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Research has highlighted numerous detrimental consequences of thiamine deficiency 
on digestive function. These range from impaired gastric and intestinal motility to 
aberrant changes in pancreatic exocrine function, gastric acidity and disturbances 
in gut barrier integrity and inflammation. Thiamine and its pharmacological forms, 
as a primary or adjunctive therapy, have been shown to improve symptoms such 
as nausea, constipation, dysphagia and intestinal dysmotility, in both humans 
and animals. This review aims to explore molecular mechanisms underlying 
the therapeutic action of thiamine in gastrointestinal dysfunction. Our analysis 
demonstrates that thiamine insufficiency restricted to the gastrointestinal system, 
i.e., lacking well-known symptoms of dry and wet beriberi, may arise through (i) 
a disbalance between the nutrient influx and efflux in the gastrointestinal system 
due to increased demands of thiamine by the organism; (ii) direct exposure of the 
gastrointestinal system to oral drugs and gut microbiome, targeting thiamine-
dependent metabolism in the gastrointestinal system in the first line; (iii) the 
involvement of thiamine in acetylcholine (ACh) signaling and cholinergic activity 
in the enteric nervous system and non-neuronal cells of the gut and pancreas, 
employing both the coenzyme and non-coenzyme actions of thiamine. The 
coenzyme action relies on the requirement of the thiamine coenzyme form – 
thiamine diphosphate – for the production of energy and acetylcholine (ACh). The 
non-coenzyme action involves participation of thiamine and/or derivatives, including 
thiamine triphosphate, in the regulation of ACh synaptic function, consistent with 
the early data on thiamine as a co-mediator of ACh in neuromuscular synapses, 
and in allosteric action on metabolic enzymes. By examining the available evidence 
with a focus on the gastrointestinal system, we deepen the understanding of 
thiamine’s contribution to overall gastrointestinal health, highlighting important 
implications of thiamine-dependent mechanisms in functional gastrointestinal 
disorders.
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1 Introduction

Gastrointestinal diseases are highly prevalent worldwide and account for a significant 
portion of global disease burden (1) and healthcare costs (2). Globally, a substantial proportion 
of these diseases are linked to infectious and transmissible causes, whereas in developed 
countries the vast majority are non-communicable and are rising in prevalence (3). The most 
common diagnoses in gastroenterology are a group of disorders known as Functional 
Gastrointestinal Disorders (FGIDs). With growing recognition in recent years of the nervous 
system’s involvement in such disorders, they are now broadly defined as disorders of gut-brain 
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interaction (4). According to the Rome IV criteria, such disorders can 
involve any combination of motility disturbance, altered mucosal and 
immune function, dysbiosis of gut microbiota, visceral 
hypersensitivity, and altered central nervous system processing (5). 
The estimated prevalence is 10–40% (6), although the actual 
prevalence is unknown (7). A recent global study shows that 49% of 
females and 37% of males meet the diagnostic criteria for at least one 
FGID (7). The five most prevalent FGIDs are irritable bowel syndrome, 
functional dyspepsia, functional constipation, functional diarrhea, 
and functional bloating/abdominal distention. However, the FGID 
classification also includes a diverse range of other disorders, many of 
which exhibit overlapping clinical features. These include epigastric 
pain syndrome, functional dysphagia, heartburn, reflux 
hypersensitivity, belching disorder, bloating/distention, centrally 
mediated abdominal pain, fecal incontinence, and others.

The molecular and cellular mechanisms underpinning the 
pathophysiology of FGIDs are complex and have been reviewed 
elsewhere (5). Prominent features include epithelial barrier 
dysfunction, delayed or accelerated gastrointestinal transit due to 
abnormal function of smooth muscles, dysfunctional enteric nervous 
system and/or immunity, gut microbial dysbiosis, bile acid 
malabsorption, and alterations in the gut-brain axis (8–12). 
Therapeutic interventions include pharmacologic agents, dietary and 
lifestyle changes, probiotics, antibiotics, fecal microbial transplant, and 
stress management. Pharmacological treatments range from 
prokinetics and antispasmodics to centrally acting neuromodulators, 
albeit with varied success (13). As research continues to unearth a 
multitude of pathophysiological mechanisms involved in FGIDs, it is 
important to reveal specific primary causes. Similar symptoms may 
originate from different impairments, but therapies mitigating the 
primary impairment, rather than the convergent symptoms, are the 
most efficient ones (14).

Publications on FGIDs, which are ameliorated by administration 
of thiamine (vitamin B1) (15–23), suggest that thiamine insufficiency 
in the gastrointestinal system and/or its innervation may contribute 
causally to the development of these disorders, also in the absence of 
systemic thiamine deficiency. Our review aims at understanding the 
molecular mechanisms underlying this potential of thiamine to 
counteract many pathological alterations commonly observed in 
FGIDs. In addition to thiamine’s role as a precursor of an essential 
coenzyme in energy production from glucose oxidation (24), 
contribution to gastrointestinal function of the non-coenzyme action 
of thiamine (25, 26), presumably regulating not only the coenzyme-
dependent pathway of acetylcholine (ACh) biosynthesis (27), but also 
ACh signaling at neuromuscular junctions (28) and in non-neuronal 
cells (29), is considered. Our focus on an intestine-expressed set of 
proteins which are well-known or suggested to be  involved in 
transport, transformations and action of thiamine and its derivatives, 
underscores the significance of polar distribution of different thiamine 
transporters to organize the nutrient flux in enterocytes. We draw 
attention to various factors that may perturb enterocytic balance 
between the thiamine influx from the lumen and systemic delivery to 
other tissues, providing insights into the molecular mechanisms of 
local thiamine insufficiency in gastrointestinal system. Although this 
form of thiamine deficiency, which we call gastrointestinal beriberi, is 
initially limited to the gastrointestinal system, it mostly progresses to 
systemic thiamine deficiency, often triggered by stresses of different 
etiologies. That is why the distinction between specific gastrointestinal 

beriberi and the gastrointestinal manifestations of systemic beriberi 
resulting from gastrointestinal dysfunction remain unclear and are not 
well defined. However, in line with the existing classification of 
beriberi affecting nerves (dry beriberi) and cardiovascular system (wet 
beriberi), it is plausible to use the term gastrointestinal beriberi in an 
analogous, tissue-directed, way.

Our analysis of the gastrointestinal beriberi mechanisms employs, 
in particular, case studies of patients after bariatric surgery – a well-
defined group, often developing systemic thiamine deficiency. Using 
available data on the time-dependent transcriptomic changes in 
enterocytes of these patients, we demonstrate long-term perturbations 
in their thiamine metabolism, which may be of diagnostic significance. 
Existence of genetic variants of thiamine-dependent proteins, 
insufficient molecular identification of these proteins, as well as the 
age- and sex-dependent differences in thiamine metabolism (30), may 
contribute to the observed variety of clinical manifestations of 
thiamine deficiency (31, 32). Clearly, this may also affect the outcomes 
of systemic and meta-analyses of thiamine’s effects in different 
populations and patient groups (32). As a result, our review calls upon 
more attention to personalized approaches in characterization of 
individual thiamine homeostasis, based on the knowledge of the 
thiamine-dependent proteins and their tissue-specific features 
and functions.

2 Thiamine (vitamin B1) and its 
metabolic significance

Thiamine is an essential water-soluble vitamin, naturally 
occurring in a wide variety of foods. Rich dietary sources include 
different types of meat, legumes and whole grains. In the human body, 
the major intracellular derivative of thiamine is its diphosphorylated 
form, thiamine diphosphate (ThDP). This essential coenzyme of 
ThDP-dependent enzymes is absolutely necessary not only for 
oxidative glucose metabolism, but also for coupling metabolic 
pathways of carbohydrates and amino acids, as well as for controlling 
de novo synthesis of major neurotransmitters, ACh and glutamate, 
from glucose. The control is determined by ThDP-dependent 
biosynthesis and/or distribution of the neurotransmitter precursors 
acetyl-CoA and 2-oxoglutarate, formed upon the oxidation of the 
glycolytic product pyruvate in the TCA cycle (Figure 1).

The mammalian ThDP-dependent enzymes (24) include cytosolic 
transketolase (TKT) participating in the pentose phosphate pathway; 
the mitochondrial multienzyme complexes of 2-oxo acids, i.e., of 
pyruvate dehydrogenase (PDH), 2-oxoglutarate dehydrogenase 
(OGDH), 2-oxoadipate dehydrogenase (OADH) and branched chain 
2-oxo acid dehydrogenase (BCODH), linked to amino acids through 
their transamination to the 2-oxo acids; and peroxisomal 2-hydroxy 
acyl-CoA lyase (HACL) participating in the α-oxidation of long and 
very long chain 3-methyl or 2-hydroxy even-chain fatty acids (33).

