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Personalized glucose
prediction using in situ data only
Rohan Singh, Marouane Toumi and Marcel Salathé*

Digital Epidemiology Lab, School of Life Sciences, School of Computer and Communication Sciences,
EPFL, Lausanne, Switzerland

The worldwide rise in blood glucose levels is a major health concern, as various

metabolic diseases become increasingly common. Diet, a modifiable health

behaviour, is a primary target for the preventive management of glucose levels.

Recent studies have shown that blood glucose responses after meals (post-

prandial glucose responses, PPGR) can vary greatly among individuals, even

with identical food consumption, and demonstrated accurate PPGR prediction

using various features like microbiome data and blood parameters. Our study

addresses whether accurate PPGR prediction can be achieved with a limited

and easily obtainable set of data collected in real-world, everyday settings.

Here, we show that a machine learning algorithm with such real-world data

(RWD) collected from a digital cohort with over 1,000 participants can achieve

high accuracy in PPGR prediction. Interestingly, we find that the best PPGR

prediction model only required glycemic and temporally resolved diet data.

This ability to predict PPGR accurately without the need for biological lab

analysis offers a path toward highly scalable personalized nutrition and glucose

management strategies.

KEYWORDS

personalized nutrition, real-world data, real-world evidence, digital cohort, gut
microbiome

Introduction

Inadequately controlled blood glucose can lead to severe health issues, including
cardiovascular diseases, kidney complications, and nerve damage. Diabetes, defined as
a chronic metabolic disorder with high blood glucose levels, represents a significant
global health concern. Alarmingly, the already high prevalence of diabetes is on the rise.
According to the International Diabetes Federation, around 537 million adults were living
with diabetes in International Diabetes Federation (1), a figure expected to reach 783
million by 2045.1 The economic impact of diabetes, encompassing both the cost of care and
related productivity losses, presents substantial challenges to healthcare systems worldwide.

Continuous Glucose Monitoring (CGM) systems have revolutionized the monitoring
of glycemic responses, offering personalized, real-time insights into blood glucose
fluctuations. These devices are particularly valuable in research for understanding
individual responses to dietary intake, since diet plays a crucial role in managing and
potentially preventing diabetes, especially type 2 diabetes (T2D). CGM data have been used

1 https://www.diabetesatlas.org
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in several landmark studies to elucidate the intricate relationship
between nutrition and PPGR. For instance, Zeevi et al., in their
seminal study (2015) demonstrated that glycemic responses to
identical meals vary significantly among individuals, underscoring
the need for personalized dietary recommendations.

Aspects of glucose metabolism, like postprandial glucose
responses (PPGR) and the glycemic index (GI) of foods, are
often assessed using the incremental area under the curve
(iAUC) of blood glucose levels over a 2-h window following
food consumption. Macronutrients are primary influencers of
PPGR, with carbohydrates being the most predominant, affecting
mealtime insulin doses in diabetic individuals. Additionally,
Gentilcore et al. (2) found that ingesting fat prior to a carbohydrate
meal markedly slows gastric emptying and attenuates postprandial
rises in glucose. Another study examined the effects of both
protein and fat on glycemic responses, noting that protein and
fat independently reduce the glycemic response elicited by oral
glucose. Interestingly, gram-for-gram, protein had a 2–3 times
larger effect on reducing glycemic responses than fat (3). This
finding indicates the potential for dietary protein to significantly
modulate postprandial glycemic spikes, albeit the effectiveness
might vary with individual physiological factors such as waist
circumference and fasting plasma insulin levels.

Recent studies using continuous glucose monitoring (CGM)
and meal logging to predict PPGR—typically using decision tree
machine learning models—supported the prospects of personalized
nutrition and diabetes management (4–7, 8). These studies harness
an array of features from a myriad of data sources such as
dietary nutritional composition, physiological characteristics of
participants (i.e., age, BMI etc.), blood and serological information,
or physical activities and microbiome data, to forecast individual
glycemic responses with high accuracy. Notably, these studies
emphasized inter-individual variability in postprandial responses to
identical meals (5, 8).

Zeevi et al. (4) demonstrated that personalized dietary
recommendations based on machine learning model predictions
could significantly lower PPGR levels. This approach was
substantiated by Berry et al. (5), whose predictive framework
included comprehensive inputs like including baseline
characteristics and genetic factors. Their findings also indicated
that similar meals consumed at different times of the day
elicited different glycemic responses, emphasizing the role
of circadian rhythms and timing in metabolic regulation.
Additionally, Mendes-Soares et al. (6) utilized a variety of
dietary, microbiome, and physiological parameters to capture the
nuanced nature of glycemic response. Meanwhile, Tily et al. (7)
research incorporated individual variations in PPGR to the same
foods, stressing the importance of metatranscriptomics features
in improving the model performance. Finally, the Sondertoft
et al. (8) study, involving standardized meals, emphasized the
importance of microbiome and blood clinical features boosting
their model’s performance.

