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Analysis of dietary pattern e�ects
on metabolic risk factors using
structural equation modeling

Åse Mari Moe and Sigrunn H. Sørbye*

Department of Mathematics and Statistics, UiT The Arctic University of Norway, Tromsø, Norway

Background: This study aimed to investigate the e�ects of dietary patterns on
metabolic cardiovascular disease (CVD) risk factors in a Nordic population.

Methods: The study sample comprised 9,988 participants aged 40–79 years
from the seventh Tromsø study (Norway). Available data included food intake
values collected by a food frequency questionnaire. Exploratory structural
equation models were utilized to analyse direct, indirect, and total e�ects of
dietary patterns on metabolic CVD risk factors, using obesity as a mediator.
The CVD risk factors included CRP, HDL-cholesterol, triglycerides, glycated
hemoglobin, and blood pressure. All structural equations were adjusted for
available lifestyle and demographic variables.

Results: Three common dietary patterns for women and men were identified,
named Snacks and Meat, Health-conscious, and a Processed Dinner pattern.
Additionally, a Porridge pattern was identified for women and a Cake pattern
for men. The Health-conscious pattern showed a direct favorable e�ect on
HDL-cholesterol (both sexes) and triglycerides (women). The Snacks and Meat
pattern showed an unfavorable direct e�ect on triglycerides (men), while the
Cake pattern had a favorable e�ect. All patterns, except the Health-conscious
pattern for women, had direct e�ects on obesity, indirect e�ects on all metabolic
risk factors, and a total e�ect on CRP. Snacks andMeat and the Processed Dinner
patterns had unfavorable total e�ects on HDL-cholesterol (both sexes).

Conclusion: Dietary patterns showed direct associations with HDL-cholesterol
and triglycerides. Obesity was an important mediator in explaining the indirect
e�ects of dietary patterns on all metabolic risk factors.

KEYWORDS

cross-sectional study, CVD risk factors, dietary patterns, exploratory structural equation

models, mediation analysis, Tromsø Study

1 Introduction

Lifestyle variables such as diet, smoking, alcohol consumption and physical inactivity,
have been identified as important individual risk factors in developing cardiovascular
disease (CVD), a leading cause of mortality worldwide (1). Specifically, an unhealthy
diet is a recognized and significant contributor to obesity which is well-known to induce
disturbances in cardiovascular and metabolic functions in the body (2–4). In addition to
obesity, important metabolic CVD risk factors include dyslipidemia, hypertension and
insulin resistance (5). Chronic inflammation, as measured by increased levels of C-reactive
protein (CRP), has also been suggested as a risk factor, not merely as a risk marker (6).

The interplay between individual lifestyle variables and metabolic CVD risk factors
is complex. Obesity is closely related to dietary factors (7), while also being an
individual metabolic CVD risk factor (8). In modeling the associations between dietary
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patterns and components of metabolic syndrome, the influence of
diet was most pronounced in estimating waist circumference, a
widely used measure of obesity (9). Estimated associations between
diet and metabolic risk factors beyond obesity typically change
depending on whether the analysis is adjusted for body mass index
(BMI) or not (10, 11).

Due to the strong associations between diet and obesity, it
is natural to model obesity as a mediator, partially explaining
some of the effects of diet on metabolic risk factors (12,
13). However, only a few analyses have used models in
which obesity acts as a mediator and investigated the direct,
indirect and total effects of diet on recognized metabolic
risk factors (14). Estimation of these effects is easily biased
unless the models adjust for potential confounders, like lifestyle
and demographics variables. For example, socioeconomic status
has shown strong links to both diet and metabolic risk
factors (15).

The convenient framework of exploratory structural equation
models (ESEM) facilitates assessment and testing of assumed
relationships between variables, allowing for inclusion of
mediators, confounders and incorporation of prior knowledge.
ESEM combines exploratory factor analysis (EFA) with structural
equation models (SEM) (16). The structural SEM part allows
for simultaneous estimation of all associations of a hypothesized
model using regression equations (17). This structural part can
be used to estimate associations between dietary patterns, obesity
and the observed CVD risk factors, adjusting for confounding
variables. The EFA part is simultaneously used to construct
latent dietary patterns based on observed intake values of given
food variables (14). Often, such dietary patterns are constructed
prior to the statistical analysis, while ESEM combines this with
structural regression analysis. This allows for dietary patterns to
overlap, making ESEM more flexible compared to standard SEM
(16, 17).

The primary aim of the given study was to investigate
the direct, indirect and total effects of dietary patterns on
established metabolic CVD risk factors using ESEM. The analysis
was conducted on data from the seventh survey of the
Tromsø Study including 9,988 participants. The study sample
can be seen to represent a general Nordic population, and
the large sample size facilitated separate analysis for women
and men.

2 Materials and methods

2.1 Study population

The Tromsø Study is a comprehensive population-based
health study conducted in the municipality of Tromsø,
Norway. Currently, it includes a total of 7 consecutive
cross-sectional surveys (Tromsø1–Tromsø7) conducted
within the years 1974 to 2016. In total, more than 45,000
individuals have participated in one or more of these
surveys. In addition to questionnaires and interviews,
collected data included clinical measurements and biological
samples (18).