TKT, as part of the cytosolic pentose phosphate pathway, along 
with the mitochondrial multienzyme complexes of pyruvate (PDHC) 
and 2-oxoglutarate dehydrogenases (OGDHC), are essential for 
energy production from glucose oxidation. The oxidation-generated 
reducing equivalents accumulate as cytosolic NADPH produced by 
the pentose phosphate pathway, and mitochondrial NADH, produced 
by 2-oxo acid dehydrogenases. In addition, the function of TKT in the 
pentose phosphate pathway supports the generation of phosphoribose 
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FIGURE 1

Coenzyme role of ThDP in metabolism of the gut cells. (A) Metabolic pathways involving enzymes that use the coenzyme derivative of thiamine, 
thiamine diphosphate (ThDP). (B) The relative abundance of mRNAs for the ThDP-dependent enzymes in different cells of intestine (colonocytes, 
enterocytes of ileum, enterocytes of jejunum) and in enterocyte organoids. The transcript signals for the genes of interest are normalized to the sum of 
the average mRNA signals of GAPDH, ACTB and TUBA1A as described earlier (149). The signals of these mRNAs for the three transcripts used for the 
normalization, are comparable, producing similar normalization ratios of the transcripts of interest across the different GEO datasets used. 
Transcriptomics data is taken from the GEO database. Identificators of the assessed experiments are: colonocytes experiments GSE13367 [Platform 
GPL570, (HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array, 10 datasets: GSM337520, GSM337526, GSM337529, GSM337530, 
GSM337532, GSM337533, GSM337537, GSM337539, GSM337540, GSM337544] and GSE30292 [Platform GPL570, (HG-U133_Plus_2) Affymetrix Human 
Genome U133 Plus 2.0 Array, 3 datasets: GSM750882, GSM750883, GSM750884]; jejunum enterocytes experiments GSE214758 [Platform GPL20795, 
HiSeq X Ten (Homo sapiens), 9 datasets: GSM6615629, GSM6615631, GSM6615633, GSM6615637, GSM6615641, GSM6615643, GSM6615645, 
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for nucleic acid synthesis. PDHC links cytosolic glycolysis to the 
mitochondrial TCA cycle by oxidizing pyruvate, the end product of 
glycolysis. The PDHC-catalyzed reaction generates not only NADH, 
which is oxidized in the mitochondrial respiratory chain, but also 
acetyl-CoA, which feeds into the TCA cycle and is a precursor of 
acetylcholine (ACh) in cholinergic cells. OGDHC catalyzes the rate-
limiting step of the TCA cycle. The substrate of the OGDHC reaction, 
2-oxoglutarate, is a precursor for glutamate biosynthesis from glucose. 
The OGDHC reaction product succinyl-CoA provides for the only 
mitochondrial phosphorylation reaction of ADP to ATP, at the 
substrate-level, i.e., phosphorylation beyond mitochondrial 
respiratory chain.

In addition to the ubiquitous ThDP-dependent enzymes, 
enterocytes express a number of the ThDP-dependent isoenzymes, i.e., 
the enzymes with similar catalytic functions, encoded by separate 
genes. These include transketolase-like 1 and 2 proteins, TKTL1 and 
TKTL2, as well as the ubiquitous (PDHA1) and testis-specific 
(PDHA2) isoenzymes of the α-subunit of PDH (PDHA) (Figure 1B). 
Deciphering physiological roles of isoenzymes is often challenging. 
Inactivation of TKTL1 aggravates colitis in a murine knockout model 
(34, 35). Isoenzymes of HACL1 and HACL2 are shown to provide 
α-oxidation of 3-methyl and 2-hydroxy long chain fatty acids, 
respectively, with HACL2 playing an important role in ceramide 
formation in the stomach (33). Isoenzymes of OGDH are the brain-
specific OGDH-like protein (OGDHL) and OADH, encoded by 
OGDHL and DHTKD1 genes, correspondingly (Figure 1). OGDH 
and OGDHL differ in their regulatory properties, including 
2-oxoglutarate saturation (36). OGDH(L) and 2-oxoadipate 
dehydrogenase (OADH) have different substrate specificity, preferring 
2-oxoglutarate and 2-oxoadipate, correspondingly (37, 38). The 
OGDH isoenzymes encoded by OGDHL and DHTKD1 genes, link 
eosinophilic esophagitis to mitochondrial dysfunction (39).

Functional significance of the ThDP-dependent enzyme isoforms, 
which are the enzyme variants arising from alternative splicing of 
transcripts from a single gene, or through post-translational 
modifications, is studied even less than that of isoenzymes. An 
exception is the established regulatory significance of the OGDH 
splice variants lacking Ca2+-dependent regulation. Unlike skeletal 
muscle and heart, which predominantly express Ca2+-sensitive 
isoforms, other tissues, in particular pancreatic islets, have significant 
expression of Ca2+-independent OGDH isoforms, which are thought 
to be involved in the distribution of 2-oxoglutarate flux to oxidation 
in the TCA cycle and glutamate biosynthesis (40).

As mentioned above, the coenzyme role of thiamine is important 
for metabolism of α-amino acids, as they are transaminated to 2-oxo 
acids. In addition to PDHC and OGDH(L)C, this action of thiamine 
is mediated by two other ThDP-dependent multienzyme complexes, 
i.e., those of branched chain 2-oxo acid dehydrogenase (BCODH) and 

OADH, functioning in the pathways of degradation of branched-
chain α-amino acids, and lysine and tryptophan, respectively 
(Figure  1). The corresponding acyl-CoAs generated by these 
complexes undergo additional transformations before entering the 
TCA cycle in the form of acetyl- or succinyl-CoA. As a result, catalytic 
function of the multienzyme complexes of 2-oxo acid dehydrogenases 
may provide energy from oxidation of both carbohydrates and amino 
acids. Thiamine-dependent metabolic regulation is important for 
optimizing the energy source: by increasing efficiency of glucose 
oxidation, thiamine prevents excessive degradation of amino 
acids (41).

In recent years, the role of different acyl-CoAs in the 
posttranslational acylation of protein lysine residues has acquired 
increasing attention (42). Histone acylations are considered to 
be  especially important for intestinal epithelium adaptations to 
environmental signals (43). Remarkably, nuclear localization of the 
2-oxo acid dehydrogenase complexes has recently been discovered, in 
addition to their traditional mitochondrial localization (44–47). This 
finding is in good accordance with independent research that 
acylations of both metabolic proteins and histones depend on the 
function of 2-oxo acid dehydrogenase complexes (48, 49). The changes 
in histone acylation, mediated by ThDP-dependent 2-oxo acid 
dehydrogenase complexes, provide a mechanism for thiamine-
dependent transcriptional regulation.

Positioning of ThDP-dependent 2-oxo acid dehydrogenase 
complexes at the intersections of major pathways of central 
metabolism and transcriptional regulation endows these systems with 
a functional role of “signaling hubs,” regulating multiple cellular 
processes, such as intracellular redox status, growth, protein signaling, 
and calcium homeostasis (50–52).

Expression of the considered ThDP-dependent enzymes and 
isoenzymes in enterocytes (Figure 1B) underscores both the common 
and isoenzyme-specific dependence of gastrointestinal metabolism 
on thiamine.

3 Gastrointestinal beriberi

As animals do not synthesize thiamine, their thiamine need is 
satisfied by dietary intake and biosynthesis by gut microbiota. Thus, 
gastrointestinal dysfunction impairing the absorption of nutrients 
inevitably results in insufficient organismal thiamine levels, i.e., 
thiamine deficiency (TD). Indeed, the most well-known TD state is 
Wernicke-Korsakoff syndrome, first described by Wernicke in a 
female whose digestive tract was severely damaged by sulfuric acid 
(53). On the other hand, gastrointestinal disturbances are critical early 
indicators of severe thiamine deficiency causing pediatric Wernicke 
Encephalopathy (54).

GSM6615647, GSM6615649], GSE113819 {Platform GPL17586 (HTA-2_0) Affymetrix Human Transcriptome Array 2.0 [transcript (gene) version], 5 
datasets: GSM3120595, GSM3120597, GSM3120599, GSM3120601, GSM3120603} and GSE30292 [Platform GPL570, (HG-U133_Plus_2) Affymetrix 
Human Genome U133 Plus 2.0 Array, 2 datasets: GSM750891, GSM750892]; ileum enterocytes experiment GSE30292 [Platform GPL570, (HG-U133_
Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array, 3 datasets: SM750888, GSM750889, GSM750890]; enterocyte organoid experiment 
GSE242765 [Platform GPL18573, Illumina NextSeq 500 (Homo sapiens), 1 dataset GSM7770156]. Normalized mRNA levels from all the datasets for the 
same cell type are averaged, and the data are shown as mean ± SEM.

FIGURE 1 (Continued)
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An estimated 2–3% of the body’s thiamine may originate from 
microbial synthesis within the colon, although its precise nutritional 
significance remains to be  fully understood. Studies on the gut 
microbiome have identified distinct genera of bacteria capable of 
synthesizing thiamine, including Lactobacillus, Bifidobacterium, 
Escherichia coli, Enterococcus, and Clostridium (55, 56). Furthermore, 
high expression of genes involved in thiamine biosynthesis and 
transport are prevalent in Prevotella, Desulfovibrio (57), and 
Bacteroides (58). On the other hand, the microbiome houses many 
genera of bacteria that fail to grow in the absence of thiamine (59), and 
depend on its external sources (60). The abundance of one such family, 
Ruminococcaceae, is positively correlated with thiamine intake in 
humans. Dietary thiamine restriction in rodents also decreases relative 
abundance of this family, which is accompanied by reduced fecal 
butyrate concentrations (61). ThDP is used as a cofactor for the 
microbial enzyme pyruvate-ferredoxin oxidoreductase, which 
catalyzes the conversion of pyruvate to acetyl-CoA in the pathway for 
butyrate synthesis (56). Hence, bacteria require thiamine for 
production of short-chain fatty acids, which play important anti-
inflammatory and signaling roles in the gut. It is therefore not 
surprising that thiamine from dietary sources may alter the 
composition of microbes in the gut, and a deficit of thiamine may 
result in bacterial dysbiosis (58, 59).

Remarkably, in a trial using high-dose thiamine for fatigue related 
to inflammatory bowel disease (IBD), the relative abundances of 
Faecalibacterium prausnitzii, a member of the Ruminococcacea family, 
and Roseburia hominis, a member of the Lachnospiraceae family, 
inversely correlate with fatigue severity both pre- and post-treatment 
with thiamine (62).