While these studies have provided valuable insights, questions
remain about the minimal set of data required for accurate PPGR
prediction in real-world settings. Our study addresses this gap by
leveraging a large digital nutritional cohort, “Food & You” (9),
comprising over a thousand participants. We wanted to understand
whether accurate PPGR prediction could be achieved using a
limited set of easily obtainable data collected by participants in

their daily lives, spanning nutritional, glycemic, physiological,
anthropometric, and microbiota data. This real-world data enabled
us to evaluate the potential for improving prediction accuracy while
maintaining scalability, especially when considering normal, non-
standardized meals. Overall, we find that the most accurate PPGR
prediction model only requires glycemic and dietary information.
This finding points to scalability of our approach compared to those
that require biological samples and subsequent lab analyses.

Materials and methods

Participants and data collection

The "Food and You" study, conducted in Switzerland, is a digital
nutrition cohort where participants, over 2–4 weeks, use mobile
applications and sensors to monitor their food intake, physical
activity, and glycemia (9). All interactions and data collection
are digitally facilitated, leveraging the potential of fully remote,
“in situ” studies in epidemiological research. Participants utilized
the MyFoodRepo app for real-time food tracking, continuous
glucose monitors to record blood sugar levels, and either activity
trackers or surveys to track physical activity and sleep. The study
also involved the collection of a one-time stool sample for gut
microbiota. Overall, the study collected the following individual
features (Figure 1).

1. Nutrition: The daily detailed food consumption data of
all participants was collected over a minimum of 14 days
under real-world conditions, avoiding the constraints
of hospital or center visits. This was accomplished
using an AI-assisted mobile application, MyFoodRepo,
which enabled participants to record their meals in
real time through various methods: Photographing their
meals, scanning barcodes, or manual entry. When
meals were photographed, the app employed a food
recognition AI model to identify the contents of the
meals and provide corresponding nutritional information.
Each time stamped food data entry was verified by a
human annotator.

2. Glucose measurements: Flash Glucose Monitor Freestyle
Libre (Abbott Diabetes Care) were worn by all participants
at the start of the study which measured blood glucose
levels every 15 min up to 14 days.

3. Gut microbiome: The "Food and You" study collected
nearly 1,000 stool samples from participants, of both Swiss
and foreign origin. These samples were then dispatched to
a third-party company (MicroSynth) for 16S sequencing.
QIIME2 (10) was used to process the raw sequencing to
obtain relative abundances of taxa at different taxonomic
levels (see Microbiome Features Processing section for
detailed information).

4. Physical activity and sleep data: Study participants’ physical
activity and sleep data were collected either objectively
through Apple Health, Google Fit, or smartwatches, or
subjectively via self-reports on the study website. The
gathered data included daily step count, calories burned,
bedtime, wake-up time, and specifics of physical activity.
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5. Personal attributes: We also collected relevant personal
information such as age, weight, ethnicity, income,
household description, past diseases, antibiotics used,
stress levels, and many others. The variables are provided
in Supplementary Table 1.

Participants in the "Food & You" study were required to
consume standardized breakfasts from 2 to 7 days of the first
week (and days 16–21 for Cohort C participants). The standardized
breakfasts varied by day and dietary restrictions: days 2–3 included
white bread (or gluten-free for those with restrictions), days 4–
5 included white bread with butter or dark chocolate, and days
6–7 consisted of 50 g glucose drinks for all participants. Each
standardized meal contained approximately 50 g of carbohydrates.
Participants were instructed to avoid altering the standardized
meals and to refrain from eating or physical activity for 2 h
after consumption.

Food feature processing

Because our data analysis pipeline required that meals have
at least 12 h of glucose data before and after meal intake, dietary
data was trimmed to include meals in the time window tstart to
tend, where tstart is 12 h after the first glucose measurement, and
tend is 12 h before the last glucose measurement. If multiple meals
were consumed by a participant within a 30-min interval, they were
merged and their nutritional compositions were summed.

Two different feature sets for nutritional data were constructed,
temporal and compositional. Temporal features include features
such as meal timing, time since last meal, carbohydrates consumed
in the past 6 h, etc. Computation of past temporal nutritional
features was obtained by aggregating nutrient information at
various time intervals (1, 2, 3, 6, 12 h) prior to each meal. Meal
timings were assigned as breakfast (for meals consumed before
10:00), lunch (between 10:00 and 16:00), or dinner (after 16:00).

Non-temporal food features included macro- and
micronutrient features, such as carbohydrate content, eaten
quantity, fat-carb ratio, etc. Additionally, meals were classified into
related food classes (namely dairy_products_meat_fish_eggs_tofu,
vegetables_fruits, sweets_salty_snacks_alcohol, non-
_alcoholic_beverages, grains_potatoes_pulses, oils_fats_nuts).
Amounts (in grams) of a meal in these food classes were also taken
as non-temporal features. For fat-to-carb ratios and protein-to-
carb ratios, meals with zero carbohydrates were assigned zero
for these features.