2.2 Study sample

Our study sample included participants of Tromsø7 who
also answered a comprehensive food frequency questionnaire
(FFQ). The survey was conducted in 2015–2016 and originally all
inhabitants of Tromsømunicipality above the age of 40 were invited
to participate. Out of the 21,070 individuals who participated
in Tromsø7 and consented to research, 15,139 answered the
FFQ. Of these, 3,487 answered less than 90% of the FFQ and
were excluded. Further, 405 did not report on physical activity
level, education level, or smoking status. Additionally, 205 had
missing measurements on height, weight, waist circumference,
blood pressure, hemoglobin A1c (HbA1c), HDL-cholesterol or C-
reactive protein (CRP). All of these 610 participants were excluded.
Also, 393 participants were excluded due to having either the 1%
highest or lowest total energy intake or the 1% highest or lowest
total water intake. Finally, participants of 80 years of age or older,
and participants with known diabetes were excluded. Participants
who did not provide information on diabetes or prior diabetes were
treated as without diabetes. The final study sample included 9988
respondents (Supplementary Figure S1).

2.3 Dietary data

The paper-based FFQ of Tromsø7 has been validated in (19)
and further detailed in (20). After completing the form, the
participants returned it by postal mail using a pre-paid envelope
and answers were checked manually by trained technicians before
scanning. The FFQ included a total of 261 questions, providing
individual average intake values of various dishes, foods, beverages
and supplements. The responses to the FFQ were used to calculate
the food intake in g/day using the food composition database and
nutrient calculation system KBS. The questions on food intake
were aggregated into 35 food variables, excluding supplements,
water, tea and alcohol consumption (Supplementary Table S1). KBS
was also used to calculate the total intake of energy (kJ/day) and
macronutrients (g/day). To account for differences in energy intake
across the population, the food intake for each participant was
divided by their individual energy intake and multiplied by the
mean energy intake of the population. Subsequently, each food
variable was standardized to have a zero mean and a variance
of one.

2.4 Anthropometric and metabolic
measures

As part of Tromsø7, trained personnel conducted
measurements of waist circumference (cm), height (cm) and
weight (kg) of the participants, under conditions of light clothing
and without shoes. Waist circumference was measured with a Seca
measurement tape at level of the umbilicus. The Jenix DS-102
(DongSahn Jenix, Seoul, Korea) was utilized for height and weight
measurements. The body mass index (BMI) was calculated as
weight divided by height squared (kg/m2).

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2025.1540919
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Moe and Sørbye 10.3389/fnut.2025.1540919

Blood samples were collected non-fasting. Levels of HDL-
cholesterol (mmol/L), triglycerides (mmol/L), and CRP (mg/L)
were analyzed using enzymatic colorimetric methods by the
Cobas 8000 c702 instrument (Roche Diagnostics, Mannheim,
Germany). HbA1c (%) was analyzed by high-performance liquid
chromatography using Tosoh G8 instrument (Tosoh Bioscience,
San Francisco, USA). The blood pressure (mmHg) of the
participants was measured three times using an automatic
oscillometric digital device (Dinamap ProCare 300 monitor,
GE Healthcare, Norway), recording the average of the last
two measurements.

2.5 Lifestyle and demographic variables

In studying associations between diet and health, it is important
to adjust for confounders. In addition to age, the given survey
data included self-reported education level, physical activity level,
and smoking status. The participants also reported on mean
weekly alcohol consumption (dl/day) as part of the FFQ. This
variable is retained as a continuous variable, avoiding potential
loss of information due to categorization (21) and arbitrary cut-off
points (22).

The variable on education level included four categories:
Primary/partly secondary education, upper secondary education,
short tertiary education, and long tertiary education. Physical
activity level was assessed using the four-level activity scale
developed by Saltin-Grimby (23), including sedentary (mainly
reading/watching TV), light (walking/biking more than 4 h/week),
moderate (exercise more than 4 h/week), and vigorous activity level
(hard exercise/competitive sports more than 4 h/week). Due to the
infrequent reporting of vigorous activity, this category was merged
with moderate activity and labeled as high activity level. Smoking
status was categorized as smoker or non-smoker, the latter category
also including previous smokers.

2.6 Statistical method

The primary focus of this paper was to explore the associations
between dietary patterns and established metabolic risk factors
for cardiovascular disease utilizing the framework of ESEM. All
analyses were performed separately for women and men. A
simplified representation of the ESEM is depicted in Figure 1.

In order to test different ESEMs, we initially used a separate
EFA with varimax rotation for the 35 aggregated food variables.
This was performed as an initial variable selection step to reduce
model complexity, as inclusion of weakly correlated variables
in ESEM might introduce unnecessary noise and give poor
performance. Specifically, we chose to discard food variables having
an absolute value for the loadings less than 0.3. The cuf-offs for
the number of factors for this EFA was determined based on
the scree plot of eigenvalues in which the localization of the so-
called “elbow” indicated where the eigenvalues leveled off. Results
incorporating all food variables in the ESEM are provided in the
Supplementary Section 5.