When TD becomes severe and chronic, it is known as beriberi. 
Dry beriberi affects the central nervous system (CNS) and peripheral 
nerves, whereas wet beriberi involves the cardiovascular system. In 
2004, Dr. Michael Donnino introduced the term “gastrointestinal 

beriberi” (63) to describe a distinct clinical entity caused by TD in the 
gastrointestinal system. It is broadly defined as a combination of 
several possible symptoms: anorexia (lack of appetite), nausea, 
unexplained vomiting, abdominal distention, constipation, reflux and 
epigastric pain, and occasionally intestinal paralysis. Since its original 
definition in the medical literature, multiple case reports have been 
published by independent researchers (Table  1). Although 
manifestations of neurological dysfunction often point to TD and may 
sometimes accompany gastrointestinal beriberi (17, 64), it has been 
also noted that chronic mild deficiency may present with 
gastrointestinal symptoms under entirely normal neurological exams 
in well-nourished, non-alcoholic patients (65–68). In one of the early 
reports cited by Donnino (69), severe manifestations of gastrointestinal 
beriberi are also preceded in time by much milder symptoms. These 
include abdominal distension, belching, and alternating constipation 
and diarrhea. Furthermore, early into the study, all participants 
exhibited achlorhydria or hypochlorhydria, delayed gastric emptying, 
and reduced intestinal motility. Similarly, early gastrointestinal 
symptoms - such as a full sensation in the epigastrium, gastric reflux, 
hypochlorhydria, impaired gastric and intestinal motility, and 
constipation - are reported by Shimanoza and Katsura in 30–50% of 
patients with TD (70). In another study, thiamine therapy leads to the 
disappearance of both gastrointestinal (dysphagia) and CNS/
cardiovascular (dyspnea and blurred vision) symptoms. However, 
after thiamine is discontinued, dysphagia re-appears at the time when 
other symptoms are not observed (71). One case report describes the 
onset of dysphagia and gastroparesis in a patient with Crohn’s disease 
2 months before developing Wernicke encephalopathy, which resolved 
with high dose thiamine (72). A recent analysis (19) has found 
gastrointestinal symptoms in 46 out of 52 patients with diagnosed 
TD. In some cases, symptoms precede the classical neurological signs 
by up to several months, suggesting that digestive dysfunction may, in 
fact, be an early indicator of TD before progressing to other bodily 

TABLE 1 Therapeutic action of thiamine administration in human and animal studies of FGIDs.

GI symptoms resolved after thiamine administration Intervention Sample size

Humans

Nausea, vomiting, abdominal pain, anorexia in patients with Wernicke 

encephalopathy (19)

I.v. infusions of 300-600 mg of thiamine for 5–10 days, followed by 

oral thiamine at 100-300 mg
n = 42

Nausea, vomiting, anorexia preceding Wernicke encephalopathy (17) Single i.v. injection of 1,000 mg of thiamine Case report (n = 1)

Constipation in patients with thiamine deficiency after Roux-en-Y Gastric 

Bypass. Decreased blood levels of thiamine with increased folate levels are 

shown (18)

I.m. injections of 100–200 mg of thiamine monthly, some patients 

taking 200 mg oral thiamine daily
n = 11

Perturbed intestinal motility/gas release in post-hysterectomy patients (16) I.m. injection of 100 mg thiamine for 2 days n = 80

Dysphagia and gastroparesis preceding Wernicke encephalopathy in Crohn’s 

disease (72)

I.v. injections of 200 mg thiamine three times, followed by I.m. 

injections of 100 mg/day for several months
Case report (n = 1)

Intestinal paralysis in post-hysterectomy patients (20) I.m. injection of 100 mg thiamine for 3 days n = 60

Animals

Ruminal epithelial barrier dysfunction, oxidative stress and apoptosis, 

induced by high-concentrate diet in goats (22)
Thiamine 200 mg/kg dry feed for 12 weeks n = 8

Perturbed colonic integrity and mucosal inflammation, induced by high-

concentrate diet in goats (21)
Thiamine 200 mg/kg dry feed for 12 weeks n = 8

Experimental constipation induced by atropine and papaverine in rats (23) S.c. injection of 100 mg/kg TTFD n = 4

Ulcerative colitis rat model (15) I.p. injection of 20 mg/kg thiamine per day for 5 days n = 6
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systems. Dysphagia, or esophageal dysmotility, is common after 
bariatric surgery, known to be associated with TD, and is restored 
following thiamine administration (73, 74). A high prevalence of 
constipation and gastrointestinal paralysis is also associated with TD 
(70). Numerous reports demonstrate significant impairments in 
intestinal motility (small and large) in TD subjects, which normalizes 
with thiamine repletion (18, 75–78). Dietary thiamine intake is 
inversely associated with constipation (79). Abnormal gastric acidity 
is reported to be one of the most common and early signs of TD (70). 
In this study, four patterns of acid secretion are identified in response 
to thiamine administration: (i) Hypoacidity which gradually improves 
with thiamine repletion; (ii) Hypoacidity which shifts to high acidity 
in the recovery phase after thiamine administration, followed by 
eventual normalization; (iii) Hyperacidity in the early stage of TD, 
followed by normalization with thiamine therapy; (iv) Hyperacidity, 
followed by low acidity during the recovery phase after thiamine 
administration, which normalizes later. More recently, aberrant 
changes in gastric output have been demonstrated in TD. Achlorhydria 
is found in both human (80–83) and animal (84) studies. TD is also 
known to induce gastric ulceration (85). Epigastric pain, early satiety, 
and gastroesophageal reflux are common initial symptoms of TD and 
gastrointestinal beriberi (19, 70). Based on modern diagnostic criteria, 
this combination of symptoms could now be broadly classified as 
functional dyspepsia, which is often associated with gastric 
hypoacidity (86). Thiamine in conjunction with other therapies has 
been used to successfully treat functional dyspepsia (87).

Thus, a wide range of gastrointestinal disorders respond positively 
to thiamine administration. The therapeutic action of thiamine 
administration in human and animal studies are summarized in 
Table 1.

An important factor for digestion and overall gastrointestinal 
health is pancreatic function (88). Of note, the pancreas has a high 
thiamine content (89) which it maintains through constant uptake 
from circulation (90). TD is associated with a dramatic reduction of 
pancreatic thiamine content by up to 75% (89). Depletion of 
pancreatic thiamine can result in oxidative stress (91), which is 
considered to be  a driving factor in development of pancreatitis. 
Furthermore, some researchers speculate that thiamine depletion in 
the pancreas may be  a necessary antecedent for pancreatic 
inflammation (91). Indeed, chronic alcoholism and nicotine 
consumption are independent risk factors for pancreatitis, and both 
inhibit pancreatic thiamine uptake via downregulation of thiamine 
transporters (90). A Spanish review published in 1944 reports that 
hyposecretion of pancreatic enzymes is a common feature of TD (92), 
and administration of thiamine in children could increase the release 
of the pancreatic enzymes trypsin, amylase and lipase (93). Animal 
research also highlights substantial abnormalities in pancreatic 
function during TD, evidenced by a reduction in stored pancreatic 
protein and digestive enzyme content, contrasted by an abnormally 
large enzyme secretion (94). Acute pancreatitis and encephalopathy 
are recently reported as a consequence of TD and successfully treated 
with thiamine administration (95).

As a result, thiamine is known to positively influence perturbed 
gastrointestinal function. In many cases, this positive influence 
occurs when CNS symptoms of TD are absent, pointing to the 
gastrointestinal system as the primary site of TD. The findings 
suggest that TD restricted to the gastrointestinal tract may occur, 
while other TD-sensitive systems, such as the neurological and 

cardiovascular systems, do not display their specific symptoms. 
That said, chronic impairment of thiamine availability in the 
gastrointestinal system should also reduce resilience of other body 
systems. Obvious neurological and/or cardiovascular symptoms 
may represent a culmination of gastrointestinal beriberi, probably 
triggered by challenges that increase metabolic demands or decrease 
intracellular transport of thiamin, such as stress, infection, trauma, 
drug administration. For instance, a case study describes persistent 
gastrointestinal beriberi followed by the onset of neurological 
symptoms in a male patient after one session of heavy drinking (17). 
Metformin, a widely used antidiabetics entering cells through the 
thiamine transporters, is known to reduce intestinal thiamine 
content in mice (96). Thus, different comorbidities may transition 
a vulnerable state of gastrointestinal beriberi—where TD is confined 
to the gastrointestinal tract, but is not obviously affecting other 
body systems—into dry or wet beriberi, characterized by specific 
symptomatic manifestations where potentially life-threatening 
situations promote the diagnosis of TD.

In conclusion, TD limited to the gastrointestinal system may be an 
overlooked and underdiagnosed cause of the increasingly common 
gastrointestinal disorders encountered in modern medical settings. Left 
unattended, it may progress to wet or dry beriberi, most often observed 
as Wernicke encephalopathy. However, how is it possible that the 
gastrointestinal system—which, unlike other systems, is directly exposed 
to nutrients—suffers from this nutrient deficiency more than the rest of 
the body? The following sections examine the available evidence on 
molecular mechanisms of thiamine transport, metabolism, and function 
in the gastrointestinal system, offering insights for the interpretation of 
medical studies on thiamine-responsive gastrointestinal disorders that 
highlight mechanistic connections between common disorders of 
gastrointestinal tract and TD.

4 Thiamine metabolism in intestinal 
cells

4.1 Thiamine transport in brush border and 
basolateral membranes of enterocytes

Due to its hydrophilic nature, thiamine is not membrane-
permeable, with its entry into the cell depending on membrane 
proteins dedicated to thiamine transport. Enterocytic absorption 
of dietary thiamine from the lumen and further transport of 
thiamine from the intestine to the blood occur via active transport 
through a number of transporters (Figure 2A). Thiamine transport 
capacity in human intestinal biopsy samples is highest in the 
duodenum, followed by the colon and stomach (97). Although 
THTR1 and THTR2 transporters, encoded by the SLC19A2 and 
SLC19A3 genes, respectively, are the most widely known and well-
characterized, a number of newly characterized transporters of 
thiamine and its phosphates have been added to the list in recent 
decades. Figure 2 shows those expressed in intestine (A) along with 
their relative expression in enterocytes, their organoids and 
colonocytes (B).