Glucose data synchronization and
processing

Incremental area under the curve (iAUC) was calculated by
measuring the area under the curve in a 2 h window over a baseline
glucose value for every logged meal (11). Potential challenges,
such as time gaps between glucose readings and meal times, were
systematically addressed during the computation of postprandial
glucose responses, since extracting baseline glucose value for any
logged meal to compute iAUC is critical for accurate assessment

of PPGR. If glucose measurements were within 30 min of time
difference, then the mean value between the measurements was
used to fill the gap. Meals were excluded from analysis if time
gaps exceeding 30 min were observed for any of the glucose
feature calculations. Due to 15 min time intervals between glucose
measurements using Abbott Freestyle Libre glucose sensors, and
the possibility that people may sometimes have had a small delay
in their meal loggings, we implemented a minima-based approach
to identify the closest local minima as glucose baseline relative
to each mealtime, and use that time point to calculate the 2 h
iAUC. We investigated different search time windows into the past
around standardized meals (Supplementary Figure 1). We observed
that 30 min yielded a much larger increase in the iAUC when
compared to the iAUC derived from a 15 min time window, while
the difference of the median iAUC values for 45 min and 60 min did
not differ significantly from the 30 min window. Hence, we chose a
30 min time window to search for the closest local minima glucose
value for the baseline to calculate iAUC.

Glucose variables were computed by analyzing the temporal
relationship between meal start times and corresponding glucose
values for each participant. This yields the glucose trend and
incremental area under the curve (iAUC) trends over different time
intervals (1, 2, 4 h) prior to a logged meal, enriching the dataset
with detailed glycemic information. Only those observations
with non-null values in the glucose trends and previous hour
iAUCs were retained.

Microbiome features processing

Each participant provided one stool sample anytime during
the tracking days phase of the Food & You study. Collected
samples were shipped to Microsynth AG (Balgach, Switzerland)
in batches of 100–192 samples for sequencing. V4 region
of the bacterial 16S rRNA gene was sequenced via creation
of two-step Nextera PCR libraries using the primer pair
515F (NNNNNGTGYCAGCMGCCGCGGTAA) and 806R
(NNNNNGGACTACNVGGGTWTCTAAT). After obtaining the
sequencing reads from Microsynth, we used QIIME 2 (version
2024.2) for microbiome preprocessing and feature generation. The
preprocessing was done by importing demultiplexed single-end
sequencing reads, adhering to the Casava 1.8 format, into the
QIIME 2 environment. Deblur (version 2024.2) (12) was utilized
to denoise sequences and construct amplicon sequence variants
(ASVs). We applied a left-trim of 24 bases to remove the primer,
and a trim length to constrain to the ASVs to the first 150 bp.
These 150 bp ASVs were searched against Greengenes2 (version
2022.10) (13) using q2-greengenes2 (version 2024.1) to obtain a
phylogenetic taxonomy. Rarefaction at a sampling depth of 15,183
was performed to normalize library depth. This sampling depth
resulted in 8 samples being excluded to low sampling depth while
retaining 992 samples for downstream analysis. We additionally
applied PICRUST2 (version 2.5.2) (14) for functional and pathway
prediction of the microbial sequences, which yielded predicted
enzyme commission (EC) numbers and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Orthology (KO) groups.

Unweighted UniFrac (15) was computed with q2-diversity
(version 2024.2), followed by computing the first 10 principal
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coordinates. Additionally, we incorporated alpha diversities
through q2-diversity, namely, Faiths phylogenetic distance (16),
Pielou’s evenness, observed features, and Shannon diversity (17).
We also considered use of the microbial ASV table directly and
as PCA features (30 components), however, since they did not
improve the model performance, we opted to only show results
using principal coordinates from unweighted UniFrac distances.

Sleep and physical activity features
processing

For sleep and physical activity data, we extracted two types of
temporal features: (1) the duration of each event (time elapsed from
start to end of sleep/activity), and (2) the time intervals between
the event boundaries and meal logging times (specifically, how
much time had passed from the start of the activity to the meal
logging, and from the end of the activity to the meal logging).
Because providing sleep and physical data was optional in the Food
& You study, they had lower completion rates compared to food
and glucose data. Subjective activity data (i.e., data collected via
daily questionnaires) had the largest coverage among participants
and were therefore used to build the features.

Past cumulative glucose metrics

With the help of the “iglu” package (version 3.4) in R (18),
different glucose metrics, such as ADRR, LBGI, HBGI, COGI,
CONGA etc., were computed for each participant (Supplementary
Table 1). This was done cumulatively across all data collection days
of the participant, i.e., for a given day, glucose data for all previous
days were used to compute the relevant glucose metrics. Hence,
such glucose metrics data could only be generated from the 2nd
day onward for all participants.

