated that the administration of DATS 
effectively inhibited the rise in ROS level caused by the expression of 
TDP-43 and enhanced cell viability by promoting the Nrf2 pathway. 
This suggests that using this molecule as a therapeutic approach in 
ALS could be beneficial (173). Moreover, garlic mitigates anxiety and 
depressive behaviors in diabetic rats, potentially through the reduction 
of oxidative stress in the brain (163). Allicin mitigated depression-like 
behaviors in CSDS mice by diminishing neuroinflammation, 
equilibrating oxidative stress, and lowering neuronal death in the 
hippocampus by inhibiting the NLRP3 inflammasome (164).

10 Cysteine and methionine

Cysteine is a sulfur-containing amino acid that can be  either 
obtained from dietary sources or synthesized via the transsulfuration 
pathway. The thiol group of cysteine commonly acts as a nucleophile 
in enzymatic processes. Cystine, the most prevalent form of cysteine, 
exhibits plasma concentrations that are 10-fold greater than cysteine 
(174). Cysteine is classified as one of the amino acids that have a polar 
and uncharged R group. This R group is more hydrophilic compared 
to amino acids that have a non-polar side chain (175). Cysteine 
exhibits chirality, and both D-cysteine and L-cysteine occur naturally 
with D-cysteine being detected in the developing brain, and L-cysteine 
is the predominant type of cysteine found in our body (176). Cysteine 
is synthesized via the enzymatic activity cystathionase/cystathionine 
γ-lyase (CSE) acting on cystathionine. Cystathionine, on the other 
hand, is formed by the combination of homocysteine and serine 
through the enzyme cystathionine β-synthase (CBS). Recent 
investigations have shown the neuroprotective role of CSE. The 
depletion of CSE leads to oxidative stress and abnormal stress 
responses (177). Methionine is another sulfur-containing amino acid 
present in our diet. It acts as a beginning point in the methionine cycle 
and a precursor of S-adenosylmethionine (SAMe), a vital molecule 
involved in several biochemical processes. Upon metabolism into 
SAMe, it donates its methyl group and is converted into 
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S-adenosylhomocysteine (SAH). SAH is then hydrolyzed to 
homocysteine, a key intermediate in the cycle. Homocysteine can 
either be remethylated back into methionine or redirected to the TSP 
to form cysteine, a precursor for glutathione. Methionine cycle 
intermediate, SAMe, demonstrates antioxidant properties, influences 
DNA methylation, elevates GSH levels, and, at elevated doses, 
mitigates neuronal loss in NDs (178).

10.1 Applications of cysteine and 
methionine in animal models of mental 
and neurological disorders

Studies have observed low levels of cysteine in both autism 
spectrum disorder (ASD) patients and control subjects following an 
overnight period of fasting. These findings indicate the correlation 
between high levels of oxidative stress and low detoxifying capacity in 
individuals with ASD (179–191). Monti et al. demonstrated that oral 
doses with intravenous administration of N-acetylcysteine (NAC) at 
particular doses for 3 months have a protective effect against damage 
to dopaminergic terminals in Parkinson’s model. Prior administration 
of NAC in animal models that have been subjected to 
intracerebroventricular administration of Aβ has resulted in an 
enhancement in learning and memory (192). Khan et al. noted that 
administering NAC after the occurrence of ischemia decreased the 
size of the infarction and enhanced the neurologic score. The 
administration of NAC resulted in a more pronounced reduction in 
infarct volume in the cortex and striatum, as evidenced by a previous 
study (180). It is shown that NAC partially enhanced the endurance 
of hippocampal neurons following temporary forebrain ischemia 
(193). During an in vivo investigation involving transgenic APP/PS-1 
mice, the oral administration of NAC through drinking water prior to 
the development of the disease demonstrated the ability to reduce 
oxidative damage in neurons (174). Administration of NAC after the 
onset of ischemia in rat stroke model proved its neuroprotective effect 
by decreasing the infarction size and enhancing the neurologic score 
(180). Louapre et al. suggest that NAC may modify cerebral blood flow 
in specific brain regions, such as the frontal and temporal lobes, which 
are associated with enhancements in cognitive function among 
individuals with MS (194). Similarly, external supplementation with 
NAC restores cysteine level, which decreased during hypobaric 
hypoxia, eliminates endogenous hydrogen sulfide concentrations, and 
reduces neuronal dysfunction (195). A clinical study in randomized 
23 MS patients who had received NAC intravenously on a weekly basis 
and then orally for the next 6 days for 2 months has revealed that 
whole brain CBF showed a substantial rise after NAC treatment (196). 
Notably, neurotransmitter dysfunction is apparent across the range of 
psychiatric disorders. In a cell line study, NAC has shown the potential 
to reduce the dysfunction of both dopamine and glutamate by 
enhancing dopamine receptor binding and neuronal viability (181). 
Another study administered 60–150 mg/kg NAC intraperitoneally to 
male adult CF1 or BALB/c mice every day for 4 days, 1 h before social 
interaction tests. This suggests that NAC treatment reduces anxiety 
levels (182). Furthermore, clinical studies are also encouraging a 
randomized, double-blind, controlled trial conducted with 75 bipolar 
disorder patients for 24 weeks. Patients were assigned to receive once-
daily NAC 2 g for 4 weeks and demonstrated reduced depression 
symptoms, while the placebo group experienced more severe signs of 