Thiamine transporter SLC35F3 has been identified in studies 
investigating its variant, which is associated with human hypertension 
and lower levels of erythrocytic thiamine; expression of the protein in 
Escherichia coli increases thiamine transport (98). Thiamine is also 
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transported through OCT1 (SLC22A1) (96) and OCT2 (SLC22A2) 
(99). Although the substrate specificity of other OCT family members 
is insufficiently characterized, their principal ability to transport 
organic cations justifies inclusion of SLC22A3–5 in Figure 2.

Intestinal alkaline phosphatase (ALPI, Figure 2) plays an essential 
role in the absorption of dietary B vitamins including thiamine (100). 
This enzyme not only exhibits phosphatase activity, dephosphorylating 

thiamine phosphates in the lumen, but may also transphosphorylate 
extracellular thiamine to intracellular thiamine monophosphate 
(ThMP), at the expense of intracellular phosphate donors such as beta-
glycerophosphate or creatine phosphate (101). Transporters of MATE 
(multidrug and toxin extrusion) family (SLC47A) extrude thiamine 
in exchange for a proton; SLC47A1 and SLC47A2-K are characterized 
by a Km for thiamine in micromolar range (102), supporting the 

FIGURE 2

Transporters of thiamine and its derivatives in the gut cells. (A) Schematic presentation of the transport processes through transporters expressed in the 
gut cells. (B) The relative abundance of mRNAs for the transporters of thiamine and its derivatives in different intestinal cells (colonocytes, enterocytes 
of ileum, enterocytes of jejunum) and in enterocyte organoids. The normalized mRNA signals are calculated as described in the legend to Figure 1 
using the same datasets. The data are shown as mean ± SEM.
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physiological relevance of thiamine extrusion by these transporters 
(Figure 2A).

Differences in the net intestinal transport of thiamine have been 
studied by Rindi and co-workers using basolateral and brush border 
membrane vesicles (100, 103, 104). However, apart from the 
SLC19A transporter family, little is known about the polar 
distribution of transporters in enterocytes and colonocytes. The gut 
cells have an apical, or brush border, membrane facing the lumen, 
and a basolateral membrane facing the circulatory system. This 
polarity is in accord with the dual function of intestinal epithelium: 
the same cells absorb nutrients from the lumen through the brush 
border membrane and deliver them to the blood through the 
basolateral membrane (Figure 2A). Available data on the polarity 
are taken into account in Figure 2A. These refer to the excretory 
function of MATE transporters (102, 105, 106) and the identification 
of SLC19A2 on both membrane types in epithelial cells (107). In 
contrast, the SLC19A3 protein is shown to localize specifically to 
the apical (brush border) membrane (108). This transporter is well-
characterized in terms of its structure and function, with a number 
of drugs decreasing thiamine transport through SLC19A3 (109). 
With the brush border membrane directly exposed to drugs 
inhibiting thiamine influx through SLC19A3, and nutrient efflux 
through the basolateral membrane to satisfy permanent systemic 
demands for thiamine, the steady-state concentration of thiamine 
in the gut epithelium may be decreased. The disbalance between the 
inhibited enterocytic influx and unchanged or increased systemic 
demand may cause specific vulnerability of the gut epithelium to 
toxic effects of the thiamine-competitive drugs targeting SLC19A3. 
As a result, gastrointestinal TD may develop and exist as a steady-
state, providing other tissues with thiamine levels sufficient for 
normal conditions, but inadequate for metabolic challenges.

As luminal ThDP from the diet is supposed to be hydrolyzed by 
ALPI, while ThDP is known to be produced inside the cell, the role of 
SLC44A4  in transporting extracellular ThDP has been enigmatic. 
Single nucleotide polymorphisms in SLC44A4 are key risk factors for 
ulcerative colitis in a collection of different studies (110–113). In view 
of the high expression of this transporter in colon, it has been 
proposed to participate in absorption of the microbiota-generated 
ThDP (25). However, this view leaves unanswered the question why 
microbes would extrude ThDP to the lumen. Besides, the transporter 
is also expressed in other tissues, and independent data (114–116) 
show a less drastic difference between human colonocytes and 
enterocytes in its expression (Figure  2B), compared to the initial 
finding of a 10-fold higher expression in the colon relative to other 
regions of gastrointestinal tract in humans (117). On the other hand, 
according to recent structure–function characterization of reduced 
folate transport through SLC19A1, ThDP is the best substrate to 
be exchanged for folate (118). The participation of ThDP in cellular 
folate absorption (Figure 2A) endows SLC44A4 with a physiologically 
relevant function to return ThDP that is extruded in exchange for 
folate, back to the cell (Figure 2A). Employment of the ThDP-folate 
exchange by microbes may explain the high SLC44A4 expression in 
the colon. Yet, the expression of this transporter in different parts of 
the gut (Figure 2B) does not exclude its possible participation in the 
gut’s absorption of ThDP from the diet, especially given the presence 
of other folate transporters on the brush border membrane of 
enterocytes, i.e., those encoded by SLC46A1, FOLR1, and 
FOLR2 (119).

Interestingly, males display lower plasma folate levels than females 
(120–122), and only males demonstrate a positive correlation between 
the folate deficiency risk scores calculated from the polymorphisms in 
the folate pathway genes SLC19A1 and MTHFR (123). At the same 
time, it is known that thiamine intake is higher in males vs. females 
(124). The opposite sex-dependent differences in the levels of folate 
and thiamine highlight the physiological significance of the folate/
ThDP exchange through SLC19A1. This is further supported by a 
study of the SLC19A1 variant rs1051266:G (125). In model 
experiments employing HEK293 cells in a thiamine-deficient 
medium, the SLC19A1 variant rs1051266:G exhibits a strong decrease 
in ThDP efflux compared to the canonic SLC19A1 sequence 
rs1051266:A. Association of the SLC19A1 variant rs1051266:G with 
Wernicke-Korsakoff encephalopathy (125), a condition known to 
develop due to the thiamine deficiency in the brain, underscores the 
role of SLC19A1 in delivering not only folate but also thiamine to CNS 
(28). Both SLC19A1 and SLC19A2 deliver vitamins to systemic tissues 
(119), correspondent to their locations in the basolateral membrane 
(Figure 2). ThDP transport through the folate transporter encoded by 
SLC19A1 is further supported by cases of thiamine-responsive 
dysphagia that have been observed at normal laboratory values of 
blood thiamine, but increased serum folate levels (71). The blood 
transports thiamine or its monophosphate (ThMP), both of which 
also penetrate the blood–brain barrier (26, 126) through saturable 
transporters (127).

4.2 Interconversions of thiamine and its 
natural derivatives in intestinal cells

To perform its coenzyme function (Figure 1A), thiamine or ThMP 
entering the cells (Figure 2A) must be transformed into the coenzyme 
form, ThDP. Animals synthesize ThDP by diphosphorylation of 
thiamine in the thiamine diphosphokinase (or thiamine 
pyrophosphokinase, TPK)-catalyzed reaction (Figure 3A). Another 
well-characterized protein of thiamine metabolism is thiamine 
triphosphatase, encoded by ThTPA gene, which hydrolyzes thiamine 
triphosphate (ThTP) to ThDP (128, 129). The enzymes catalyzing 
other transformations of thiamine derivatives are not unambiguously 
identified. Given the poorly characterized specificity of enzymes 
involved in thiamine transformation and the often unknown roles of 
genomics-identified isoenzymes, all human isoenzymes are included 
in Figure 3 when there is evidence that at least one isoenzyme can 
catalyze the reactions with thiamine or its derivatives. In doing this, 
we would like to draw attention to possible roles of the isoenzymes, as 
shown in Figure 3, in thiamine metabolism. This may further help 
decipher their physiological significance, e.g., when the data on 
phenotypes of the mutated isoenzymes in humans may appear.

ThMP kinase, which produces ThDP through ThMP 
phosphorylation and is known in thiamine-synthesizing organisms, 
has not been identified in animals. Accordingly, to be transformed 
into ThDP by TPK, intracellular ThMP should first 
be dephosphorylated. ThMP hydrolysis is known to be catalyzed by 
prostatic acid phosphatase ACP3, which is localized to plasmatic 
membrane and linked to the antinociceptive action of thiamine and 
its derivatives (130–132). Cells of the gut express all isoenzymes of 
acid phosphatase (ACP), i.e., ACP 1–7 (Figure 3B). According to the 
UniProt database, these isoenzymes have diverse locations and 
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FIGURE 3

Enzymatic transformations of thiamine and its derivatives in the gut cells. (A) Schematic presentation of the reactions and available information on their 
catalysts. (B) The relative abundance of mRNAs for the enzymes of thiamine metabolism in different intestinal cells (colonocytes, enterocytes of ileum, 
enterocytes of jejunum) and in enterocyte organoids. The normalized mRNA signals are calculated as described in the legend to Figure 1 using the 
same datasets. The data are shown as mean ± SEM.
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TABLE 2 Metabolism and roles of thiamine and its derivatives in gastrointestinal system.

Thiamine 
compound

Role in gastrointestinal system Chemical transformations in gastrointestinal system

Thiamine Is transported to enterocytes, directly through the thiamine and 

OCT transporters, or coupled to ThMP production in 

transphosphorylation by intestinal alkaline phosphatase (ALPI). 

May be exchanged for proton through MATE.

Important for systemic supply.

Precursor for ThDP biosynthesis by thiamine diphosphokinase (TPK).

May be degraded or modified to thiamine antagonists by thiaminases I and 

II, identified in fish and microbes. Thiamine degradation in mammalian 

tissues suggests existence of mammalian thiaminases.

ThMP May be exchanged for folate through SLC19A1.

Important for systemic supply.