Model training parameters

The XGBoost regression model [version 2.0, (19)] was
trained using the GroupShuffleSplit cross-validation method with
parameters set as follows: test size of 0.2, 5 splits, and a random
seed of 42. A grid search for hyperparameter tuning was conducted
for each model combination, searching for the optimal number of
estimators within the range of 1,000–4,000, learning rate between
0.001 and 0.01, maximum depth among 6, 7, 8, subsample ratio
from 0.2 to 0.9, and column subsampling rates of 0.3, 0.6, and 0.9.
The model’s performance was assessed through Pearson correlation
R comparing predicted iAUC with actual iAUC values. Different
hyperparameters for different model combinations are provided in
Supplementary Table 2.

Variance explanation

A linear regression model was fitted to assess the impact of
selected factors on a specified target variable. After training,
predictions were made for the outcome variable, and the

R-squared value was calculated to quantify the variance
explained by the model.

Macronutrient multivariate regression
model

In the analysis of macronutrient intake and its impact on
incremental area under the curve for glucose, an Ordinary Least
Squares (OLS) regression was conducted with carbohydrates, fats,
and proteins as independent predictors and iAUC as the dependent
variable. Prior to regression, a Variance Inflation Factor (VIF)
analysis was conducted to ensure low multicollinearity among
predictors, with all VIFs found to be less than 5, affirming the
distinct contribution of each macronutrient to the model (Sheather,
S. 2009. A modern approach to regression with R).

Model robustness analysis

We were interested in the effect of the number of participants
and the duration of tracking on model performances. We evaluated
the performances on the model configuration consisting of only
the glycemic and the dietary (temporal and compositional) data.
The data were segmented by participant count, creating a gradient
of training sets, each subsequently divided into different train-
test fractions. We employed a gradient boosting algorithm to train
models on these data subsets. The predictive accuracy of each
model was quantified using the Pearson correlation coefficient. The
correlation coefficients derived from this methodology were then
visualized to illustrate the relationship between data set size and
predictive accuracy, as shown in Supplementary Figure 2.

SHAP analysis

To interpret the predictive model and assess the influence of
individual features on the outcome, we employed SHapley Additive
exPlanations (SHAP) using the shap package (version 0.42) in
python (20). A TreeExplainer, specific to tree-based models such
as XGBoost, was instantiated with our trained model to compute
SHAP values for all features. These SHAP values represent the
contribution of each feature to the model’s prediction for each
observation, thereby quantifying the impact in a consistent and
additive manner. Visualization of the distribution and impact of
top 15 features was done using summary_plot function of shap
package. Furthermore, dependence analysis was done for selected
key features to observe the relationship between the magnitude of
the feature and its SHAP value.

Model robustness analysis

We conducted a series of experiments to understand the
relationship between the size of the training set and the resulting
model accuracies. The method entailed varying the proportion of
the dataset through train-test splitting (from 10 to 90% of random
samples of training data) and then subsequently examining the
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FIGURE 1

Study setup. Left: The Food and You digital cohort collected data on diet, glycemia, microbiota, physical activity, and other factors. Middle: These
data are used to train a machine learning model (gradient-boosted trees) for PPGR prediction. Right: Each meal has a corresponding PPGR value
measured as incremental area under the curve (iAUC, see Materials and methods). The model tries to predict the iAUC of a given meal - iAUC
predictions and iAUC measurements are then compared to assess model performance.

model performance. This process was repeated for a series of
incrementally increasing participant counts, from 100 to the entire
dataset, to simultaneously determine the effect of the number of
participants on model performance.

Results

Glucose excursion profiles in relation to
physiological features and in
standardized meals

Glucose excursions are affected by many different factors
stemming from nutritional, temporal and biological factors.
Given that individual meal consumption varies in compositional
proportions and portion sizes, conducting an initial investigation
into standardized meals consumed at specific times of the day,
where confounding factors are minimized, becomes a crucial
preliminary step in examining PPGR. Hence, we investigated the
glycemic impact of three standardized meals, i.e., (i) glucose drink,
(ii) bread, and (iii) bread with butter to inspect each individual’s
glucose response to standardized meals with similar carbohydrate
content (approx. 50 g) but different fat and protein composition
(Figure 1). The details of the standardized meals administration
have been described in detail in our previous study (9), but briefly,
participants consumed standardized breakfasts from days 2 to 7 of
the first week, avoiding alterations and post-meal activities for 2 h.
Depending on their assigned cohort, participants consumed either
6 or 12 standardized breakfasts and 2 or 4 glucose drinks, with
some participants repeating the protocol in week 3 of their tracking
phase.