depression at the end of the trial (183). A clinical trial involving 121 
patients examined the impact of NAC on schizophrenia, treating 59 
with NAC and 62 with a placebo. The results show that additive NAC 
may help patients more than a placebo in improving their functioning 
and lowering their positive symptoms. This could lead to the 
suggestion of stage-specific therapies (184). Another randomized, 
double-blind, placebo-controlled trial examined 65 schizophrenia 
patients who received NAC (1.8 g + 0.9 g) orally twice a day for 
6 months. Giving NAC to a small group of early psychosis patients did 
not make their negative symptoms worse, but it did improve their 
cognition and raise GSH levels in the medial prefrontal cortex of their 
brains (185). Similarly, a placebo-controlled clinical trial was 
conducted with 84 schizophrenia patients who received NAC orally 
twice daily (0.6 g) for 12 weeks. This study observed enhancements in 
positive and negative psychopathological symptoms and cognitive 
functions (186). Physiological application of methionine 
supplementation is dose-dependent, for instance, a low methionine 
diet suppresses the neurogenesis in animal models, whereas high 
dietary methionine has been associated with mild cognitive 
impairment primarily due to mitochondrial dysfunction (197). 
Moreover, D-galactose-induced aging model found that methionine 
intake improved cognitive function, reduced oxidative stress and 
inflammation, and upregulated the TSP. These improvements were 
linked to enhance BDNF–TrkB signaling and modulation of neuronal 
signal transmission (187). SAMe clinical efficacy is demonstrated in 
multiple clinical studies such as AD and depression. For instance, 
SAMe, in a double-blind, placebo-controlled study of 60 AD patients 
who received a daily dose of 400 mg for 180 days, reported improved 
cognitive functions (188). Similarly, Salmaggi et  al. showed that 
1,600 mg SAMe received orally by depressed postmenstrual women 
has resulted in significantly improved depressive symptoms (189). 
Another single-blind study involving depressed patients indicated 
improvement or recovery in seven out of nine participants. The 
reaction to the antidepressant was fast and easily tolerated (190).