Hydrolysed in lumen by intestinal alkaline phosphatase (ALPI). Product of 

thiamine transphosphorylation by intestinal alkaline phosphatase (ALPI).

ThDP Essential coenzyme of central metabolism. May be exchanged on 

external folate through SLC19A1 and returned to enterocyte through 

SLC44A4.

Product of the reactions catalyzed by thiamine diphosphokinase (TPK) or 

thiamine triphosphatase (ThTPase). May be hydrolysed to ThMP by 

apyrase(s) (ENTPD). In the reaction with ATP, catalyzed by unidentified 

enzyme(s), produces regulatory derivative, adenylated ThTP.

ThTP and 

adenylated ThTP

Specific action in gastrointestinal system is not characterized. In 

general, these derivatives regulate metabolic enzymes involved in 

ACh production in mammals through different mechanisms. ThTP 

regulates rapsyn - scaffolding protein of ACh synapses. ThTP is 

presumed to be involved into thiamine co-release with ACh at the 

synapses.

ThTP is synthesized from ThDP by adenylate kinase(s) (KAD) and 

hydrolysed to ThDP by thiamine triphosphatase (ThTPase). ThTP may 

be hydrolysed to ThMP by apyrase(s) (ENTPD). In the brain, but not liver, 

mitochondria ThTP may be formed by ATP synthase in the proton-gradient-

dependent manner.

substrate specificities, acting on protein phosphotyrosine residues and 
a number of alkyl, aryl and acyl orthophosphates of low molecular 
mass. ACP1 has cytosolic location, whereas ACP2 and ACP5 are 
lysosomal enzymes. ACP4 is a transmembrane protein with 50% 
homology to the prostatic and lysosomal acid phosphatases, highly 
expressed in the testis and involved in mineralization of tooth enamel 
(133, 134). ACP6 is mitochondrial, supposed to participate in lipid 
metabolism through its characterized activity of hydrolyzing 
lysophosphatidic acid (135). Based on similarity to ACP5, ACP7 is 
predicted to be a putative tartrate-resistant phosphatase, a member of 
purple acid phosphatase family of metallophosphoesterase 
superfamily. The most probable locations of ACP7 are supposed to 
be extracellular space and cytosol. Studies on substrate specificities of 
ACP isoenzymes 1–7 are scarce and fragmentary, not enabling a 
conclusion on their specific catalysis of ThMP hydrolysis. Additionally, 
the substrate specificity may differ in the isoforms of each gene 
product, arising due to posttranscriptional (alternative splicing) or 
posttranslational modifications. Hence, Figure 3 shows all of the ACP 
isoenzymes expressed in the gut as potential catalysts of 
ThMP hydrolysis.

A deficiency of acid phosphatase activity in the lysosomal fraction, 
presumably due to impairment of the ACP2 protein, manifests as 
intermittent vomiting, hypotonia, lethargy, opisthotonos, terminal 
bleeding and death in early infancy (136). Many of these symptoms 
are also present in the thiamine deficiency states (137), supporting 
involvement of ACP2 in thiamine metabolism. Pathogenic mutation 
of the tartrate-resistant acid phosphatase ACP5 leads to a strong 
predisposition to autoimmune diseases, associated with the 
accumulation of phosphorylated osteopontin, involved in immune 
regulation and in bone resorption (138). As shown in the next 
sections, thiamine is tightly linked to immunity. Furthermore, both 
ACP5 (30) and a ThMP analog benfotiamine (139) are involved with 
Akt signaling. These lines of evidence favor catalytic activity of 
ACP5 in ThMP hydrolysis.

Thiamine-specific phosphatases of the bovine brain synaptosomes 
have been studied by binding them to a thiamine-modified affine sorbent, 
followed by MS identification of the eluted proteins. Only bacterial 
paralogues of mammalian proteins with phosphatase activities are 
identified by the procedure, probably due to poor coverage of the bovine 
genome. According to the sequence and structural alignment of these 
identified phosphatases, an apyrase encoded by the ENTPD2 gene, that 
is expressed in different tissues, including colon and small intestine, may 
possess the ThDP phosphatase activity in mammals (140). Apyrases, or 
ectonucleoside diphosphohydrolases, may catalyze hydrolysis of 
triphosphonucleotides to their monophosphates. Furthermore, these 
membrane-bound and soluble hydrolases may also act as 
monophosphatases of the diphosphonucleotides, catalyzing the hydrolysis 
of ThDP to ThMP (Figure 3).

Thiamine triphosphate is a non-coenzyme derivative of thiamine, 
probably involved in acetylcholine neurotransmission (141–143). 
Unlike the substrate-specific enzyme that hydrolyzes ThTP, synthesis 
of ThTP is currently known to be  catalyzed only by the enzymes 
producing ATP through ADP phosphorylation. That is, ThTP is 
synthesized by adenylate kinase 1 (AK1) in cytoplasm and by F1Fo-
ATP synthase in the mitochondria (140). Mitochondrial ThTP 
synthesis is tissue-specific and involves an unidentified regulator of 
F1Fo-ATP synthase linked to pyruvate oxidation (140). Other 
isoenzymes of AK, shown in Figure 3, are expressed in the gut, having 
different cellular locations. Their ability to synthesize ThTP and the 
substrate specificity has not been tested.

The adenylated form of ThTP (AThTP) is found in mammalian 
tissues, but the enzyme(s) of its synthesis lose their activity during 
purification, and this interferes with their identification (140). 
Levels of ThTP and AThTP are higher in fast growing, 
non-differentiated cells, highlighting the significance of these 
thiamine derivatives in cellular differentiation (144).

Metabolic transformations and known roles of thiamine and its 
different natural derivatives are summarized in Table 2.
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5 Transcriptomics of the enterocytes 
before and after gastric bypass implies 
increased thiamine demand in 
humans long term after the bypass

Thiamine deficiency often develops after bariatric surgery, 
including gastric bypass (145–147). Independent published data 
provide transcriptomics analysis of the enterocytes at one 
(15–45 days) (148) and 6–9 (115) months after gastric bypass. 

We have used these data to answer the question of what happens to 
thiamine-dependent metabolism after gastric bypass. To compare 
the levels of mRNAs for proteins involved in thiamine-associated 
metabolism across different experiments, they are normalized to the 
summarized transcripts of GAPDH+ACTB+TUBA1A, as described 
previously (149). The normalized levels are shown as averages 
between the datasets before and after gastric bypass (Figure 4), and 
in each of the analyzed datasets (Figure 5). As seen from Figures 4, 
5, no gross changes are observed in human jejunum enterocytes 

FIGURE 4

Changes in the averaged levels of mRNA for proteins of thiamine-dependent metabolism after gastric bypass. The relative abundance of mRNAs for 
the ThDP-dependent enzymes, thiamine transporters and enzymes of thiamine metabolism in jejunum enterocytes before and after gastric bypass is 
shown. The normalized mRNA signals are calculated as described in the legend to Figure 1. The data are shown as mean ± SEM. (A) Experiment 
GSE113819 {Platform GPL17586 (HTA-2_0) Affymetrix Human Transcriptome Array 2.0 [transcript (gene) version], 5 datasets for enterocytes before 
bypass: GSM3120595, GSM3120597, GSM3120599, GSM3120601, GSM3120603 - and 5 datasets for enterocytes 1 month after bypass: GSM3120594, 
GSM3120596, GSM3120598, GSM3120600, GSM3120602}. (B) Experiment GSE214758 [Platform GPL20795, HiSeq X Ten (Homo sapiens), 9 datasets for 
enterocytes before bypass: GSM6615629, GSM6615631, GSM6615633, GSM6615637, GSM6615641, GSM6615643, GSM6615645, GSM6615647, 
GSM6615649 - and 9 datasets for enterocytes 6–9 months after bypass: GSM6615630, GSM6615632, GSM6615638, GSM6615640, GSM6615642, 
GSM6615644, GSM6615646, GSM6615648, GSM6615650].
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FIGURE 5

Heatmaps showing transcriptomics changes in the thiamine-dependent metabolism after gastric bypass. The transcriptomics experiments are 
identified in Figure 4. The normalized mRNA signals for the enzymes of thiamine-dependent metabolism in jejunum enterocytes before and after 
gastric bypass are shown in decimal logarithm scale according to the color code legend accompanying each heatmap. The heatmaps are produced 
using R program. (A) The normalized mRNA signals before and 1 month after gastric bypass. (B) The normalized mRNA signals before and 6–9 months 
after gastric bypass. The dataset GSM6615633 is excluded, as many transcripts are not identified in this experiment.

1 month after gastric bypass, similar to findings in the mouse model 
of the bypass, where an initial metabolic perturbation in response 
to the surgery, manifesting on the 9th day, is reversed to the control 
state 2 months post-bypass (148). However, a comparison of either 
the average transcript levels (Figure 4A), or separate datasets of 
human enterocytes (Figure  5A) reveals minor, but consistent 

decreases in transcripts for ALPI > SLC19A1 ≈ OGDH ≈ 
HACL1 > SLC22A5 1 month after the bypass, suggesting a decrease 
in thiamine-dependent metabolism.