It is well known that carbohydrate content increases PPGR,
while increasing fat proportions tend to reduce it (2). Figure 2A
presents the macronutrient content in grams for these standardized
meals, showing a consistent carbohydrate content across meals
with variations in protein (approx. 10 g) and fat content
(approx. 25 g) introduced by the addition of butter to white
bread. Figure 2B depicts the distribution of the incremental area
under the curve (iAUC) for glucose for standardized meals. As
expected, median iAUC for glucose drinks (at 180 mmol·min/L)

were highest, followed by white bread only and white bread
with butter, with median iAUC at 130 and 99 mmol·min/L
respectively, demonstrating that the combination of fat and
carbohydrates may have modulatory behaviour on postprandial
glucose excursions, while liquidized form of glucose exhibited
higher PPGR. Correspondingly, the glucose response profiles of
these meals (Figure 2C) also demonstrate that white bread with
butter had an attenuated profile even when compared to simple
white bread. On the opposite side of the spectrum, glucose drinks
started to increase PPGR sharply within 30 min of consumption
and had much higher peaks, and higher iAUC. Multiple regression
analysis on dietary macronutrients and iAUC on the entire dataset
demonstrated that each additional gram of carbohydrates increased
iAUC by 1.08 mmol·min/L. In contrast, each additional gram of
fat and protein decreased iAUC by 1.54 and 3.27 mmol·min/L,
respectively, indicating inverse relationships with postprandial
glucose levels, wherein the effect of protein was double.

We observe high inter-individual variability for each
standardized meal, especially for glucose drinks, reflected by
the high variance in iAUC (Figure 2B). Standardized meals have
larger carbohydrate content than what most participants typically
consumed for breakfast (Figure 2D), and lower iAUC was observed
for regular breakfast meals (Figure 2E). Since breakfasts are
normally not preceded by recent consumption (Figure 2F), the
nutritional features of previous hours for such meals are absent
(Figure 2H). Lunch and dinner, on the other hand, do not differ
strongly when considering past meal characteristics and nutrient
composition (Figure 2G).

Combinatorial feature analysis

In order to best identify the relevant set of features for PPGR,
a combinatorial approach was implemented and overall model
performance was assessed for each combination of feature sets.
Each feature set is derived from corresponding data sources such as
glycemic metrics, dietary metrics, microbiome, sleep and physical
activity datasets (see Material and methods section for feature
generation details). Most model features are mainly comprised of
features that were defined in Zeevi et al. (4), Berry et al. (5), Tily
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FIGURE 2

Macronutrient composition and glycemic response of standardized meals, and nutritional features comparison between breakfast, lunch, and dinner
meals. (A) Displays the mean grams of carbohydrates, proteins, and fats in the standardized breakfasts: A glucose drink, white bread, and white bread
with added butter. (B) Illustrates the distribution of postprandial incremental area under the curve (iAUC) for glucose after consumption of each
standardized breakfast. Dashed vertical lines indicate the median iAUC for each type, demonstrating the shift in glucose response. (C) Displays
glucose responses for the standardized meals (shaded regions highlight confidence intervals at 99%). (D,E) Compare carbohydrate and iAUC values
for standardized breakfasts vs. other breakfast meals. (F) Presents the interquartile range for the time elapsed since the last meal for breakfast, lunch,
and dinner. (G) Boxplots illustrate the proportion of macronutrients—carbohydrates, proteins, fats, and fiber—consumed during breakfast, lunch, and
dinner. (H) Boxplot for past 3-h kcal consumption for breakfast, lunch, and dinner meals.

et al. (7), except for the ones related to microbiome, sleep and
physical activity. Adding a set of features to a model typically led
to a reduction in the number of observations, as only those with
non-null values for these features were kept.

In Figure 3, we can see that combinations that both contained
glycemic (G), diet compositional (Dc) and diet temporal (Dt)
feature sets had the best performances (> 0.68 Pearson correlation).
Removing any one of those three feature sets results in lower
performance. Even though the best performing combination also
contains the personal feature set (i.e., demographic variables
such as age, BMI, etc.) along with G, Dc and Dt, its relative
performance increase is negligible. The second-best combination,
lacking this feature set, is almost identically in performance. This
is also true for the microbiome feature set, whose addition to
either the G + Dc + Dt + P or G + Dc + Dt models provides
no improvement to their performance. The observation that the
addition of personal, microbiome and activity features does not
increase model performance could mean that these feature sets are
non-contributory; alternatively, other feature sets might already
capture the effect of any contributory factors. On the other hand,
the observation that the addition of personal, microbiome and
activity features even slightly decreases model performance is
simply due to their reduced data size, since we remove observations
containing missing values for either of these feature sets. This is
corroborated by the fact that if we replace missing values with

median values for the feature to maintain data size, then the
performances increase (data not shown).

