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The membrane may be a key 
factor influencing browning: a 
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Fresh-cut fruit and vegetables are susceptible to browning during storage and 
subsequent consumption. The cell membrane acts as a vital structural barrier, 
compartmentalizing various substances within living organisms. The fresh-cutting 
process induces mechanical injuries, disrupting these membranes and resulting in the 
leakage of cellular contents. This facilitates direct contact between substances and 
enzymes that mediate browning reactions. This mini review explores the potential 
roles of cell membranes in the browning of fresh-cut fruit and vegetables from 
a multi-omics perspective, aiming to provide novel insights into the underlying 
mechanisms of browning in fresh-cut fruit and vegetables. Considering potential 
roles of cell membranes in blocking the browning of fresh-cut fruit and vegetables, 
future studies should focus on elucidating the precise mechanisms by which 
membranes regulate browning reactions, aiming to provide directions for the 
development of more effective intervention strategies.
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1 Introduction

Fresh-cut fruit and vegetables are a convenient form of ready-to-eat fresh food (1). Their 
appeal lies in their convenience, freshness as well as high edible rate, leading to a surge in 
popularity among consumers (2). However, these products are highly susceptible to browning 
after peeling or cutting, a process that not only diminishes their visual appeal but also reduces 
their nutritional value and shelf life (3).

The browning in fresh-cut products can be classified into enzymatic and nonenzymatic 
types (4, 5). Enzymatic browning is primarily driven by phenolase enzymes, particularly 
polyphenol oxidase (PPO) and peroxidase (POD) (6). In contrast, nonenzymatic browning 
occurs independently of phenolase and may include processes such as ascorbic acid oxidation, 
the Maillard reaction, and caramelization (7). For example, browning in most fruit or vegetable 
species, such as pear, apple, and potato, is enzymatic (8–10). However, in other species such 
as Chinese water chestnuts, the absence of phenolase substrates leads to browning after peeling 
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(11, 12). These studies indicate that the mechanisms underlying 
browning in fresh-cut products are highly complex, involving both 
enzymatic and nonenzymatic processes.

Therefore, understanding the browning mechanisms of fresh-cut 
fruit and vegetables is essential for developing effective preservation 
strategies. While numerous studies have concentrated on 
understanding the browning mechanisms at both physiological and 
molecular levels, the roles of cell membrane influencing this process 
have garnered less attention. Multi-omics is an integrative approach 
that offers a comprehensive understanding of complex biological 
processes by simultaneously analyzing various types of omics data 
(13), such as genomics, transcriptomics, proteomics, and 
metabolomics. In this review, we explored the potential roles of cell 
membranes in the browning process of fresh-cut products from a 
multi-omics perspective, aiming to provide valuable insights for 
developing strategies to mitigate browning.

2 The roles of membranes in blocking 
the browning of fresh-cut produce

The cell membrane of eukaryote is a complex structure that 
functions as a selective barrier, regulating the influx and efflux of 
substrates (14). It is primarily composed of a diverse array of lipids 
and proteins (15). Under normal conditions, substrates and enzymes 
involved in browning are compartmentalized within distinct 
subcellular organelles by biological membranes (16). Fresh-cut 
operations, such as peeling or cutting, compromise cell integrity and 
disrupt compartmentalization (17). As a result, components that were 
previously separated within distinct subcellular organelles come into 
direct contact, triggering the browning process.

PPO and POD are two key enzymes that contribute to the 
oxidation of phenolic substrates in enzymatic browning. This process 
occurs through the enzymatic oxidation of monophenols or 
o-diphenols, leading to the production of o-quinones, which then 
undergo subsequent condensation or polymerization reactions (18). 
PPO, primarily located in chloroplasts, catalyzes the oxidation of 
various phenolic compounds to o-quinones (19). In contrast, POD, 
which is potentially found in cell walls, vacuoles, and apoplasts (the 
space outside the plasma membranes), functions in the oxidoreduction 

of hydrogen peroxide and various reductants (16). Most phenolic 
compounds, however, are stored in vacuoles (18). The loss of cellular 
compartmentalization allows PPO and/or POD to come into direct 
contact with phenolics, leading to the oxidation of phenolics and the 
formation of brown polymers (20). The above discussions indicate that 
the degradation of membranes occurs prior to the browning reactions, 
highlighting the role of membranes in regulating this process. Building 
on this hypothesis, we  propose a model to illustrate how the cell 
membrane functions to block the interaction between phenolics and 
phenolase such as PPO (Figure 1).