10.2 Mechanism and molecular target of 
cysteine and methionine

The metabolism of homocysteine involves two pathways, i.e., 
reverse transsulfuration and transmethylation pathway, which results 
in its conversion into cysteine and methionine, respectively (Figure 1). 
Due to the impact of folate obtained from diet and vitamin B12 on the 
incorporation of homocysteine into the reverse TSP, the concentrations 
of these cofactors may regulate the formation of H2S (198). Vitamin 
B6 deficiency modulates cysteine synthesis, and it has been observed 
that supplementation with vit B6 was found to be beneficial because 
the enzymes CSE and CBS rely on pyridoxal 5-phosphate as a cofactor 
affects the flow through the reverse TSP. The enzyme CSE catalyzes 
the synthesis of cysteine from cystathionine, and its promoter contains 
a binding site for Nrf2, and expression can be triggered by oxidative 
stress (199). An investigation documented the process of sulfhydration 
of Keap1, which subsequently triggers the activation of Nrf2, which is 
the main regulator of the response to oxidative stress. Nrf2 has been 
documented to possess binding sites known as antioxidant response 
elements for the upstream regions of CBS and CSE. Therefore, Nrf2 
can increase the expression of both CSE and CBS (200). Oxidative 
stress triggers the activation of CSE, which is a crucial step in a 
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pathway that ultimately results in the production of two important 
antioxidants: cysteine and GSH. These antioxidants play a key role in 
mediating the cellular response to oxidative stress by sulfhydrating 
proteins implicated in this response (201).

The significance of the Xc
− cystine–glutamate exchanger 

(SLC7A11 carrier) in the cysteine redox cycle, which regulates the 
extracellular redox potential is becoming now more widely 
acknowledged (202). Inhibition of the Xc

− exchanger inhibits the 
growth and promotes the death of glioma cell lines. In research 
conducted on the AD model of C57BL/6 mice and Wistar rats, it has 
been observed that activated microglia exhibit enhanced expression 
of the Xc

− exchanger associated with higher secretion of glutamate 
(203). During exposure of cultured neurons to activated microglia, the 
toxicity of amyloid beta peptide 1–40 was enhanced by the release of 
glutamate through the Xc

− exchanger. Therefore, by inhibiting NMDA 
receptors or system Xc

− the toxicity of peptide mediated by microglia 
was prevented (203).

Investigations have shown that xCT expression is increased in 
both the spinal cord of ALS patients and isolated microglia of 
mutant superoxide dismutase 1 (SOD1) ALS animals. Furthermore, 
the expression of xCT is associated with upregulation of 
inflammation and increased release of glutamate (204). Methionine 
is an essential component of one-carbon metabolism, where it gets 
converted to SAMe. This conversion is essential to the methylation 
of cytosine in CpG islands that exist in the promoters of genes to 
modulate the expression of a gene by affecting the binding of 
transcription factors to DNA. There should be equal amounts of 
SAMe and SAH present; high SAH may inhibit DNA 
methyltransferases (DNMTs), thus reducing methylation and 
causing possible uncontrolled gene expression (205). Furthermore, 
the ratio of methionine to homocysteine can be  seen as a new 
imperative biomarker of the dementia risk; the enhanced ratio 
leads to better cognitive performances and slow brain atrophy over 
the course of the disease (206). Hyperhomocysteinemia (HHcy), 
an elevated level of homocysteine, can influence the 
hypomethylation of some of the most sensitive genes, which 
catalyze numerous disorders and ND, such as AD. Moreover, 
homocysteine levels can be reduced by including supplements such 
as vitamin B (e.g., folate), which has been reported to reestablish 
normalcy in DNA methylation, hence providing an evidence-based 
perspective towards the treatment of diseases related to 
HHcy (207).

11 Conclusion and future perspectives

Several studies have indicated that an imbalance between 
oxidative stress and antioxidant defense mechanisms is linked to the 
onset of ND and MD. This imbalance results in the formation of 
free radicals and the degradation of lipids and proteins, ultimately 
leading to substantial death of neurons. The possible neuroprotective 
effects of sulfur-containing compounds found in foods such as 
cruciferous vegetables, garlic, onions, and some seafood have been 
attributed to various antioxidant mechanisms. Some of these 
compounds can chelate free radicals and augment transcription 
machinery by Nrf2 and ROS, thereby depriving them of the ability 
to induce oxidative stress, a condition that is associated with 
neuronal pathology.