Clusterization of transcript levels groups the transcripts 
according to their expression level and coincidence of the variations 
in different datasets (Figure 5). For instance, cluster 1a in Figure 5A 
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comprises proteins whose transcript levels are higher than those of 
proteins in cluster 1b. Interestingly, each of the clusters comprises 
one of the well-characterized thiamine transporters: SLC19A3 
shares the cluster 1a with thiamine/ThDP-dependent proteins of 
higher expression, while SLC19A2 shares the cluster 1b with 
thiamine/ThDP-dependent proteins of lower expression. Overall, 
the three well-defined clusters 1a, 2c, 2d comprise transcripts of the 
high, low and intermediary levels of expression, correspondingly. 
Transcripts of the thiamine/ThDP-dependent proteins which are 
most obviously decreasing 1 month after the bypass (Figure 4A, 
gene names in bold in Figure 5A) belong to the proteins with the 
high (ALPI, OGDH, HACL1, SLC22A5  in cluster 1a) or 
intermediary (SLC9A1in cluster 2d) expression (Figure  5A). 
Increasing levels of clusterization (2, 3 etc.) group proteins of 
increasing transcriptional coincidence, i.e., proteins whose 
transcript levels show coupled variations across the datasets. For 
instance, despite the overall similarity between the transcription 
profiles before and 1 month after the bypass, the transcripts show 
featured variations in each of the cluster 2a or 2b. In particular, 
variations in the transcripts for the ThDP-dependent enzymes with 
relatively high enterocytic expression, i.e., OGDH, HACL1 and 
PDHA1, are coupled with those in the transcripts for ALPI and 
ThDP transporter SLC44A4, all belonging to the cluster 2b 
including the three proteins with decreased transcripts 1 month 
after the bypass (Figure 5A in bold). The cluster 2a includes proteins 
with a lower, compared to the cluster 2b, expression, with the 
decreasing transcriptional level of SLC22A5 1 month after the 
bypass coupled to the variations of BCKDHB and SLC19A3 
transcripts (Figure 5A). Reduced folate/ThDP exchanger SLC19A1, 
demonstrating decreased transcript levels 1 month after the bypass, 
shares the cluster (3 g) with mitochondrial ThDP transporter 
SLC25A19, ThTPase and BCKDHA (Figure 5A).

In contrast to the transcriptomic pattern 1 month after the 
bypass, human jejunum enterocytes 6–9 months after the bypass 
exhibit significant perturbations in their transcriptomics profiles 
(115). In particular, significant changes in the levels of transcripts 
of genes encoding TCA cycle enzymes and associated proteins are 
observed (115). In good agreement with this finding, our analysis 
of the selected transcripts characterizing thiamine-dependent 
metabolism, shows an overall increase in the transcripts for the 
related proteins (Figures 4, 5). In particular, up-regulation of the 
transcripts for the rate-limiting enzyme of the TCA cycle, 
2-oxoglutarate dehydrogenase (OGDH), and for the TCA-cycle-
affiliated proteins, such as subunits of pyruvate dehydrogenase 
(PDH) and branched chain 2-oxo acids dehydrogenase 
(BCODH) is observed. The upregulation of ThDP-dependent 
DHTKD1 protein 6–9 months after the gastric bypass surgery 
(Figures 4B, 5B) is similar to the long-term increase of DHTKD1 
protein observed after another type of surgical intervention 
(laminectomy) (48). In accord with the upregulated expression of 
all the ThDP-dependent dehydrogenases, transcripts of the 
thiamine/ThDP transporters and the major producer of ThDP 
from thiamine, i.e., thiamine diphosphokinase (TPK), as well as 
probable ThMP phosphatase ACP1, also undergo a long-term 
upregulation (Figure 4B).

Heatmap in Figure 5B shows that the first level of clusterization 
results in separating the ThDP-dependent TKT in cluster 1a from 
all the other ThDP-dependent enzymes, combined in cluster 1b. 

That said, the homooligomeric ThDP-dependent enzymes 
participating in metabolism of glucose and amino acids, i.e., TKT, 
OGDH, DHTKD1, preserve their cluster partners in both of the 
studied experiments. TKT has a common cluster (2d in 
Figures 1A, 5A in Figure 5B) with ThTPA and SLC19A1; OGDH 
shares its cluster (1a in Figures 5A,C in Figure 5B) with SLC44A4 
and SLC19A3; DHTKD1 keeps associated with SLC19A2 and 
SLC22A4 (clusters 3 h in Figures  5A,D in Figure  5B). For the 
heterooligomeric ThDP-dependent enzymes, i.e., PDH and 
BCOADH, the cluster partners of the subunits α and β may 
be  switched. For instance, OGDH shares the cluster 3d with 
PDHA1  in Figure 5A, while in Figure 5B OGDH occupies the 
same cluster 5c with PDHB, while PDHA1 is moved to the 
DHTKD1-comprising cluster 5d. BCKDHB partners with ALPI in 
the cluster 1a in Figure 5A, but the ALPI partner in cluster 4e of 
Figure  5B is BCKDHA. As a result, a comparison of the two 
independent transcriptomics experiments reveals stable 
associations between specific proteins of thiamine/ThDP 
metabolism and ThDP-dependent enzymes in enterocytes.

The observed upregulation of not only the ThDP-dependent 
dehydrogenases limiting and feeding the TCA cycle, but also the 
thiamine transporters and ThDP-producing enzyme TPK1 
(Figures  4B, 5B), may compensate for decreased levels and/or 
increased demands of thiamine in enterocytes 6–9 months after 
gastric bypass, facilitated by the higher expression of the proteins 
binding thiamine or ThDP. Indeed, increased activities of ThDP-
dependent dehydrogenases (assayed in  vitro) are known as a 
compensatory response to their in  vivo inhibition (38, 150). 
Cellular exposure to TD strongly stimulates OGDH activity upon 
the following incubation with ThDP (29). Hence, the upregulation 
of the thiamine/ThDP-dependent protein transcripts 6–9 months 
after gastric bypass (Figures  4B, 5B) maybe a biochemical 
indicator of thiamine insufficiency in the enterocytes. Remarkably, 
the upregulation is observed after initial decrease in the five 
thiamine/ThDP-dependent proteins 1 month after the bypass 
(Figures 4A, 5A).

According to the overall transcriptomics analysis of the long-
term (6–9 months) changes in jejunum enterocytes after the bypass 
(115), there are interactions between the TCA cycle gene cluster and 
other significantly affected pathways that include genes linked to the 
cell cycle G2/M DNA damage checkpoint regulation. The DNA 
damage checkpoint is also involved in cellular repair and 
differentiation (151). Strong involvement of thiamine transporters in 
the differentiation of enterocytes is suggested by approximately 6-fold 
higher thiamine uptake, corresponding to elevated expression of 
SLC19A2 and SLC19A3, in the differentiated jejunum epithelial cells 
of the villi, compared to the non-differentiated jejunum epithelial 
cells of the crypt (152). Positive action of high doses of thiamine 
under metabolic perturbations including surgeries (48, 115, 149, 
153–155) suggest that cellular protection and/or repair requiring cell 
differentiation, increase demand of thiamine. After surgical 
perturbations in enterocytic integrity, elevated cellular growth and 
differentiation, which occur within days, is followed by temporal 
organ-specific adaptations to the bypass (148). Both phases are 
characterized by high metabolic demands. If the increased demand 
is not met by the increased thiamine supply, a state of TD may easily 
follow, first in enterocytes, and after some period at the level of 
organism, most often manifested as Wernicke encephalopathy 
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(145–147). Thus, bariatric surgery-induced upregulation of thiamine-
dependent metabolism in jejunum (Figures 4B, 5B) may manifest 
metabolic remodeling addressing insufficient levels of thiamine in 
post-bypass enterocytes.

6 Molecular basis of the 
thiamine-induced improvements in 
gastrointestinal disorders

As mentioned above, despite the direct exposure of the 
gastrointestinal system to nutritional supply, this system often 
exhibits thiamine-responsive dysfunctions even when no known TD 
signs are evident in other tissues. The essential role of ThDP in 
mitochondrial energy production (Figure 1) is universal for all tissues 
and therefore can hardly explain specific and primary vulnerability 
of the gastrointestinal system. This energetic role is usually considered 
in the context of the specific vulnerability to TD of tissues with high 
energy demand, such as the heart and the brain. These tissues are 
considered to be the last to decrease their thiamine content during 
TD and the first to replete it upon thiamine administration, with the 
liver serving as the thiamine depot for other tissues (156). 
Nevertheless, if drugs inhibit ThDP-dependent enzymes, as, e.g., 
omeprazole does (157), direct exposure of the gastrointestinal system 
to oral drugs may increase its vulnerability compared to other tissues. 
Based on currently available data, we  also suggest several other 
origins of TD restricted to the gastrointestinal system.

First of all, the dual role of the gastrointestinal system - dedicated not 
only to nutrient absorption from the lumen, but also to their supply to 
other tissues via the blood  - may present one of the reasons for the 
intestine-specific susceptibility to TD. That is, the function of the 
gastrointestinal system requires a balance between thiamine absorption 
and its supply to other tissues. Mechanisms controlling the balance 
between the two processes are not well characterized. However, as shown 
above in the analysis of thiamine/ThDP-dependent metabolism in 
enterocytes after gastric bypass, increased thiamine demand by other 
tissues may impair the thiamine status of the gastrointestinal system.

Furthermore, a major difference between the gastrointestinal 
system and other tissues is the gut microbiome. It is important to 
note that microbes can synthesize not only thiamine but also 
thiamine antagonists. This may occur as part of natural 
metabolism (158) or when microbes are exposed to drugs that 
undergo aberrant reactions, such as metronidazole (159–161). 
Microbial enterotoxins alter gene expression in the gut epithelium, 
leading to enteropathies (162). Proinflammatory cytokines inhibit 
enterocytic thiamine uptake at the transcriptional level (163). 
Thiamine transport is also significantly reduced by bacterial 
lipopolysaccharide and in sepsis (163, 164). Yet another 
mechanism contributing to the specific vulnerability of the 
gastrointestinal system to TD may involve the gut-brain axis, 
which depends on vagal tone and acetylcholine neurotransmission, 
for which thiamine co-release is known (165–167). In addition to 
the parasympathetic regulation, acetylcholine is currently 
suggested to be a paracrine signal of peripheral tissues, particularly 
in pancreas and epithelial cells (168, 169).

Below, data on molecular mechanisms underlying thiamine-
responsive gastrointestinal dysfunctions are considered in 
more detail.