The ESEM was fitted assuming a predefined number of
underlying dietary patterns. The dietary patterns represent latent
overlapping factors, constructed to explain the correlation structure
of the observed food variables. The dietary patterns are modeled
to have a direct effect on both obesity and the six metabolic risk
factors: HDL-cholesterol, triglycerides, CRP, HbA1c, and systolic-
and diastolic blood pressure. The values of HDL-cholesterol,
triglycerides, and CRP were log-transformed, as these measures
had highly left skewed distributions. The log-transformation gives
distributions that are closer to normal and reduces variance. Also,
this transformation emphasizes differences at low values. This is
advantageous, especially for CRP measures, as the focus here is on
elevated levels rather than high levels due to acute infection.

The ESEM includes obesity as a mediator between dietary
patterns and the metabolic risk factors. Obesity is modeled as a
latent variable, based on observed BMI and waist circumference.
The resulting model structure isolates the direct dietary effects on
the metabolic risk factors, not being influenced by obesity. Also,
it captures the indirect effects as the product of the estimated
regression coefficients between dietary patterns and obesity, and
between obesity and the risk factors. The total effect of diet on
the metabolic risk factors sums up the indirect effect from diet
through obesity and the direct effect of diet. All the structural
regression equations of the model were adjusted for confounding
effects of lifestyle- and demographic variables, including age,
education level, physical activity level, smoking status, and alcohol
beverage consumption.

The unknown parameters of the resulting ESEM, including
factor loadings and regression coefficients, were estimated using
the maximum likelihood method. This method assumes that the
observed variables have multivariate normal distributions, but it is
quite robust to departures from normality in the data. The robust
standard errors and the Satorra-Bentler scaling of test statistics
were employed to account for discrepancy from the normality
assumption. The reported estimates are not standardized and
the variance of the latent variables are fixed to one. As large
variation in measurement scales can cause numerical problems
in fitting the ESEM, waist circumference was represented in
decimeters and blood pressure in cmHg (24). P-values < 0.01 are
considered significant.

The model fit was assessed using the comparative fit index
(CFI), the root mean square error of approximation (RMSEA) and
the standardized root mean squared residual (SRMR). Common
cut-offs used to indicate acceptable model fit is CFI > 0.90,
RMSEA < 0.08 and SRMR < 0.08. Additionally, Monte Carlo
simulated tailored cut-offs were computed.

3 Results

3.1 Characteristics of the study sample

The study sample included a total of 5365 women (53.7%)and
4623 men aged 40 to 79 years. The mean age of the women
was 55.7 years, being slightly lower than the mean age of
57.0 years for the men. More than half of the participants
had tertiary education, the proportion being 55.9% among
women and 52.6% among men. About 12% of both women
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FIGURE 1

Simplified path diagram illustrating the assumed theoretical structure of the model. Circles represent latent variables, while squares represent
observed values. BMI, body mass index; WC, waist circumference; CRP, C-reactive protein; HDL-C, high density lipoprotein cholesterol; TG,
triglycerides; HbA1c, hemoglobin A1c; DBP, diastolic blood pressure; SBP, systolic blood pressure.

and men reported to have a sedentary physical activity level,
while the majority reported light physical activity level. More
men than women reported a high physical activity level, the
percentages being 36.1% among men vs. 22.9% among women.
Approximately 12% of the participants were smokers. The
energy adjusted median alcohol consumption was 0.69 dl/day for
women and 1.41 dl/day for men, see Supplementary Table S2 for
more details.

3.2 Initial food variable selection using EFA

A selection of the 35 food variables was determined based
on EFA with four factors, retaining food variables with absolute
loadings higher than 0.3. In the subsequent analysis using the
main ESEMs, this implied that the latent dietary patterns were
constructed based on a selection of 21 food variables for women
and 18 food variables for men.

3.3 Characteristics of dietary patterns
estimated by ESEM

The main ESEMs for both women and men were fitted using
the selected food variables by EFA and four dietary patterns.

The estimated loadings for the four factors are displayed
in Table 1. These reflect three quite similar dietary patterns for
women and men. The first factor (diet 1) represents a Snacks
and Meat pattern, having the highest positive loadings on candy,
chips, cakes, and pastries, compound meat dishes, and in addition
rice and pasta for women and processed meat for men. In
contrast, this pattern showed negative loadings on unprocessed
fish. The second dietary pattern (diet 2) is referred to as a
Health-conscious pattern. It showed high positive loadings on
unprocessed fish, Asian dishes, chicken, and vegetables but negative
loadings on bread. The third common dietary pattern is seen as a

Processed Dinner pattern, characterized by high positive loadings
on processed fish and meat, red meat, potato, and sauce. For
women, the fourth factor is interpreted as a Porridge pattern
(diet 4a), showing the highest positive loadings on sweetened
porridge (rice and sour cream porridge), pancakes, and sweetened
breakfast cereals. The fourth factor for men is referred to as a
Cake pattern (diet 4b), having the highest positive loading on
cakes and pastries but also a high positive loading on compound
meat dishes.