Biological membranes are characterized by a phospholipid bilayer 
(21). Numerous studies have demonstrated that fresh-cut operations 
stimulate the activity of lipid metabolism enzymes, including 
phospholipase (PL) and lipoxygenase (LOX), leading to the 
degradation of membrane lipids. PLs catalyze the initial steps of lipid 
hydrolysis, while LOXs facilitate the oxygenation of polyunsaturated 
fatty acids, leading to the peroxidation of membrane lipids (22). The 
relationship between browning and the activity of PLD and LOX has 
been documented in fresh-cut potato (23), taro (24), and eggplant (25).

Furthermore, fresh-cutting triggers a burst of reactive oxygen 
species (ROS), which contributes to the oxidation of 
biomacromolecules, particularly membrane lipids. This oxidative 
stress leads to functional defects in membranes, including altered 
permeability and stability (26). Moreover, elevated ROS levels may 
also act as signaling molecules, mediating browning reactions (27). 
For instance, melatonin (MT) has been shown to effectively reduce 
browning in various fresh-cut food species (3). Concurrently, the 
increased ROS levels induce the production of endogenous MT, 
thereby influencing the redox homeostasis of fruit and vegetables 
during the postharvest period (28).

3 Multi-omics approaches used to 
reveal the involvement of membrane 
in browning of fresh-cut produces

3.1 Genomics analysis

Genomics analysis examines genetic variability within species 
and identifies genes or pathways closely associated with specific 

FIGURE 1

A proposed model illustrating how the cell membrane functions to block the interaction between phenolics and phenolases such as PPO. 
(A) Phenolics and phenolases are separated under normal condition. (B) Phenolics and phenolases are directly contacted after fresh-cutting.
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traits (29). However, researches aimed at identifying key genes or 
modules that regulate the browning of fruit and vegetables remains 
limited to date. Most studies have concentrated on genome-wide 
analyses or genome-wide association studies (GWAS). For instance, 
in banana (Musa acuminata), 10 PPO genes were successfully 
identified based on a high-quality genome sequence, with MaPPO1 
and MaPPO6 identified as the primary contributors to fruit 
browning (30).

Thioesterase regulates the flow of various substrates by releasing 
CoA from intermediates and products of β-oxidation (31). In water 
yam (Dioscorea alata), two SNP markers located on chromosome 5 
were significantly associated with oxidative browning of the tuber 
through GWAS, and suggested that genes with thioesterase domain 
may play an important role in tuber browning (32).

The enhanced LOX protein activity or gene expression leads to the 
peroxidation of membrane lipids and subsequent browning of 
fresh-cut produces (33). Treatments with methyl jasmonate (MeJA) 
induce effects similar to those of wounding stress (34), and the 
expression of two LOX genes, MaLOX2-4 and MaLOX9 identified 
through genome-wide analysis, was significantly induced following 
MeJA treatment in banana (35). Within the same species, some 
varieties are susceptible to browning while others are not. Therefore, 
researchers could compare the genetic variability among these 
varieties to identify key membrane-related contributors to browning 
through comparative genomics analysis.

3.2 Transcriptomics analysis

Transcriptomics analysis measures gene expression patterns to 
elucidate molecular changes at transcript level (36). Comparative 
transcriptomics is the most widely used omics approach for revealing 
the mechanisms underlying the browning of fresh-cut produces. This 
analysis can identify differentially expressed genes (DEGs) in response 
to fresh-cutting or during the browning process.