6.1 Exposure of the intestine to bacterial 
enzymes degrading thiamine or producing 
thiamine antagonists

Abnormal proliferation of gut bacteria in the upper small intestine, 
defined by the term ‘small intestinal bacterial overgrowth’ (SIBO), is 
associated with symptoms such as bloating, abdominal pain, excessive 
foul-smelling flatulence, constipation and/or diarrhea. The etiology of 
SIBO is varied and complex, with relapse commonly occurring after 
conventional treatment. Research suggests that SIBO is involved in up 
to 78% of irritable bowel syndrome (IBS) cases, the most commonly 
diagnosed disorder of gastrointestinal motility (170). SIBO has been 
associated with dysfunctional intestinal motility, characterized by 
inadequate peristaltic action of gastrointestinal smooth muscle (171–
174), hypochlorhydria, and pancreatic exocrine insufficiency (175). As 
mentioned above, such symptoms are often responsive to thiamine 
administration. A link between SIBO and TD is provided by the notion 
that SIBO may increase bacterial transformations of thiamine, which 
are far more variable than those in mammals. In particular, this 
concerns the action of bacterial thiaminases I and II, which catalyze 
biosynthesis of thiamine antagonists or thiamine degradation, 
respectively. Thiaminase I  catalyzes the substitution of thiamine 
heterocycles with catalytically inactive heterocycles from xenobiotics. 
For instance, in the presence of the antibiotic metronidazole, thiaminase 
I substitutes the thiazolium ring of thiamine with the imidazolium ring 
of metronidazole, resulting in a thiamine antagonist which can inhibit 
TPK (160). Microbes also synthesize naturally occurring thiamine 
antagonists, such as 2’-methoxyThDP (158). Thiaminase II degrades 
thiamine, splitting it into two heterocycles. Immobilized thiaminase II 
has been applied as an anticancer approach to deplete thiamine in 
cancer cells (176). Thiaminase II in fern extracts exerts an effect on 
neurotransmission which, similar to that of the thiamine antagonist 
pyrithiamine, can be counteracted by the addition of thiamine (177). It 
may thus be  suggested that direct exposure of the gut to the 
microbiome  - capable of synthesizing thiamine antagonists or 
possessing thiamine-degrading thiaminase II - may first of all affect the 
gut, leading to gastrointestinal beriberi, especially under conditions of 
SIBO or other disturbances of the gut microbiome. If these conditions 
are not treated, TD may spread from the gastrointestinal system to other 
tissues, as observed in metronidazole-induced encephalopathy (159).

6.2 Thiamine supports intestinal barrier 
integrity

Disturbed intestinal barrier function has been increasingly studied 
in recent years and is now widely recognized as a prominent feature of 
many chronic diseases, pertaining not only to the gut (178), but also to 
neurological, psychiatric, cardiovascular, and autoimmune conditions. 
Increased intestinal permeability can facilitate the entry of food antigens, 
bacteria and bacterial components into systemic circulation, which are 
thought to provoke systemic inflammatory responses. The intestinal 
epithelial barrier shares several key morphological and functional 
characteristics with the blood–brain barrier. The tight junctions of both 
structures are composed of transmembrane proteins such as claudin, 
occludin, zonula occluden (ZO), and endothelial cell-selective adhesion 
molecules. Thiamine is necessary for maintaining intestinal epithelial 
cell bioenergetics, and reduced activity of thiamine-dependent enzymes 
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may lead to a defective gut barrier (34). TD is known to disrupt the 
blood brain barrier, featuring loss of occludin, ZO-1 and ZO-2 (179, 
180). It is therefore possible that similar mechanisms could be at play in 
the gastrointestinal tract. Notably, TD leads to disturbed expression of 
junction protein subtypes in Ctenopharyngodon idella (181). Moreover, 
thiamine administration enhances claudin-1, claudin-4, ZO-1, and 
occludin in ruminal epithelium (22). Thiamine facilitates the protective 
action of secretory IgA against immunogenic threats in enterocytes 
(182). The prevention of intestinal barrier dysfunction by secretory IgA, 
along with its immunomodulatory properties, may play a role in IBD, 
including ulcerative colitis and Crohn’s disease (183). Poor thiamine 
status is frequently reported in IBD, mostly assumed to be a consequence 
of malabsorption (184–187). TD aggravates ulcerative colitis in mice, 
associated with the promoted infiltration of proinflammatory M1 
macrophages into colonic lamina propria (188). The underlying 
mechanism is TD-induced impairment of PDHC activity, which causes 
remodeling of glucose metabolism in the macrophages.

Other mechanisms may also contribute to IBD, too. In particular, 
IBD is associated with hypoxia in enterocytes (189). Hypoxia has 
recently been shown to downregulate thiamine transporters in a colonic 
cell line, impairing the thiamine uptake that results in a localized 
intracellular deficiency (190). Alkaline phosphatase of the brush border 
of the intestines, which participates in thiamine transport (Figure 2), 
plays protective roles against pathogenic infection (191) and bacterial 
toxins (LPS) in the gut, and may counteract inflammation (192).

A combination of exogenous and endogenous factors is known to 
influence intestinal barrier function, including both acute and/or 
chronic immune dysregulation (193). TD may induce negative 
developments in the gastrointestinal system, which can 
be counteracted by thiamine supplementation. By normalizing or 
increasing the efficiency of glucose metabolism, thiamine decreases 
the degradation of amino acids as energy substrates and increases 
protein synthesis, which is essential for maintaining tight junctions 
and intestinal barrier integrity (194). Remarkably, TD in rats causes a 
42–66% reduction of brush border enzyme activities and a 20% 
reduction in intestinal weight with significant thinning of the 
microvillus membrane (195). This may be  the result of disturbed 
function of the ThDP-dependent 2-oxoglutarate dehydrogenase 
(Figure 1), as a universal effect of its inhibition is perturbation in 
relative amino acid abundance and a subsequent decrease in protein 
synthesis (196, 197). In turn, villous atrophy can impair nutrient 
absorption and is one of the primary mechanisms underpinning 
extensive nutritional deficiencies found in Celiac and inflammatory 
bowel diseases (198). Furthermore, atrophy and inflammation of 
mucosal surfaces in the gut are documented in experimental TD (82), 
and high doses of thiamine have been trialed in two studies showing 
that thiamine reduced fatigue associated with IBD (199, 200).

6.3 Thiamine and intestinal inflammation

Thiamine is considered a natural anti-inflammatory compound 
(201). Studies in both goats (202) and cows (203) indicate that 
thiamine has anti-inflammatory effects on the ruminal epithelium, 
ameliorating in particular the intestinal inflammation and barrier 
permeability caused by high-concentrate diet (27). As considered in 
Section 3 above, thiamine affects the composition of symbiotic 
microbiota, and ThDP-dependent bacterial butyrate synthesis in 

particular. Knockouts of the ThDP transporter SLC44A4 in mice 
display an upregulation of genes associated with colonic inflammation, 
and increased susceptibility to dextran sodium sulfate-induced colitis, 
accompanied by significant weight loss and shortening of the 
colon (204).

A number of positive anti-inflammatory actions of thiamine 
include activation of Nrf2 and decreased ROS levels, enhanced activity 
of mitochondrial respiratory chain complexes I-IV, downregulation of 
endoplasmic reticulum stress, and suppression of gene expression 
associated with mitophagy, oxidative stress, and proinflammatory 
cytokines (205). Remarkably, the antioxidant effects of thiamine, 
including Nrf2 activation, are observed even when the thiamine 
disulfide forms— which should decrease cellular redox potential— are 
administered (206). These pharmacological forms, such as 
sulbutiamine or TTFD, may penetrate cell membrane better than 
thiamine. Inside the cells, they are reduced, particularly by the 
thioredoxin and glutaredoxin system, simultaneously stimulating 
antioxidant defense through Nrf2 activation (206). One may suggest 
that Nrf2 activation is specific to the disulfide forms of thiamine, not 
inherent in thiamine itself, as only the thiamine disulfides undergo 
intracellular reduction. The associated shift in the cellular redox state 
may cause the activation of Nrf2, leading to this additional positive 
effect on metabolism of high doses of thiamine disulfides, compared 
to thiamine. The Nrf2 activation along with the thiamine formation 
may explain why high doses of the thiamine disulfides, expected to 
decrease cellular redox potential, do not have any negative action even 
upon the long-term administration (155).

By maintaining integrity of the intestinal barrier via complex 
mechanisms, the vagus nerve and its major neurotransmitter, 
acetylcholine (ACh), play a crucial role in coordinating adaptive 
neural and endocrine responses of the gastrointestinal system, 
including those against infection and inflammation (207). SIBO and 
intestinal hypomotility are highly prevalent in patients with anti-ACh 
receptor antibodies (208, 209).

6.4 Acetylcholine-dependent mechanisms 
of thiamine action in gastrointestinal 
disorders

Many independent data associate gastrointestinal disorders with 
perturbed ACh signaling. ACh exerts tonic effects to maintain 
constriction of the lower esophageal sphincter, with ACh signaling 
compromised in a rat model of gastrointestinal reflux disease (210). 
Drugs which block the action of ACh can cause abnormal relaxation 
of the sphincter and reflux (211). The anti-cholinergic agents atropine 
and papaverine induce constipation in animals (23). In contrast, 
preserving ACh levels through acetylcholinesterase inhibitors 
improves gastrointestinal reflux disease (212). Pro-cholinergic 
pharmacological agents also provide symptomatic improvement in 
FGIDs (213, 214). Pharmacological forms of thiamine exhibit 
interactions with the ACh-dependent effects. That is, TTFD prevents 
the gut paralysis induced by atropine or papaverine (23), while 
sulbutiamine promotes cholinergic neurotransmission, potentiating 
the action of ACh esterase inhibitors (215). Interestingly, structure of 
an inhibitor of ACh esterase, acotiamide (brand name acofide), 
approved in Japan as a prokinetic motility drug against functional 
dyspepsia (216–218), combines the two heterocycles, one of them 
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thiazole, that may be considered as structural mimics of the thiazolium 
and aminopyrimidine heterocycles of thiamine.