Table 2 displays the estimated coefficients of lifestyle and
demographic variables in the regression models using each of
the dietary pattern as the dependent variable. For both sexes,
higher age was negatively associated with Snacks and Meat and
the Health-conscious patterns, while being positively associated
with the Processed Dinner pattern. Further similarities in the
analysis for women and men include a positive association
between higher education level and the Health-conscious pattern
and a negative association with the Processed Dinner pattern.
Compared to a sedentary activity level, light and high activity
levels were negatively associated with the Snacks and Meat and
the Processed Dinner patterns, while a high activity level was
positively associated with the Health-conscious pattern for both
sexes. Smoking was positively associated with the Processed
Dinner pattern and negatively associated with theHealth-conscious
pattern. Smoking and alcohol consumption were negatively
associated with the Porridge pattern for women and the Cake
pattern for men.

3.4 Direct, indirect and total e�ects of
dietary patterns estimated by ESEM

All significant associations between dietary patterns,
obesity, and metabolic risk factors are displayed in
Figure 2. These include direct effects between dietary
patterns on the metabolic risk factors, and also the effects
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TABLE 1 Dietary factor loadings estimated by ESEM.

Women Men

Food variables Diet 1 Diet 2 Diet 3 Diet 4a Diet 1 Diet 2 Diet 3 Diet 4b

Candy 0.26 -0.09 0.00 0.01 0.18 -0.02 0.01 0.04

Chips 0.28 -0.07 0.02 -0.11 0.25 0.03 0.03 -0.02

Cakes/Pastries 0.32 0.04 0.06 0.25 0.18 0.12 0.01 0.65

Compound meat dishes 0.45 0.06 0.12 0.12 0.38 0.20 0.07 0.48

Rice/Pasta 0.28 0.12 0.03 -0.01 0.12 0.29 -0.04 0.02

Fish, unprocessed -0.30 0.41 0.15 -0.11 -0.34 0.29 0.21 -0.07

Asian dishes 0.01 0.34 -0.11 0.05 -0.04 0.28 0.04 -0.02

Chicken 0.15 0.44 0.05 -0.20 0.01 0.35 0.02 0.00

Vegetables -0.17 0.57 -0.04 -0.20 -0.19 0.36 0.05 -0.06

Fish, processed -0.04 0.11 0.34 0.09 -0.09 0.07 0.28 0.06

Meat, processed 0.12 -0.14 0.41 0.06 0.25 -0.16 0.47 0.05

Meat, red 0.02 0.12 0.48 -0.04 0.06 0.11 0.46 -0.05

Potato -0.11 -0.13 0.36 0.05 -0.11 -0.09 0.38 -0.03

Sauce etc. 0.14 0.09 0.33 -0.05 0.10 0.18 0.34 -0.01

Porridge/Pancakes 0.06 -0.08 0.13 0.47 0.00 -0.10 0.07 0.27

Breakfast cereals, sweetened 0.01 -0.04 -0.02 0.40 -0.07 -0.03 -0.08 0.17

Bread -0.08 -0.39 -0.05 -0.09 -0.04 -0.30 -0.26 -0.12

Meat spread 0.09 -0.14 0.05 -0.22 0.13 -0.13 -0.12 -0.12

Fish spread -0.16 0.06 -0.02 -0.21

Nuts -0.09 0.19 -0.32 -0.01

Breakfast cereals/Porridge, unsweetened -0.07 0.22 -0.22 0.15

Diet 1: Snacks and Meat pattern, Diet 2: Health-conscious pattern, Diet 3: Processed Dinner pattern, Diet 4a: Porridge pattern, Diet 4b: Cake pattern.

through the latent obesity variable. All of the underlying
regression models were adjusted for the confounding
effects of the lifestyle and demographic variables given in
Section 2.5.

The Health-conscious pattern showed a direct positive effect
on HDL-cholesterol and a direct negative effect on triglycerides
(women only). The Snacks andMeat pattern for men was estimated
to have an unfavorable direct effect on triglycerides, while the
Cake pattern showed a favorable direct effect, decreasing the level
of triglycerides.

All the dietary patterns were seen to be directly associated
with obesity, except for the Health-conscious pattern for women.
Specifically, the Snacks and Meat, the Health-conscious (men
only) and the Processed Dinner patterns showed significant
positive association with obesity, while the Porridge and Cake
patterns had a negative effect. Obesity was consistently found
to have a significant adverse effect on all of the given
metabolic risk factors, increasing the levels of CRP, HbA1c,
triglycerides, and blood pressure, while decreasing the level
of HDL-cholesterol.