A previous study investigated the browning mechanism of 
fresh-cut eggplant by comparing transcriptomic differences between 
browning-resistant (‘F’) and browning-sensitive (‘36’) cultivars (24). 
The results showed that numerous DEGs and differentially 
accumulated metabolites (DAMs) were associated with lipid 
metabolism, as revealed by the integrated analysis of transcriptome 
and metabolome data, suggesting the increased expression of 
membrane lipid-degrading enzymes might accelerate the browning of 
fresh-cut eggplant. Preharvest selenium (Se) treatment significantly 
reduced the browning potential of fresh-cut apples. Transcriptome 
analysis revealed that genes involved in membrane lipid oxidation, 
such as LOX and PLD, were notably downregulated following Se 
treatment (37).

In fresh-cut taro, genes involved in the linoleic acid metabolic 
pathway were induced after peeling, with expression levels rising in 
tandem with aggravated browning (23). The application of cinnamic 
acid (CA) was found to effectively inhibit browning in cold-stored taro 
slices, and the downregulated DEGs resulting from CA treatment were 
significantly enriched in the membrane lipid metabolism related 
pathways, as revealed by comparative transcriptomics and weighted 
gene co-expression network analysis (38). These studies demonstrate 
that membrane lipid metabolism may play a critical role in the 
browning process of fresh-cut produces.

3.3 Proteomics  analysis

Proteomics analysis utilizes high-throughput technologies to 
comprehensively evaluate the qualitative and quantitative aspects of a 
sample’s entire protein repertoire (39). Compared to transcriptomic 
or genomic data, proteomic information provides more direct insights 
into the functional molecules involved in biological processes, since 
protein levels and activities cannot be fully predicted from RNA or 
DNA data alone (40).

Recent proteomic studies have investigated protein modifications 
during the browning process of fresh-cut produces. In ‘Fuji’ apple, 
KEGG enrichment analysis of differentially expressed proteins (DEPs) 
identified significant alterations in multiple metabolic pathways, 
including carbon metabolism, amino acid biosynthesis, and secondary 
metabolite biosynthesis. Moreover, authors had observed a significant 
increase in the abundance of O-methyltransferase 1 protein following 
browning in T-type apples (41). Using iTRAQ proteomics, researchers 
identified over 1900 DEPs when comparing yellow fresh-cut yam to 
white fresh-cut yam. The upregulated DEPs in yellow yam showed 
significant enrichment in several biosynthesis pathways, such as 
carotenoid biosynthesis and phenylpropanoid biosynthesis (42).

From a membrane lipid metabolism perspective, studies in pear 
fruit revealed that browning-related DEPs primarily participated in 
the linoleic acid and fatty acid biosynthesis pathways (43). In fresh-cut 
lettuce browning, researchers observed increased LOX activity during 
the browning process. Metabolomic and proteomic analyses further 
demonstrated that stem browning highly correlated with decreased 
unsaturated fatty acid content, while fresh-cut-induced ROS 
contributed to fatty acid oxidation (44). These studies further highlight 
the roles of cell membrane in the browning of fresh-cut produces.

3.4 Metabolomics analysis

Metabolites are small molecules that represent the end products 
of cellular processes and are crucial for understanding the biochemical 
state of living organisms (45). Metabolomics analysis identifies these 
metabolites using GC–MS or LC–MS technologies, and could employ 
comparative strategies to capture changes in metabolite levels 
among samples.

Metabolomics analysis has been widely applied to elucidate 
potential mechanisms in fresh-cut products. Comparative 
metabolomics studies have revealed that, during the browning process 
of fresh-cut apples, the accumulated metabolites are primarily phenols 
and lipids (37). Similarly, during the browning of fresh-cut taro, the 
abundance of 11 metabolites consistently increased, with 10 of them 
being linolenic acid and the derivatives, as well as hydroperoxides 
(24). These researches clearly indicate the involvement of lipid 
metabolism, particularly membrane lipid metabolism, in the 
browning process.

4 Conclusion

In summary, the membrane is a vital structural component of 
plant cells that significantly influences the browning of fresh-cut 
produces. By employing a multi-omics approach, researchers could 
gain deeper insights into the complex interactions among membrane 
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disorder, signaling transduction, and biochemical reactions that lead 
to browning. These understandings would help the development of 
targeted interventions designed to effectively mitigate browning, 
ultimately enhancing the quality and shelf life of fresh-cut products.
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