An intimate relationship between thiamine and cholinergic 
neurotransmission relies on both the coenzyme and non-coenzyme 
actions of thiamine and its derivatives. In cholinergic cells, the ThDP-
dependent pyruvate dehydrogenase complex synthesizes the ACh 
precursor acetyl-CoA (Figure  1) (219, 220). Distribution of this 
acetyl-CoA between the oxidation in the TCA cycle and participation 
in ACh synthesis is regulated through limitation of the TCA cycle 
rate by the ThDP-dependent OGDH, and the non-coenzyme action 
of thiamine and derivatives on the other enzymes involved (221). 
TD-perturbed function of ThDP-dependent dehydrogenases of TCA 
cycle (Figure 1) is a well-known contributor to impaired synthesis of 
ACh (219). The ensuing mitochondrial dysfunction of cholinergic 
cells increases their susceptibility to different insults (222–224). In 
particular, neurons of the gastrointestinal system are highly sensitive 
to oxidative stress (219, 225, 226), which is a general hallmark of TD 
(227). Cytosolic oxidative stress can inactivate nicotinic ACh 
receptors in neurons, decreasing ACh-evoked currents (228). 
Oxidative stress is considered to contribute to the pathophysiology of 
IBD (229, 230).

Independent of metabolic action as the coenzyme ThDP, 
thiamine is essential for axonal membrane excitability, playing a 
significant role in development of the action potential (231). This 
non-coenzyme action of thiamine in neuronal signaling is further 
supported by the identified molecular targets of thiamine and its 
non-coenzyme derivative ThTP. ThTP-dependent phosphorylation 
of rapsyn regulates ACh neurotransmission, as rapsyn is a 
scaffolding protein of the post-synaptic membrane of 
neuromuscular junctions, specifically associated with nicotinic ACh 
receptors (232). Hydrolysis of ThTP by synaptic membrane-bound 
protein(s) different from the well-characterized soluble ThTPase of 
cytosol, is supposed to be involved with synaptic function (233, 
234). Thiamine binds to a bitter taste receptor, which modifies 
ileum contraction (235) and provokes ACh-induced contraction of 
jejunum (236). At a high concentration (0.05 mM), thiamine also 
binds to an isolated nicotinic ACh receptor (237). Probably, the low 
binding affinity is an artifact of the receptor isolation, as the 
physiologically relevant affinity of thiamine to the receptor may 
require protein–protein interaction within the native structure of 
the synapses. The non-coenzyme action of thiamine in 
neurotransmission is further supported by the action of the 
thiamine analog oxythiamine, whose diphosphorylated derivative 
(oxyThDP), formed by TPK in  vivo, is an antagonist of the 
coenzyme action of thiamine. As a result, oxyThDP inhibits ThDP-
dependent dehydrogenases, whose function is required for ACh 
synthesis, particularly pyruvate dehydrogenase complex generating 
ACh precursor acetyl-CoA (Figure 1). However, in superfused rat 
brain slices, oxythiamin enhances the release of synaptic 
acetylcholine, thus mimicking the non-coenzyme action of 
thiamine in facilitating ACh neurotransmission (238).

ACh is a major neurotransmitter of vagus nerve, coordinating the 
brain-gut axes (239). Vagus nerve stimulation can lead to 
gastrointestinal improvements (240), e.g., can increase gastric 
emptying through acting on the pyloric sphincter (241) and may be a 
treatment for gastroparesis (242). Potentiation of ACh release 
through transcutaneous vagal neuromodulation is known to enhance 
gut motility, reduce inflammation by suppressing TNF-α, and 

preserve epithelial tight junction integrity through the activation of 
enteric glial cells (243). The data indicate that TD-perturbed ACh 
synthesis and neurotransmission in vagus nerve may induce 
gastrointestinal dysfunction. However, in this case ACh synthesis and 
signaling are controlled by neurons of central nervous system. As 
discussed above, sufficient levels of thiamine in the brain are 
supported at the expense of other tissues, causing TD in these other 
tissues long before the TD occurs in the brain. Hence, when TD is 
limited to the gastrointestinal system, the pathology-relevant 
perturbation of ACh signaling may rather be expected in the enteric 
nervous system (ENS). ENS may regulate gastrointestinal function 
both with and without the input of central nervous system (244–246). 
In particular, the independent function of ENS is manifested in the 
intestinal peristaltic reflex.

ACh is a primary neurotransmitter of different types of ENS 
neurons, i.e., intrinsic primary afferent neurons, excitatory motor 
neurons, and interneurons (245). The thiamine-induced increases 
in contractions of the intestine smooth muscle and peristalsis, 
observed in a number of independent in vitro experiments on 
muscle strips of gastrointestinal tract (207, 219–222), support the 
action of thiamine on ACh signaling in ENS in the absence of 
central regulation (236). Synaptic co-release of thiamine and 
ACh, with thiamine facilitating the neurotransmission through 
its non-coenzyme action, is known from the early works of Minz 
and von Muralt on neuromuscular junctions (143, 165–167). In 
accordance with these observations, addition of thiamine and 
ThMP modulate synaptic transmission, electric and contractile 
activity of the smooth muscle strips from gastrointestinal tract 
(247). Thiamine hydrochloride, thiamine nitrate, thiamine 
propyldisulfide, TTFD, and some other experimental derivatives 
increase peristalsis of isolated sections of small intestine from rat 
(248). In isolated sections of murine jejunum and ileum, thiamine 
regulates parameters of the ACh-induced contraction in the 
concentration-dependent manner (236). In isolated duodenal and 
jejunal segments from cats, dogs, rabbits and guinea pigs the 
thiamine disulfide derivative TTFD exerts an excitatory effect on 
motility; sensitivity of the effect to an antagonist of muscarinic 
acetylcholine receptor atropine suggests involvement of the ACh 
neurotransmission (249). All forms of thiamine including 
thiamine hydrochloride, S-benzoyl thiamine disulfide, TTFD, 
increase contractions of isolated segments of small intestine (248).

In human patients with chronic enterocolitis and colitis, thiamine-
induced increases in motor activity of stomach, small and large 
intestine are detected by electrogastrography and balloon-
kymography, with no similar effects of vitamins B6, B12 and C (250). 
In animal models, TTFD can stimulate intestinal peristalsis within a 
few minutes after administration, also when mesenteric nerves are cut 
(251, 252). Intravenous administration of TTFD induces a slight 
increase in tone and a remarkable increase in the amplitude of 
rhythmic contractions in the jejunal loop of both non-anesthetized 
and anesthetized dogs for 20 min (253). TTFD applied topically inside 
the lumen of the intestine can also elicit such excitation effect (249). 
Nevertheless, in some studies on TTFD, percent weight gain was lower 
in the TTFD group (254). Two possible explanations for this effect are 
proposed: (1) reduced food intake due to an irritant effect of the 
treatment on the gastrointestinal tract (255, 256) or (2) a stimulant 
effect of TTFD on metabolism via enhanced noradrenaline secretion 
and thermogenesis (257).
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ACh signaling in non-neuronal cells, employing the nicotinic 
and muscarinic ACh receptors, is comparable to ACh 
neurotransmission (168, 169). Therefore, ACh signaling in 
non-neuronal cells is another process potentially affected by TD 
before the deficiency develops into the well-known dry or wet 
beriberi. Glial cells of ENS are stimulated by ACh (245). In 
mammalian intestine, ACh regulates sodium currents in the apical 
and basolateral membranes (168). In human pancreas, ACh 
synthesized by alpha-cells is suggested to activate beta-cells (169). 
Other in vivo actions of ACh in pancreas may be linked to its high 
thiamine content (89). As considered in Section 3, TD in pancreas 
strongly affects gastrointestinal function. Perturbed ACh signaling 
by pancreatic cells under TD may contribute to gastrointestinal 
dysfunction in addition to insufficient pancreatic synthesis of the 
enzymes needed for digestion.

Thus, cholinergic neurotransmission and ACh-dependent 
regulation of non-neuronal cells employ ThDP coenzyme function for 
ACh synthesis and non-coenzyme action of thiamine in ACh 
signaling. Both may be  impaired by TD, contributing to 
gastrointestinal dysfunction.

7 Conclusion

Various lines of evidence at the molecular level and in model 
systems provide a mechanistic basis for a number of observations 
at the physiological level, where thiamine supplementation 
alleviates gastrointestinal dysfunction, suggesting that 
insufficient levels of thiamine may underlie this dysfunction. The 
specific vulnerability of the gastrointestinal system to TD, in the 
absence of more common signs of wet and dry beriberi, may arise 
from direct exposure of this system to the gut microbiome and 
oral drugs, along with the continuous need to redistribute 
thiamine to other tissues. Cholinergic neurons of the enteric 
nervous system, which interact closely with gastrointestinal 
epithelial cells, as well as ACh signaling in non-neuronal cells 
such as enteric glia and pancreatic cells, depend on the essential 
role of thiamine in ACh production and the facilitation of ACh 
signaling. These mechanisms collectively contribute to the 
unique vulnerability of the gastrointestinal system to TD, even in 
the absence of classic forms of TD such as dry and wet beriberi. 
The multitude of proteins involved in mammalian metabolism 
and function of thiamine is not fully characterized. However, 
available data point to a much greater complexity of thiamine 
metabolism and its physiological significance, as commonly 
considered. This complexity must still be  addressed by the 
identification of all genes involved. Individual differences in 
genetic variants of the thiamine-dependent proteins, in 
combination with environmental factors, may underlie personal 
vulnerabilities to thiamine deficiency, manifesting in an ever-
increasing variety of clinical presentations.
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