The complete mediation analysis of direct, indirect and total
effect is summarized in Table 3. All of the estimated indirect effects
were seen to be significant, except for the Health-conscious dietary

pattern in women. Specifically, the indirect effects of the Snacks
and Meat pattern, the Health-conscious pattern (men only) and
the Processed Dinner pattern showed unfavorable effects on the
metabolic risk factors, while the Porridge pattern and the Cake
pattern had favorable effects.

For both sexes, the Snacks and Meat pattern and the Processed
Dinner pattern were estimated to have an unfavorable total
effect on CRP and HDL-cholesterol. The Porridge pattern and
the Cake pattern were seen to have a favorable total effect
on CRP. For men, the Snacks and Meat pattern had a total
unfavorable effect on triglycerides and diastolic blood pressure
and the Cake pattern had a favorable total effect on the levels of
HDL-cholesterol and triglycerides. The Health-conscious pattern
for women showed a favorable total effect on the levels of
triglycerides, retaining the favorable direct effect. However, the
total effect of the Health-conscious pattern on HDL-cholesterol
was not significant for neither women nor men, despite the
favorable direct effect. For men, obesity seemed to act as a
competitive mediator as the direct effect was positive while
the indirect effect was negative giving a non-significant total
effect. In women, we also noticed unfavorable total effects
of the Processed Dinner pattern on triglycerides and systolic
blood pressure.
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TABLE 2 Estimated regression coe�cients of lifestyle and demographic variables in explaining each dietary pattern (dependent variable).

Women Men

Confounders Diet 1 Diet 2 Diet 3 Diet 4a Diet 1 Diet 2 Diet 3 Diet 4b

Age -0.116∗ -0.013∗ 0.024∗ 0.017∗ -0.123∗ -0.056∗ 0.043∗ 0.009

Lower secondary (ref) 0 0 0 0 0 0 0 0

Upper secondary 0.05 0.25∗ -0.31∗ -0.16 0.21∗ 0.40∗ -0.26∗ -0.07

Short tertiary 0.19∗ 0.33∗ -0.57∗ -0.14 0.16 0.63∗ -0.51∗ -0.10

Long tertiary 0.13 0.51∗ -0.83∗ -0.06 0.05 0.92∗ -0.94∗ 0.05

Physical activity level:

Sedentary (ref) 0 0 0 0 0 0 0 0

Light -0.27∗ 0.30∗ -0.37∗ 0.02 -0.41∗ 0.12 -0.30∗ 0.11

High -0.20∗ 0.58∗ -0.64∗ 0.04 -0.53∗ 0.25∗ -0.49∗ 0.14

Smoking status:

Non-smokers (ref) 0 0 0 0 0 0 0 0

Smokers -0.02 -0.32∗ 0.42∗ -0.29∗ 0.11 -0.25∗ 0.26∗ -0.23∗

Alcohol consumption -0.07 0.08 0.05 -0.34∗ 0.11∗ 0.10∗ 0.04 -0.18∗

Diet 1: Snacks and Meat pattern, Diet 2: Health-conscious pattern, Diet 3: Processed Dinner pattern, Diet 4a: Porridge pattern, Diet 4b: Cake pattern. *p < 0.01. Lower secondary education
category includes primary/partly secondary level.

FIGURE 2

Significant e�ects between dietary patterns and metabolic CVD risk factors including obesity as a mediator. Diet 1: Snacks and Meat pattern, Diet 2:
Health-conscious pattern, Diet 3: Processed Dinner pattern, Diet 4a: Porridge pattern, Diet 4b: Cake pattern.

3.5 Estimated e�ects of confounders on
obesity and metabolic risk factors

Age was positively associated with all metabolic risk factors
among women (Supplementary Table S3). Among men, age was
positively associated with obesity and with all risk factors except for
triglycerides and diastolic blood pressure. Significant associations
seen for both women and men include a negative association
between long tertiary education level and obesity. Further, light
and high activity levels were negatively associated with obesity and
a high activity level was associated with lower CRP and higher
HDL-cholesterol levels. Smokers showed lower rates of obesity,
lower HDL-cholesterol, and higher levels of CRP, triglycerides and
HbA1c. Higher consumption of alcoholic beverage was associated

with increased HDL-cholesterol levels and diastolic blood pressure.
For a detailed overview of all estimated effects of confounders, see
Supplementary Table S3.

3.6 Evaluation of the model

To explore alternatives to the main ESEMs, models with three
dietary patterns were fitted using both a selection of the aggregated
food variables found by EFA and all of them. In addition, models
with four dietary patterns and all food variables were fitted
(Supplementary Section 5).

The common dietary patterns (Diet 1–3), were identified
consistently across all models fitted. However, the main
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TABLE 3 Direct, indirect and total e�ect of diet and obesity on metabolic CVD risk factors.