Taking only carbohydrates into the model gives a Pearson
correlation score (R) of 0.46. Moreover, the model with only the two
dietary feature sets, Dc and Dt, gives a R = 0.56. This highlights the
overall importance of just using nutritional features in predicting
iAUC. Models with just one of those feature sets yield R = 0.49 (Dc)
and R = 0.39 (Dt). The glycemic feature set (G) alone provides a
Pearson correlation score of 0.5, underlying the protective potential
of past glucose values. Combining these three feature sets G, Dc,
and Dt, yields the maximal model performance with a R = 0.71,
higher than what was reported by other studies such as R = 0.68
by Zeevi et al. (4), R = 0.62 by Mendes-Soares et al. (6), and
R = 0.64 by Tily et al. (7). Top feature importances for combinations
containing G, Dc and Dt feature sets are shown in Figure 4A. The
most important factors across all these model combinations are
carbohydrate content, glucose baseline, previous 3 h energy kcal
consumed, and past 4 h glucose trend.

Model performances based on meal
times

To further evaluate the performances based on temporal
segregation of logged meals, i.e., split by breakfast, lunch and
dinner, we trained and tested the model on each of these data
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FIGURE 3

Different model implementations and corresponding dataset size and Pearson correlation scores. Presence of a particular feature set is shown in
green. M represents microbiome features (which includes alpha diversity indices and 10 principle components of unweighted UniFrac distances).
Dataset size refers to the number of observations, i.e., food loggings across all users, without missing data in any of the features. Feature list for each
variable group are detailed in Supplementary Table 1.
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FIGURE 4

Feature importances for top features across different model combinations, correlation between predicted and measured PPGR for different meal
timings (using gradient boosted tree models), and explained variance% (R2) of different feature sets (using linear regression models). (A) Heatmap of
top features by their importance in different model combinations containing glycemic, compositional dietary, and temporal dietary features.
(B) Scatter plots comparing the predicted iAUC against the measured iAUC for breakfast, lunch, dinner, and all meal logged data. Pearson correlation
coefficient shown as “R” indicates the strength of the relationship. Blue dots in breakfast data demarcates standardized meals data points. The red
dotted line represents the line of best fit, illustrating the predictive accuracy of the model for each meal timing type. (C) Explained variance (R2 in%)
for different feature sets: Glycemic, Diet Composition, Diet Temporal, Microbiome, Personal (i.e., demographic such as age, BMI etc.) and Activity
(sleep and physical), over meals consumed during different times of the day.

splits. The G + Dc + Dt + P model was used to train and test on
data segregated temporally. Scatter plots in Figure 4B show that
the Pearson correlation between measured and predicted iAUC is
R = 0.78 for breakfast, R = 0.7 for lunch, and R = 0.63 for dinner.
While there appears to be a drop in performance over the day,
it’s important to note that the correlation observed with regular,
non-standardized breakfast alone is R = 0.67 (and R = 0.68 for
standardized breakfast meals). Thus, when excluding standardized
breakfasts, the model performance is quite comparable across meal
times. The slight drop in performance for dinner may be attributed
to the influence of accumulated confounding events affecting PPGR
later during the day, such as physical activity or stress and fatigue,
for which we have low amounts data, or none.

For each meal time, we examined the factors influencing PPGR
through variance explained using regression analysis (Figure 4C).
Relative to other feature sets, glycemic features exhibited the
greatest explained variance for all types of meal times, with the
exception of breakfast. In the case of breakfast, their explanatory
power was similar to that of the diet composition feature set.
For both glycemic and meal composition feature sets, a gradual

decrease in explained variance was observed with increasing time
of day. For the glycemic feature set (G), explained variance
dropped from 31% for breakfast to 27% for lunch and < 25% for
dinner. For the meal composition feature set (Dc), the explained
variance dropped more sharply, from 33% for breakfast, to 15%
for lunch, and 10% for dinner. The explained variance from the
demographic/personal feature set was also higher in breakfast than
in lunch and dinner. The activity feature set showed negligible effect
in all cases.

Comprehensive feature impact analysis
on iAUC predictions

The identification of feature importance in predictive
modeling is accomplished through the application of SHapley
Additive exPlanations (SHAP), a technique for distinguishing
the contributions of individual features to model outcomes (20).
Such approach not only enhances model interpretability but also
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FIGURE 5

SHAP summary plot correlating feature impact on iAUC and SHAP dependency plots showcasing the relationship between six key features and their
SHAP values. (A) provides the mean SHAP value, i.e., impact on predicted iAUC, for top 15 features in the XGBoost model of glycemic and dietary
features sets implementation (G + Dc + Dt + P). (B) plot visualizes the directionality of SHAP values with the corresponding feature magnitude
depicted by color intensity. (C–H) display the SHAP dependency plots of different features on iAUC prediction, highlighting the ranges of features
which contribute toward prediction power [dots are additionally colored according to carbohydrates eaten, or previous 3 h carbohydrate eaten in
the case of (C)]. (C) Carbohydrate intake demonstrates a significant increase in PPGR impact as carbohydrate consumption rises. The peak at around
50 g corresponds to the standardized breakfasts. (D) Baseline glucose and (E) glucose trend from 4 h prior show inverse influence on SHAP values.
(F) Time since the last meal presents a decreasing pattern, suggesting its diminishing impact over time. (G,H) Show dependency plot for past 3 h
energy kcal and protein-carb ratio. Each plot is annotated with a mean line for the corresponding features. Horizontal zero lines highlight the neutral
point of no impact.

mitigates the ’black box’ nature often associated with complex
machine learning models. As depicted in Figure 5A, the SHAP
summary plot offers a detailed visualization of the relative impact
of the main contributing features on model performance. As
before, this feature impact investigation was carried out in the
G + Dc + Dt + P model. The top three impacting features are
carbohydrates, glucose baseline, and past 4 h glucose trend. Even
in other models, these features were always the most important.