Additionally, compounds that contain sulfur can influence various 
pathways in cells that relate to inflammation and programmed cell 
death which, in turn, helps preserve neurons. Interestingly, some of 
the natural sulfur compound such as cysteine, GSH, and taurine are 
also intermediates of TSP, which is a fundamental metabolic pathway 
that maintains the redox buffer in cells. Sulfur-containing amino acid, 
such as cysteine, is critical in the brain’s ability to maintain redox 
buffering. Another component involved in this pathway is GSH, 
whose precursor is cysteine, which is significant in maintaining the 
intracellular redox state and preventing neurons from being damaged 
by free radicals. Hence, GSH acts as an antioxidant by trapping ROS 
and ensuring the body has optimum function at the cellular level. It is 
plausible that dietary alterations involving sulfur-containing 
compounds could also increase the activity of the TSP and increase 
the GSH levels. Notably, another H2S transulfuration intermediate, 
taurine, can also be obtained by diet. It has also been found that H2S 
is vital in maintaining the redox reaction in the brain and stimulates 
strong antioxidant effects. H2S reduces oxidative stress by enhancing 
the concentration of cysteine imported into neurons by the cysteine 
transporter and the cystine/glutamate antiporter. This, in turn, 
enhances the synthesis of glutathione, which is a potent antioxidant. 
Redox imbalance associated with altered H2S has been found in many 
MDs and NDs. However, H2S is an endogenous gasotransmitter, and 
accurately controlling its effective concentration in vivo is challenging. 
This difficulty limits using H2S gas as a drug in basic research and 
clinical trials. This challenge has prompted the exploration of natural 
sulfur compounds, which can increase the sulfur pool in the cell in a 
more controlled and sustained way, providing a more effective solution 
for therapeutic applications. Therefore, natural sulfur compounds can 
be promising alternatives to H2S as therapeutic agents.

Moreover, in the context of both MD and ND, the nutritional 
advantages of foods high in sulfur offer a promising anti-inflammatory 
intervention. Foods rich in sulfur can help the anti-inflammatory 
mechanism and may even act as a hindrance in the pace of the 
development of neuropathology. Compounds that contain sulfur have 
been established to give anti-inflammatory effects due to their action 
in the antioxidant and inflammation signal transduction in the brain. 
It can, therefore, be argued that integrating foods rich in sulfur into 
dietary plans is a worthy approach to combating brain-associated 
diseases. More empirical studies, including clinical trials, are required 
to completely comprehend the possible advantages and modes of 
action. Individual differences in food, heredity, and the course of the 
disease may also affect how the body reacts to substances that contain 
sulfur. Therefore, in the overall management of a broad spectrum of 
brain diseases, including ND and MD, sulfur-based interventions 
should be viewed as supplemental tactics to well-established medical 
treatments and lifestyle changes.

However, the challenges in preclinical animal study should 
be  carefully considered before evaluating the efficiency of natural 
sulfur compounds. Animal models often have low predictive validity 
for human diseases. Notably, in neuropsychiatry pharmacology only, 
9% of preclinical findings have proven effective clinically (208). 
Animal models also have diverse microflora, which could be another 
reason for ambiguity in preclinical results. Future research should 
address the discrepancy between the doses administered in animal 
studies and the corresponding dose levels in humans. Random errors 
are another concern in animal studies, as only few studies fully comply 
with the basic principles of research design. This requires more 
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pharmacological and pharmacokinetic data across the animal models 
to conclude. Nevertheless, the preclinical animal model gives proof-
of-concept and is pivotal for designing clinical trials and successfully 
generating a wealth of data in drug discovery. Furthermore, multiple 
evidence suggest that alternation in epigenetics regulations, i.e., 
histone modification and DNA methylation, contribute significantly 
to pathological diseases and NDs. Natural sulfur compounds such as 
GSH, SFN, taurine, allyl sulfide, sulfated polysaccharides, and cysteine 
and methionine having roles in modulating histone deacetylases, 
DNA methyltransferases, and modulating SAMe expression are also 
emerging as potential interventions under these conditions besides its 
major role in anti-inflammatory and oxidative stress.

To summarize, the reviewed research indicates that foods rich in 
natural sulfur compounds offer a valuable source of nutrients that 
possess neuroprotective properties against neuropathology. Further 
research is necessary to comprehensively comprehend the metabolism 
and precise mechanisms of action to optimize dietary habits for 
maximizing the advantages of natural sulfur compounds in promoting 
brain health.
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