Women E�ects Obesity CRP HDL-C TG HbA1c SBP DBP

Diet 1 Direct 0.08∗ 0.02 -0.01 -0.01 -0.01 0.00 0.00

Indirect 0.04∗ -0.01∗ 0.01∗ 0.01∗ 0.03∗ 0.01∗

Total 0.06∗ -0.02∗ 0.00 -0.01 0.02 0.01

Diet 2 Direct 0.02 -0.03 0.01∗ -0.03∗ -0.01 -0.06 0.00

Indirect 0.01 0.00 0.00 0.00 0.00 0.00

Total -0.03 0.01 -0.03∗ -0.01 -0.05 0.00

Diet 3 Direct 0.20∗ 0.02 0.00 0.02 -0.01 0.03 0.00

Indirect 0.09∗ -0.02∗ 0.03∗ 0.01∗ 0.06∗ 0.02∗

Total 0.11∗ -0.02∗ 0.05∗ 0.01 0.09∗ 0.02

Diet 4a Direct -0.12∗ 0.00 -0.01 0.00 0.01 -0.03 -0.02

Indirect -0.05∗ 0.01∗ -0.02∗ -0.01∗ -0.04∗ -0.01∗

Total -0.05∗ 0.00 -0.02 0.00 -0.06 -0.04

Men E�ects Obesity CRP HDL-C TG HbA1c SBP DBP

Diet 1 Direct 0.11∗ 0.05 -0.02 0.04∗ -0.01 0.04 0.03

Indirect 0.03∗ -0.01∗ 0.02∗ 0.01∗ 0.03∗ 0.02∗

Total 0.08∗ -0.03∗ 0.06∗ 0.00 0.07 0.05∗

Diet 2 Direct 0.07∗ 0.02 0.01∗ -0.02 -0.02 0.01 0.00

Indirect 0.02∗ -0.01∗ 0.01∗ 0.00∗ 0.02∗ 0.01∗

Total 0.04 0.01 -0.01 -0.02 0.02 0.01

Diet 3 Direct 0.22∗ 0.01 0.01 -0.01 0.00 0.00 0.02

Indirect 0.06∗ -0.02∗ 0.03∗ 0.01∗ 0.06∗ 0.03∗

Total 0.06∗ -0.02∗ 0.02 0.01 0.06 0.05

Diet 4b Direct -0.10∗ -0.03 0.01 -0.03∗ -0.01 0.03 -0.01

Indirect -0.03∗ 0.01∗ -0.02∗ -0.01∗ -0.03∗ -0.01∗

Total -0.06∗ 0.02∗ -0.04∗ -0.02 0.01 -0.02

CRP, C-reactive protein; HDL-C, HDL-cholesterol; TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood pressure. ∗P-value < 0.01.

models using four dietary patterns and a selection of the
food variables were the only ones giving CFI > 0.90. All
of the fitted models clearly met the cut-offs of RMSEA
< 0.08 and SRMR < 0.08 (Supplementary Table S16).
Fitting the main ESEM for women, the goodness-of-fit
indexes were CFI = 0.908, RMSE = 0.039, and SRMR =
0.025. For men, the corresponding measures were CFI
= 0.917, RMSE = 0.041, and SRMR = 0.026. Using the
alternative models, both RMSEA and SRMR increased slightly
(Supplementary Table S16).

The goodness of fit indexes can improve by fitting models
with a higher number of dietary patterns, but this also increases
model complexity. Here, the main models using four patterns and
a selection of the food variables are seen to represent a reasonable
trade-off between goodness-of-fit, interpretation and simplicity.
Simulated data with a similar correlation structure and number
of observations, but with normal distributions, resulted in tailored
cut-offs around CFI > 0.998, RMSE < 0.006, and SRMR <

0.011.

4 Discussion

4.1 Dietary patterns and metabolic risk
factors for CVD

Four dietary patterns and their effects on metabolic risk
factors have been investigated utilizing ESEM. The study sample
is assumed to represent a general Nordic population and the large
sample size enabled separate analysis for women and men. The
analysis provided estimates of direct, indirect and total effects of
dietary patterns on metabolic CVD risk factors, modeling obesity
as a mediator. The three patterns labeled the Snacks and Meat
pattern, the Health-conscious pattern and the Processed Dinner
pattern, were similar for women and men. In addition, the analysis
identified a sweetened Porridge pattern for women and a Cake
pattern for men.

The Snacks and Meat pattern shares similarities with dietary
patterns previously labeled as Western, Sweets and Snacks,
Unhealthy, Modern, Fast Food, or Convenience-food (25). The
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Health-conscious pattern shares similarities with dietary patterns
previously labeled as Healthy, Southern or Prudent, and also
resembles a Mediterranean diet. This pattern was associated with
a healthier lifestyle, characterized by increased physical activity
levels and less smoking, indicating that it is commonly followed
by health-conscious participants. The Processed Dinner pattern
resembles a more traditional Norwegian dietary pattern having
high loadings on fish product variables and potatoes. However, this
pattern was also rich on meat and processed food and appeared
to be associated with a less healthy lifestyle, such as smoking
and lower physical activity levels. Both the Porridge pattern
(women) and the Cake pattern (men) were associated with lower
alcohol consumption.