Carbohydrates content was identified as the most influential
predictor (Figure 5A). High carbohydrate intake was generally
associated with increased iAUC predictions as indicated by
high positive SHAP values (and vice versa), reflecting the
positive correlation between carbohydrate consumption and PPGR
(Figure 5B). Interestingly, the baseline glucose (i.e., glucose
measurement at the time of corresponding meal logging) and the
4 h glucose trend prior to a meal features demonstrated inverse
relationships with iAUC prediction. Higher values of baseline
glucose and the 4 h glucose trend displayed negative SHAP values
(Figures 5C,D), suggesting a negative contribution to the iAUC
prediction. In other words, as the baseline glucose increases beyond
a certain point, it is as expected associated with lower iAUC.
Conversely, lower baseline glucose values (< 4 mmol/L) and lower
past 4 h glucose trends (< –0.5) had higher SHAP values, suggesting
that lower baseline glucose contributes to an increase in the
predicted iAUC. A similar trend is also observed when considering
nutritional features such as past 3 h energy kcal consumed, fat-
carb ratio and protein-carb ratio (Figures 5E–G), wherein larger
values are associated with lower iAUC but with a diminishing effect
beyond a certain point where further increases in their value do

not lead to more predictive power. For these ratios and past 3 h
energy consumption, both higher relative protein/fat content and
larger recent energy intake produces lower iAUC.

Model robustness analysis

To understand model performance dependency on data
availability, we used the model G + Dc + Dt and downsampled
test set size and participant size (see Materials and methods).
For each configuration defined by the number of participants
and test set size, the model was trained and the Pearson
correlation scores were plotted in Supplementary Figure 2. For
future research, engaging fewer participants typically means lower
resource requirements. Reducing the test size, which simulates
collecting less data per participant, further conserves resources. It
is therefore interesting to explore the minimum amount of data
required to ensure model performance remains robust and reliable
without overextending resources.

As expected, decreasing the number of participants or the size
of the training set led to poorer model performance. However,
model performance was quite stable to a reduction in participant
numbers. For most test size reductions, substantial performance
drops were only observed below 300 participants. With high
levels of test size, even a participant count of 100 led to
good model performance. Overall, this suggests that both the
number of participants and the amount of data collected per
participant could be reduced substantially to achieve good model
results. For instance, model performances with the number of

Frontiers in Nutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2025.1539118
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-12-1539118 June 4, 2025 Time: 18:31 # 10

Singh et al. 10.3389/fnut.2025.1539118

participants greater than 700 have their lowest model performance
at approximately 0.65 for a training size of just 10% of the
data, which is equivalent to the score reported by other studies
(6, 7). However, more data generally leads to better model
performance, as indicated by the superior model accuracy when
using the full data set.

Discussion

In this study based on over 1,000 participants of a digital
cohort on personalized nutrition (Food & You), we showed that
postprandial glucose responses (PPGR) can be accurately predicted
using only glycemic and dietary information collected in situ. This
finding is particularly relevant in the context of the global increase
in metabolic diseases, as it suggests a scalable and non-invasive
method for developing personalized dietary recommendations. The
feasibility of this approach is enhanced by increasingly available
technologies like glucose sensors and AI-assisted food tracking
apps, such as MyFoodRepo, which in our study facilitated precise
data collection with high user adherence (9), showcasing potential
for long-term dietary monitoring and personalized interventions.
Our work thus integrates into a series of previous studies (4–7, 8) by
following their feature processing methodologies, but underscores
the importance of high-resolution, temporal nutrition data on
PPGR prediction.

The impact of meal composition on PPGR has already been
well substantiated (4, 3, 21). Because participants collected diet data
with an app in real time, we were able to investigate the importance
of temporal diet data, which would be challenging with traditional
diet tracking tools such as food frequency questionnaires. We found
that temporal diet features are important for the best performing
models, and consistently emerged as the top contributing features
in the SHAP analysis (Figure 5). In addition, an intuitive yet
interesting aspect of our study is the inclusion of previous days
glycemic metrics. We are not aware of PPGR prediction studies that
incorporate glycemic metrics from previous days, such as MAGE,
SD, or MAG as features into the model. Such glycemic metrics can
be derived from CGM data and serve as important measures for
diabetes management and other clinical conditions (22).

The fact that the exclusion of microbiome features did not
notably impact the model’s performance is a particularly intriguing
finding. The microbiome’s role in metabolic processes and glucose
regulation has been shown before (4, 23), and previous PPGR
prediction studies have suggested that the microbiome is an
important feature of high model accuracy. However, in the present
study, we used an ablation approach to understand the relative
importance of the various feature sets, and our results indicate
that the available microbiome features—which also included PCA
derived features from KEGG orthologs, pathways and enzyme
information (from picrust)—were not necessary for achieving the
best model performance. We attempted different methodologies to
incorporate these microbiome features in the model, such as PCA-
based features as used in (5), raw abundances, alpha diversities
and most variable microbes, but their inclusion did not improve
model performance. This may be because of the following reasons:
(i) The Food & You study only collected 16S microbiota data, and
their subsequent functional metagenomic features might not be

sufficient to improve the model, whereas the addition of shotgun
sequencing data (4, 8) or transcriptomics data (7) might; (ii) other
feature sets, particularly those involving diet, might already capture
the effect of any potential contributory microbiota factors; (iii) the
microbiota as sampled in the Food & You study, i.e., from stool,
is reflective of the microbiota in the sigmoid colon, whereas most
glucose absorption happens in the duodenum and jejunum of the
small intestine (24).

Similarly, incorporating sleep and physical activity features
did not improve model performance, despite their recognized
relevance in glycemic metabolic health (22, 25). In our study, when
compared to food and glucose data, sleep and physical activity
accounted for the lowest resolution of data as it was an optional
aspect of the study. Consequently, incorporating this data led to a
reduction in the overall training size per participant, which in turn,
lowered model performance (see Figure 3, where, for example, the
performance of model G + Dc + Dt + A was inferior to that of
model G + Dc + Dt). However, when missing values in the activity
features were imputed with their corresponding median values,
the decline in performance was reversed. Generally, improving
the collection of objective sleep and physical activity data could
potentially enhance model performance (26).

The analysis of explained variance across meals, segmented
by meal timings, offers insights into the factors influencing
temporal PPGR. Glycemic features collectively explained most of
the variance across all meal-timing types, at approximately 35%.
Following this, meal composition explained an additional 20% of
the variance for all recorded meals. This is in line with research that
highlights the impact of macronutrient composition on glycemic
outcomes (5). The SHAP analysis further underscored the influence
of various factors, such as carbohydrate intake and baseline glucose
levels, on iAUC predictions (Figure 5). Indeed, carbohydrate
counting is a widely used method for diabetic management (27, 28),
and our finding of a reasonable model performance of R = 0.46 with
carbohydrate intake as the only feature demonstrates its efficacy as a
first approximation. However, the SHAP analysis indicates that the
predictive potential drops when carbohydrate content is low (< 25
g) (Figure 5A).

Carbohydrate counting is a straightforward method, but
its predictive power for PPGR is relatively weak. The high
performance of our carbohydrates-only model, compared to other
studies, is likely due to Food & You participants tracking their
food intake for at least 14 days, coupled with the high temporal
resolution data collection through the MyFoodRepo app (9). The
development of the G + Dc + Dt model, which requires only
a glucose sensor and food tracking with the app, substantially
improves model performance to R = 0.71. Given the ease of using
CGMs for glucose sensing and the app for food tracking, we believe
this approach offers a scalable solution for glucose management.

Our study has several limitations that warrant attention. It
relied on data collected from a convenience sample in Switzerland
(9), resulting in a lack of representativeness across several crucial
dimensions. Future efforts should aim to broaden the diversity
of the data. Additionally, the design of the cohort study protocol
prioritized ease of use and high adherence, leading to decisions
that compromised the data’s breadth and depth. For instance,
the absence of blood sample collection restricted our ability
to explore metabolic aspects in depth. Microbiota analysis was
conducted at the 16S level due to resource constraints. The
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lack of standardization in physical activity tracking—specifically,
not providing all participants with the same activity tracker—
may have omitted vital indicators that could enhance model
performance. Furthermore, this study was observational rather
than interventional, meaning there is no experimental validation
of our method’s effectiveness and performance yet, although such
validation is in the planning stages.

Addressing these issues could potentially improve model
performance further. Specifically, novel machine learning methods
could further increase the predictive power of the models, a
possibility we are actively exploring. However, there may be
diminishing returns from incorporating an increasingly broad
array of data sources to boost model performance. A trade-
off between improving predictive power and the burden of
collecting more individual data means that determining the
optimal point becomes critically important. Although achieving
ever-improving performance is appealing, data collection must
remain cost-effective and as automated as possible to be scalable
and widely adopted. Our model’s high performance, achieved
with just two data sources—glycemia and diet, which comprises
of not just carbohydrate content, but meal timing, previous
meal consumption patterns, macronutrient ratios, and baseline
glucose levels—all of which can be practically captured through
a smartphone app and CGM to enable scalable, personalized
nutritional recommendations.
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