In general, vegetables andminimally processed meat and plants
have consistently shown associations with better health in several
analyses (26, 27). This was also seen in our analysis. By assuming
obesity to act as a mediator between dietary patterns and metabolic
risk factors, the direct effect of diet on the risk factors is isolated.We
observed direct favorable effects of the Health-conscious pattern on
HDL-cholesterol (both women and men) and triglycerides (only
women). This is in coherence with previous studies adjusting for
BMI, having linked dietary patterns rich in vegetables, fruits, whole
grains and fish with lower triglyceride levels (10, 28–30), higher
HDL-cholesterol levels (30–32), and lower blood glucose levels
(29, 30, 33). Favorable effects of healthy diets on HDL-cholesterol
and triglycerides have also been found in randomized controlled
trials (34).

Dietary patterns characterized by high consumption of meat
and processed foods are associated with unfavorable trends in
metabolic risk factors. This includes negative association with
HDL-cholesterol (11, 31, 33, 35, 36) and positive association
on fasting blood glucose (33, 35, 36). Among men, our study
showed a direct unfavorable effect of the Snacks and Meat pattern
on triglycerides.

Surprisingly, the Cake pattern was seen to have a favorable
association with triglyceride levels among men. This pattern was
ambiguous, giving a high loading on cake but also on compound
meat dishes. Dietary patterns including sweets have been reported
to not have an association with metabolic risk factors (29, 31, 37).
Other studies have in fact found health-favorable associations
between cake/sugar and metabolic risk factors, also suggesting
various explanations (38, 39). One such possible explanation is
under-reporting of unhealthy food choices (40, 41). An alternative
explanation could be that individuals who are overweight or have
lifestyle-related diseases, may adopt changes in lifestyle behavior
like dieting. This is commonly motivated by reasons such as weight
management or addressing health problems (42, 43). Both the Cake
pattern and the Porridge pattern were negatively associated with
obesity. This might seem counter-intuitive but is supported by
previous findings. For instance, free sugar intakes from cakes, pies,
and biscuits for men, and breakfast cereals for women, have been
found to reduce the probability of obesity (39).

Obesity is an important risk factor for cardiovascular disease.
This emphasizes the necessity of promoting healthy dietary choices
to a population to reduce obesity rates. Various analyses have
observed the inverse relationship between obesity and dietary
patterns rich in vegetables, fruits, and nuts, combined with low

intake of meat and sweets (44). Both the Snacks and Meat pattern
and the Processed Dinner pattern showed positive associations
with obesity for both sexes. This association resulted in an overall
unfavorable effect on several metabolic CVD risk factors. Although
the Health-conscious pattern was positively associated with obesity
in men, its direct effect on HDL-cholesterol was favorable.
For women, the Health-conscious pattern was not significantly
associated with obesity, possible due to small differences in these
patterns between men and women. Given the importance of
obesity in explaining the risk factors, this typically gave unfavorable
indirect effects of Diet 2 for men, while giving non-significant
indirect effects for women.

The estimated direct effects largely align with the indirect effects
mediated by obesity. Diets associated with one aspect of health have
been seen to influence other health aspects as well (26). In our
analysis, diets rich in vegetables, fish, and low unprocessed foods
are preferable for mitigating several risk factors for cardiovascular
disease, compared to diets high in processed foods and sweets.
This finding is consistent with existing literature and dietary
recommendations (26).

4.2 Model fit

The main ESEM was deemed a useful representation of the
main known effects of dietary pattern on recognized CVD risk
factors. The fit measures of the model were comparable to similar
analysis and were within traditionally accepted cut-offs (14, 45).
Measures of model fit can be sensitive to factors beyond model
misspecification. Therefore, the traditional practice of applying
fixed cut-offs, independent of research areas, can be problematic
(46, 47). To investigate this further, we simulated tailored cut-offs
based on a model with structure similar to the real data. This led
to more stringent criteria, none of which were met by any of the
tested models.

The model fit criteria for the ESEM can be improved by
increasing the number of dietary patterns used. However, this
might produce instability in the factor structure and undermine
interpretability of the patterns. The use of four factors in the current
analysis was considered to be within limits of interpretation.
Alternatively, one could argue for using three factors, being in
coherence with the number of patterns previously found by cluster
analysis (48). The supplementary analysis using three factors in the
ESEM supported identification of the three main common dietary
patterns for men and women, but the CFI then dropped below the
traditionally recommended cut-off.

4.3 Model specification

The presented models assume that dietary behavior affect
obesity, as measured by waist circumference and BMI. This
assumption is common (14, 49). However, obesity and lifestyle-
related illness can also influence dietary behavior and this is the
reason why participants with diabetes were excluded from our
analysis. This issue also extends beyond diabetic patients, as the
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relation between an unhealthy diet and overweight is common
knowledge. It is reasonable to assume that some participants
have made dietary changes to reduce their weight. However, if
all other assumptions hold, the analysis of direct effects should
remain consistent.

4.4 Strengths and limitations

The given study was conducted on a large dataset, allowing
separate analysis for women and men. The results were consistent
across genders, which is considered a strength. All regression
equations were adjusted to account for the confounding effect
of age. However, further analysis is needed to fully explore
consistency of the estimated effects across different age groups,
such as by stratifying participants into 10-year age intervals.
Given the data-driven approach, the identified dietary patterns
will have varying degrees of dissimilarities across age groups,
and estimated effects cannot be interpreted in an unambiguous
way. Additionally, statistical power decreases with smaller sample
sizes, which typically reduces the number of significant findings.
However, preliminary analyses have consistently identified a
Processed dinner pattern in all age groups, having a significant
positive association with obesity. Also, obesity has been seen to have
a consistent significant adverse effect on all the given metabolic risk
factors, independent of age.

The flexible framework of ESEM enabled estimation of all factor
loadings and associations simultaneously, also adjusting for several
lifestyle and demographic variables.Measurements of themetabolic
risk factors were available on a continuous scale which is important
to retain information (21, 22). To avoid inflated probabilities of
false positive findings due to multiple testing, we chose a quite
conservative significance level of 0.01 for all hypotheses tests. This
was seen to be more conservative than using a global significance
level of 0.05 and making adjustments according to the method of
false discovery rate (50).

The cross-sectional design imposes limitations on the
interpretations and strengths of the model assumptions. Our
analysis rely on theoretical foundations and updated understanding
of the associations between variables. However, interpretation of
results as causal relationships must be done with care due to the
cross-sectional design. The observed associations can have multiple
explanations and the tested models are constrained to assuming
linear relationships between variables. Also, self-reported dietary
data could be prone to recall bias and under-reporting, especially
for food items perceived as unhealthy.

4.5 Potential of ESEM in nutritional
research

ESEM offers a comprehensive modeling framework for
simultaneously deriving dietary patterns and estimating their
associations with health risk factors. The EFA component allows
for estimation of cross-loadings, reflecting that food variables
can contribute to multiple dietary patterns. The SEM component
helps to disentangle the potentially intricate relationships between

dietary patterns and risk factors. By incorporating mediation
analysis, SEM facilitates joint estimation of direct and indirect
effects, allowing for a more precise description of dietary effects
on health outcomes than using traditional regression models.
Furthermore, the use of path diagrams effectively visualizes the
underlying assumptions of the model and the chain of reasoning.
Different model formulations and pathways can be tested and
compared using global model fit indices and themodel accounts for
measurement error in dietary patterns and other latent variables.

Although ESEM was introduced in nutritional research almost
a decade ago (14), its use remains rather limited. The two steps of
deriving dietary patterns and estimating their relationships with
health outcomes are commonly performed separately instead of
jointly. As a first step, dietary patterns are often derived using
exploratory and/or confirmatory analysis. A separate second step
is then implemented to estimate associations with health outcome
variables, often using multiple regression models or SEM. SEM is
more restrictive than ESEM as cross-loadings are usually fixed to
zero. However, in studying health outcomes for well-defined dietary
patterns, the use of SEM rather than ESEM could simplify model
interpretation. SEM has been used to study the direct and indirect
effects of dietary patterns on a number of health outcome variables
like hypertension (45), obesity (49, 51), elevated blood glucose level
(52), and homocysteine level (53). Commonly, several different
pathways can be considered, and dietary patterns could also be of
use as mediators (54).

A great advantage of SEM and ESEM compared to traditional
regressionmodels is the simultaneous assessment of all associations
and assumed pathways. However, this poses the question on
correction for multiple testing to avoid increased risk of Type
I errors and false positive findings. Both SEM and ESEM are
commonly evaluated only using global fit indices like CFI and
RMSEA. Although these fit measures are within traditionally
accepted cut-offs, this does not necessarily prevent inflated
type I error (55). A recommendation for future studies could
be to also consider adjustments of p-values due to multiple
testing. For example, this can be done according to the
method of false discovery rate (50, 55), being less strict than a
Bonferroni correction.

4.6 Conclusion

The given study used ESEM to simultaneously identify dietary
patterns and estimate their impact on metabolic CVD risk factors,
mediated by obesity. Separate analysis for women and men
supported the identification of three common and stable dietary
patterns labeled Snacks and Meat, Health-conscious and Processed
Dinner. In addition, a fourth factor identified a sweetened Porridge
pattern for women and a Cake pattern for men. However, these two
patterns were less stable across models and should be interpreted
with care.

Except for the Health-conscious pattern among women, all
dietary patterns were significantly associated with obesity and
showed indirect effects on all metabolic risk factors. This highlights
the importance of adjusting for obesity, such as including it as a
mediator, when investigating the direct effect of dietary patterns on
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metabolic risk factors. The current study demonstrated a favorable
direct effect of the Health-conscious pattern on blood lipid levels,
like HDL-cholesterol and triglycerides (only women), despite a
positive association with obesity for men. Additionally, the Snacks
and Meat pattern was found to have an unfavorable direct effect on
triglycerides for men.
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